
ECE 462 Design Project

Joshua Wentzel
Caleb Laws

March 13, 2021

Contents

1 Problem Statement 1

2 Assumptions 1

3 Analysis 2
3.1 General Approach . 2
3.2 Finding Signal Points and Noise 2

3.2.1 Background . 2
3.2.2 Signal Energy . 3
3.2.3 Average Symbol Energy 3
3.2.4 SNR and Noise . 3

3.3 Symbol Detection . 4
3.4 Additional Note: Gray Encoding 5

4 Simulation Setup 5
4.1 Decentralized Design . 5
4.2 Definitions . 6
4.3 Received Signal Generation . 6
4.4 Receiving . 6

5 Simulation Results 6

6 Discussion of Results 10

7 Appendix 11
7.1 Definitions.m . 11
7.2 Generate Experiments.m . 12
7.3 Receiver.m . 13

1

1 Problem Statement

The goal of this project was to create a 8-QAM digital communication system
over an AWGN channel on Matlab. The signal constellation diagram is shown by
Figure 1. This communication system was then placed through an increasingly
noisy channel to test the Bit Error Rate (BER) and Symbol Error Rate (SER).

Figure 1: The symbol constellation diagram.

2 Assumptions

• The noise across the channel is Additive White Gaussian (AWG) and
modeled by: Sw(f) = N0/2,∀f .

• The simulation SNR will start at 0 and increase by 2 up until 12 dB.

• There is equal probability that the transmitted will send each of the 8
symbols.

• Gaussian RNGs are used to generate uncorrelated, zero-mean noise com-
ponents (,)IQnn each of which has a variance 20N= (because this is a
baseband implementation).

1

3 Analysis

3.1 General Approach

This project tasked simulating 8-QAM digital communication in the presence of
varying levels of noise consists of several distinct components. Each component
belongs to one of two larger blocks. These blocks are depicted in Figure 2.

The ”Generate Received Sequence” block is responsible for generating the
3-bit symbol sequence(Si), mapping it to the constellation and multiplying ap-
propriately to ensure proper SNR (finding (ai, bi)), adding appropriate noises
(nI i and nQi), and sending the information to ”Receiver Analysis” block.

The ”Receiver Analysis” block is responsible for handling the data sent
by the ”Generate Received Sequence” block, determining detected symbols,
evaluating transmission performance, and calculating error rates.

Three crucial questions must be answered before we can create the simula-
tion: How do we find ai and bi? How do we find nI i and nQi? Once we have
r1i and r2i, how do we determine the detected symbol, Di?

Figure 2: Block Diagram

3.2 Finding Signal Points and Noise

As it happens, the first two questions are very closely linked and thus will be
addressed together.

3.2.1 Background

A key component of the ”Generate Received Sequence” block is the 8-QAM
signal selector. This component transforms the ith 3 bit symbol Si to the

2

corresponding signal points (ai, bi). For example, the 3 bit symbol ’110’ would
be mapped to the signal point coordinates (a, a).

The question of what exactly a is follows shortly and is critical to imple-
menting the ”Generate Received Sequence” block.

3.2.2 Signal Energy

According to pages 419 and 424, we impose the condition that dmin = 2
√

Es

where dmin is the minimum distance between signal points. Referring to Figure
1 and using simple geometry we determine dmin = 2a and that each neighbor of
one of the inner four signal points is separated by exactly this distance. Thus
we have the relationship

dmin = 2a = 2
√

Es.

Thus,

a =
√

Es.

Indeed a is no random constant, it is the square root of the signal energy and
it scales the signal points accordingly.

3.2.3 Average Symbol Energy

We attempt to further understand the role of a by using the assumption that
all signal points are equally probably and the equation

Eav =
Es

M

M∑
m=1

(a2mc + b2ms).

Where Eav is the average energy contained in one symbol, M = 8 is the number
of signal points (symbols), and (amc, bms) are the normalized coordinates (scaled
by a) of the signal points given by Figure 1. We find

Eav = Es(4 + 2
√

2) = a2(4 + 2
√

2).

We now have related the average symbol energy to our constant a =
√

Es.

3.2.4 SNR and Noise

Next we attempt to fit SNR and noise into the picture. We start by noting that
Eav/N0 is the average SNR/symbol. Thus we have the following:

SNR/symbol = Eav/N0

We are more concerned with the average SNR/bit, Ebav. With Eav = k × Ebav

where M = 2k. Thus
Eav = 3× Ebav

and we have
SNR/symbol = 3× SNR/bit

3

We now refer to SNR/bit as ”SNR” where we are careful to note that SNR is
expressed linearly.

