Junior Design II Cellcatraz Project Summary

Sam Leonard March 5, 2021

As an engineering student, I understand all too well how a distracting cell phone can hinder productivity, so I set out to create an accurate, safe, and intuitive device to assist the user in following the <u>Pomodoro Technique</u> to minimize distraction and increase productivity. My device, Cellcatraz, allows the user to select a 25-minute or 5-minute timer. If the 25-minute setting is selected, the user must place their phone in the box to start the timer. If the phone is removed early, an alarm will sound; the user has 5 seconds to return their phone before the system resets. If the 5-minute setting is selected, the user may remove their phone without penalty. If used correctly, Cellcatraz will promote an effective study routine.

This project was among the most complex I had yet faced, so I first tried to anticipate what parts of the project would come easily and which parts would require more investigation. I had done some Arduino programming in previous classes, so I felt confident in that respect. However, I had no prior PCB design experience, so I planned to devote more time to that part of this project. This self-reflection helped me create a project timeline that kept me on track.

The first important steps were to understand the project requirements and use this information to create a system block diagram with well-defined interfaces. This let me divide the project into manageable tasks. I frontloaded simpler parts of the project like the speaker and photosensor. I built and tested them on a breadboard to ensure that I had reliable elements that could be used in testing the more complex aspects of the project later on.

I then needed to decide what microcontroller to use. I initially determined to use an Arduino and design a simple PCB shield, but I decided to challenge myself and design a PCB around the ATmega328P itself. I knew this would be a more complex circuit, but I also saw that it would be a valuable learning experience. After several hours of tutorials and a day of verifying and tweaking my design, I ordered my first PCB!

Assembling the circuit and enclosure was straightforward, but I did note some revisions I would make for a subsequent iteration of this project. I made the enclosure out of wood and glass, which looks cool but is costly and time-intensive to replicate. Additionally, I realized that I could have designed a smaller, more compact PCB if I had used surface-mounted components

	Start	End		%
Task Title	Date	Date	Duration	Complete
Overall Project Design				100%
Block Diagram	1/15/21	1/15/21	1	100%
Progress Reports	1/16/21	1/16/21	on-going	100%
Timeline	1/17/21	1/17/21	1	100%
Parts				100%
Switches	1/15/21	1/18/21	4	100%
ATmega328P	1/18/21	1/21/21	4	100%
Power Supply	1/19/21	1/22/21	4	100%
Photosensor	1/20/21	1/23/21	4	100%
Speaker	1/21/21	1/24/21	4	100%
7-Segment Display	1/22/21	1/25/21	4	100%
Circuit Design				100%
Photosensor	1/15/21	1/19/21	5	100%
Speaker	1/22/21	1/26/21	5	100%
7-Segment Display	1/29/21	2/2/21	4	100%
Switches	2/5/21	2/9/21	5	100%
Power Supply	2/10/21	2/12/21	3	100%
РСВ	2/8/21	2/18/21	11	100%
Code				100%
Photosensor	1/20/21	1/22/21	3	100%
Speaker	1/27/21	1/29/21	3	100%
7-Segment Display	2/2/21	2/5/21	4	100%
Switches	2/7/21	2/11/21	5	100%
Enclosure				100%
Prototype Build	1/22/21	1/25/21	4	100%
Final Build	2/8/21	2/19/21	12	100%
Documentation				98%
Video Production	3/2/21	3/5/21	4	100%
System Verification	3/2/21	3/5/21	4	100%
Project Showcase	3/2/21	3/5/21	4	95%

rather than through-hole components. Finally, it would have been prudent to include a rechargeable battery pack, which would allow Cellcatraz to operate without relying on wall power. A smaller PCB, internal battery, and a more modular, perhaps 3D-printed enclosure would allow Cellcatraz to be a more compact, practical, and replicable device.

Bringing Cellcatraz from idea to product was both rewarding and exciting, and it was a great learning experience. I learned new tools, such as Fusion 360 and Eagle, and I learned some specific aspects of PCB design. I also built valuable habits for project management, including planning, self-reflection, and the value of ongoing design revision.