Executive Summary

Autonomous Package Delivery Robot

ECE Group 025

Nick McBee, Drew Gehrke, Andrew Pehrson, Nathan Searles, Tyrone Stagner

The purpose of this project is to create a robotic package delivery system operating in the
context of an environment with well-developed pedestrian-tailored infrastructure, such as a
college campus. The Autonomous Package Delivery Robot (APDR) will be capable of carrying
packages while autonomously navigating along sidewalks and avoiding obstacles to reach its
final destination. The scope of this project also contains a user interface in the form of a website
that will allow individuals to initiate and receive deliveries at a specified destination.

The goal of this project is to join the increasing number of autonomous delivery robots
that provide contactless deliveries of food and goods to customers. This project will also
introduce a solution to the rising issue of electronic waste, which will be achieved by using
recycled electronics such as the base, motors and batteries of an electric wheelchair.

This project was inherited from a previous Oregon State University EECS Capstone
group (2020-2021). This team will be working with Hanna Anderson, project sponsor, and
previous team member on this project. In its current state, the robot is capable of movement
under manual control, avoidance of stationary obstacles, and waypoint creation using GPS. The
technical goals for the team inheriting this project are developing a secure package delivery
system and increasing the capability for autonomous outdoor travel of the APDR. The developed
product will be incredibly aware of stationary objects and dynamically moving pedestrians and
vehicles, as well as provide an intuitive and reliable courier service to distributors and customers
alike.



Sep 18 Dec 3 Jan 30 Feb 25 Mar 19 Jun 20

Advanced User

Functionality Interaction

Project Timeline

Many changes and improvements have been made to the system by the new team. The
APDR system now has a way to store packages in its lockbox mounted right on top of the
electric wheelchair base. Other hardware changes include the addition of a team made PCB and
new circuitry to properly distribute power to all the various electronic components of the system.
Another key change is that many of the sensor modules have been off-boarded from the
Raspberry Pi and are now processed on an ESP32 microcontroller. This allows for more
processing speed on the Raspberry Pi. The inertial measurement unit, or IMU, and global
positioning system, or GPS, aid in the navigation of the robot by sending the data first to the
ESP32 to be processed, which the Raspberry Pi then receives and sends to the various topics
which require the data. Speaking of topics, the entire system has been migrated from the first
version of the Robot Operating System, or ROS, into the newer version, ROS2 Galactic. Many
custom topics have been developed to get the APDR system working, including a MCU
(microcontroller unit) driver, USB-to-Serial driver, motor controller driver, and many more.
Several other topics have been utilized to aid in traversal, such as the navigation stack built into
ROS2 and the robot translocation topic.

The team learned many valuable lessons over the course of this project. One of which is
team communication and collaboration. The team set up a form of communication extremely
quickly and were able to continuously update each other based on progress and easily ask
questions of each other. Ensuring every team member was aware of due dates, hardships, and any
other concerns with the project were easily voiced with the use of a Discord server as our
primary form of communication. Another valuable lesson learned was time management. As this
project lasted several months, the tendency to procrastinate was apparent. However, the team
was able to consistently reach deadlines and have effective progress every week. Another big
part of time management with the project was the time it took to integrate each component into
the entire system. The team learned that it is important to integrate components as early as
possible. This is to allow for debugging of any potential problems in the system and to allow for
sufficient time for testing.