Eav/N0 =
3× Ebav

N0

Eav/N0 = 3× SNR

Eav = 3× SNR×N0

Eav = 3× SNR×N0

a2(4 + 2
√

2) = 3× SNR×N0

a2 =
3×N0

(4 + 2
√

2)

a =

√
3×N0

(4 + 2
√

2)

Recall,
SNR = 10(SNRdB/10)

Substituting this we have:

a =

√
3× 10(SNRdB/10) ×N0

(4 + 2
√

2)

Let N0 = 1 for convenience. We have:

a =

√
3× 10(SNRdB/10)

(4 + 2
√

2)

With a found we can determine (ai, bi). Also, with N0 = 1 we know that the
noise has variance equal to 1. Thus we now have the answers to the first of our
two questions.

3.3 Symbol Detection

Finally, we answer the question how do we determine the detected symbol,
Dim from the received signal, r1i and r2i. The answer is we calculate the dis-
tance between the received signal and each of the signal points. The minimum
distance corresponds to the closest signal point and thus the most likely trans-
mitted symbol. This can be visualized using a Voronoi diagram (Figure 3)in
which the decision space is partitioned into regions closest to each of the signal
points. Thus all critical questions have been answered and we can proceed to
implementation.

4

Figure 3: Voronoi Decision Regions

3.4 Additional Note: Gray Encoding

Gray Coding is ensuring that each symbol on the constellation diagram is only
one bit away from it’s nearest symbol. This minimizes the number of bits that
can be demodulated with error. Referring back to the original symbol con-
stellation diagram (Figure 1) we can prove graphically that each of the nearest
symbols are all only one bit away from each other. This by definition is designing
the model to be gray coded.

Additionally, we can use the simulation results to confirm that the error
seen is what would be expected from gray coding. Unlike non gray coding, due
to the low probability of receiving more then one incorrect bit in a symbol we
expect to see a equal number of mistranslated bits and symbols which can also
be written as Pb = Ps/3. As you can see in Table 1 in the Simulation Results
section, the Bit to Symbol Error ratio is very close to 1 approaching it as the
SNR increases. Again, this is what we would expect from a gray coded system.

4 Simulation Setup

4.1 Decentralized Design

The simulation is divided into three MATLAB programs, each with their own
specific purpose. Because the generation of the received sequence and the actual
receiving of the sequence are separated it is often possible to adjust one without
needing run them both. This significantly hastened simulation development.

5

4.2 Definitions

The definitions.m program is responsible for storing several constants and cal-
culated constants used by one or both programs necessary for the simulation.
It is here that we store which SNRs will be tested, how many symbols will be
transmitted for each SNR, the power mul constant, and the constellation array.

4.3 Received Signal Generation

The received signal generator.m program is responsible for generating the sym-
bol sequence, mapping it to the constellation, multiplying by the necessary
amount to ensure proper SNR, adding appropriate noise, and saving the infor-
mation for use by the receiver program.

4.4 Receiving

The receiver.m program is responsible for loading the data saved by the re-
ceived signal generator, determining detected symbols, evaluating transmission
performance, and calculating error rates.

5 Simulation Results

Symbol and Bit Error Rate
dB SNR Symbol Error Rate Bit Error Rate Bit to Symbol Error Ratio

0dB 0.477260 0.197243 1.239848
2dB 0.384040 0.146497 1.144386
4dB 0.282490 0.100883 1.071365
6dB 0.181840 0.062537 1.031731
8dB 0.093590 0.031680 1.015493
10dB 0.035580 0.011927 1.005621
12dB 0.008120 0.002707 1.000000

Table 1: Analysis of gray coding.

6

Figure 4: SER and BER comparison

Figure 5: 0dB SNR

7

Figure 6: 2dB SNR

Figure 7: 4dB SNR

8

Figure 8: 6dB SNR

Figure 9: 8dB SNR

9

Figure 10: 10dB SNR

Figure 11: 12dB SNR

6 Discussion of Results

As expected the increase of SNR has visibly improved the performance of the
system. Referencing the table of Symbol Error rates our system will be able to

10

transmit a 3 Bit symbol on a 6dB SNR channel with an 98.968269% certainty.
This is quite reliable for a fairly high noise system. With a SNR of 12dB we see
that our system is able to transmit symbols with a success rate of 99.188%.

The validity of the reliability of this system on top of the increase per-
formance in transmission rate that QAM has compared to other transmission
methods such as AM or FM makes it an appropriate choice for high bandwidth
systems. QAM is currently being used in the 802.11 WiFi standard and high res-
olution digital video transmission so the applications of QAM will be prevalent
for the foreseeable future.

7 Appendix

7.1 Definitions.m

% Create Definitions file

SNRs_tested_dB = [0 2 4 6 8 10 12];

total_experiments = length(SNRs_tested_dB);

power_mul = 3/(4+2*sqrt(2)); % used for finding Es = ’a’

symbols_per_experiment = 10^5;

plotted_symbols_per_experiment = symbols_per_experiment/10;

bits_per_symbol = 3;

symbols = 8;

% % figure drawing constants

% width=1280; % default 550

% height=200;

% height_modifier = 1.2;

mul = 1 + sqrt(2);

encoding_constellation = [-1 -1;-mul -mul;1 -1;mul -mul;-1 1;-mul mul;1 1; mul mul];

global encoding_constellation_x;

global encoding_constellation_y;

encoding_constellation_x = [-1,-mul,1,mul,-1,-mul,1,mul];

encoding_constellation_y = [-1,-mul,-1,-mul,1,mul,1,mul];

save(’Definitions.mat’)

11

7.2 Generate Experiments.m

% used for generating the data

clc;

clear all;

close all;

SHOW_CHARTS = 1;

% load definitions

Definitions

load(’Definitions.mat’);

for idx = 1:total_experiments

SNR_db = SNRs_tested_dB(idx);

fprintf("SNR (dB) = %ddB\n",SNR_db);

SNR = 10^(SNR_db/10);

fprintf("SNR (linear) = %f\n",SNR);

scale_factor = sqrt(SNR*power_mul); % Es = ’a’

fprintf("Sqrt(Es) = %f\n",scale_factor);

AverageSymbolPower = (4+2*sqrt(2))*scale_factor*scale_factor;

fprintf("AverageSymbolPower = %f\n",AverageSymbolPower);

AveragePowerPerBit = AverageSymbolPower/3;

fprintf("AveragePowerPerBit = %f\n",AveragePowerPerBit);

fprintf("\n");

[s,n1,n2] = RandStream.create(’mlfg6331_64’,’NumStreams’,3);

symbol_sequence = randi(s,[0 7],symbols_per_experiment,1);

noise_1 = randn(n1,symbols_per_experiment,1);

noise_2 = randn(n2,symbols_per_experiment,1);

a_i = zeros(symbols_per_experiment,1);

b_i = zeros(symbols_per_experiment,1);

for i = 1:length(symbol_sequence)

con_output = encoding_constellation(symbol_sequence(i)+1,:);

%con_output = [1 1];

a_i(i) = con_output(1);

b_i(i) = con_output(2);

% a_i(i) = 1;

% b_i(i) = 1;

% symbol_sequence(i) = 6;

end

a_i = a_i*(scale_factor);

b_i = b_i*(scale_factor);

received_a_i = a_i + noise_1;

12

received_b_i = b_i + noise_2;

channel_data = [symbol_sequence,noise_1,noise_2,a_i,b_i,received_a_i,received_b_i];

filenameOUT = strcat(’channel_data’,num2str(idx),’.mat’);

save(filenameOUT, ’channel_data’);

constant_data = [idx SNR_db SNR scale_factor];

filenameOUT = strcat(’constant_data’,num2str(idx),’.mat’);

save(filenameOUT, ’constant_data’);

end

7.3 Receiver.m

% used for calculating error rates

clc;

clear all;

close all;

SHOW_CHARTS = 1;

% load definitions

Definitions

load(’Definitions.mat’);

%format long

SymbolErrorRates = zeros(total_experiments,1);

BitErrorRates = zeros(total_experiments,1);

TightSymbolBounds = zeros(total_experiments,1);

for idx = 1:total_experiments

filenameIN1 = strcat(’channel_data’,num2str(idx),’.mat’);

filenameIN2 = strcat(’constant_data’,num2str(idx),’.mat’);

stuff1 = matfile(filenameIN1);

stuff2 = matfile(filenameIN2);

channel_data = stuff1.channel_data;

constant_data = stuff2.constant_data;

symbol_sequence = channel_data(:,1);

noise_1 = channel_data(:,2);

noise_2 = channel_data(:,3);

a_i = channel_data(:,4);

b_i = channel_data(:,5);

received_a_i = channel_data(:,6);

received_b_i = channel_data(:,7);

%idx = constant_data(1); not needed

13

SNR_db = constant_data(2);

SNR = constant_data(3);

scale_factor = constant_data(4);

detected_symbol_sequence = zeros(symbols_per_experiment,1);

total_symbol_errors = 0;

total_bit_errors = 0;

for s = 1:length(symbol_sequence)

closest_symbol_index = 1;

closest_distance = compute_distance_from_symbol(received_a_i(s),received_b_i(s),scale_factor,1);

for i = 2:8

distance = compute_distance_from_symbol(received_a_i(s),received_b_i(s),scale_factor,i);

if(distance < closest_distance)

closest_distance = distance;

closest_symbol_index = i;

end

end

detected_symbol_sequence(s) = closest_symbol_index;

detected_string = num2str(dec2bin(closest_symbol_index-1,3));

real_string = num2str(dec2bin(symbol_sequence(s),3));

if(strcmp(detected_string(1),real_string(1))~= 1)

total_bit_errors = total_bit_errors+1;

end

if(strcmp(detected_string(2),real_string(2))~= 1)

total_bit_errors = total_bit_errors+1;

end

if(strcmp(detected_string(3),real_string(3))~= 1)

total_bit_errors = total_bit_errors+1;

end

if((closest_symbol_index-1) ~= symbol_sequence(s))

total_symbol_errors = total_symbol_errors + 1;

end

end

fprintf("Test %idB:\n",SNR_db);

fprintf("symbols_per_experiment = %f\n",length(symbol_sequence));

fprintf("total_symbol_errors = %f\n",total_symbol_errors);

fprintf("total_bit_errors = %f\n",total_bit_errors);

fprintf("verify that total_bit_errors is between one third and triple total_symbol_errors\n");

fprintf("%f <= %f <= %f\n",total_symbol_errors/3,total_bit_errors,total_symbol_errors*3);

EstimatedSymbolErrorRate = total_symbol_errors/length(symbol_sequence);

fprintf("EstimatedSymbolErrorRate = %f\n",EstimatedSymbolErrorRate);

EstimatedBitErrorRate = total_bit_errors/(length(symbol_sequence)*3);

14

fprintf("EstimatedBitErrorRate = %f\n",EstimatedBitErrorRate);

AvgBitErrorsPerSymbolError = (EstimatedBitErrorRate*3)/EstimatedSymbolErrorRate;

fprintf("AvgBitErrorsPerSymbolError = %f\n",AvgBitErrorsPerSymbolError);

fprintf("The greycode estimate assumes 1 bit error per symbol error\n");

GreycodeEstimateOfBitErrorRate = EstimatedSymbolErrorRate/3;

fprintf("GreycodeEstimateOfBitErrorRate = %f\n",GreycodeEstimateOfBitErrorRate);

fprintf("As SNR increases, EstimatedBitErrorRate approaches GreycodeEstimateOfBitErrorRate\n");

TightSymbolBound = 1 - (1-2*qfunc(sqrt(SNR*(3/7))))^2;

fprintf("TightSymbolBound = %f\n",TightSymbolBound);

fprintf("\n");

fprintf("\n");

SymbolErrorRates(idx) = EstimatedSymbolErrorRate;

BitErrorRates(idx) = EstimatedBitErrorRate;

TightSymbolBounds(idx) = TightSymbolBound;

figure(idx)

clf(’reset’)

hold on;

scatter(received_a_i(1:plotted_symbols_per_experiment),received_b_i(1:plotted_symbols_per_experiment),100,’X’);

voronoi(encoding_constellation_x*scale_factor,encoding_constellation_y*scale_factor,’k’)

for k = 1:8

text((encoding_constellation_x(k)-0.2)*scale_factor,(encoding_constellation_y(sym(k))+0.2)*scale_factor,num2str(dec2bin(k-1,3)));

end

hold off;

msg = strcat("Received Symbols with SNR = ", num2str(SNR_db),"dB");

%msg = strcat("Voronoi Decision Regions");

title(msg);

axis([-4 4 -4 4]*scale_factor)

pathname = strcat(’outputs/received_symbols_SNR_’,num2str(SNR_db),’.png’);

saveas(gcf,pathname)

end

figure(total_experiments+1)

clf(’reset’)

set(gca, ’YScale’, ’log’)

hold on;

plot(SNRs_tested_dB, SymbolErrorRates)

plot(SNRs_tested_dB, BitErrorRates)

hold off;

legend("SER","BER");

title("Symbol Error Rate (SER), Bit Error Rate (BER) vs. SNR")

xlabel("SNR = E_b/N_0 (dB)");

ylabel("dB");

15

saveas(gcf,’outputs/SER-BER-Chart.png’)

function distance = compute_distance_from_symbol(a_i,b_i,scale_factor,symbol_index)

global encoding_constellation_x;

global encoding_constellation_y;

symbol_x = encoding_constellation_x(symbol_index)*scale_factor;

symbol_y = encoding_constellation_y(symbol_index)*scale_factor;

distance = sqrt((a_i-symbol_x)^2+(b_i-symbol_y)^2);

end

16

