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Abstract: 
 High-performance computing has quickly become an integral part of scientific 
advancement, and a great deal of work has gone into making deep learning software 
easier to both create and deploy; however, many scientific projects have been 
bottlenecked by hardware limitations, rather than software ones. This research 
examines those limitations and investigates what changes can be made to minimize 
them. FPGAs (Field Programmable Gate Arrays) prove to be a promising alternative to 
GPUs (Graphical Processing Units) in both power consumption and interface flexibility, 
and storage optimization allows for these accelerators to access data more quickly and 
without the need for a CPU (Central Processing Unit) interface. Further research should 
develop models for optimizing FPGA integration, and test physical science algorithms 
on different processor and storage models to find optimal configurations. 
 
Introduction: 

As the questions we ask in the fields of science become better informed and 
more complex, science professionals increasingly turn to the use of high-performance 
computation and machine learning to find the answers. As a result of this increase in 
demand, these fields have become a booming area of research, with many new 
discoveries being made every day. However, a great deal of this research and its 
implementations are made on a small-scale, case-by-case basis, requiring the regular 
creation of entirely new systems and implementations which drastically increase the 
time until actual scientific analysis can be done. On the other hand, large-scale 
improvements, particularly those on the hardware level, require such a large upfront 
financial and developmental investment that they are often rejected in favor of more 
short-term projects. 

This research aims to take a closer look at the long-term benefits of these 
hardware-level improvements and optimizations, in order to see if they offset the initial 
costs. Of particular interest in this area is the utility and selection of different processors, 
their comparative benefits, and how they can best be used together to solve the 
particular physical science problems encountered by NASA and its partners. In addition 
to the use and combination of these processors, the storage and access of data is 
another important area that hardware changes can improve and expedite. Through 
these lenses, this paper will attempt to show that these improvements may be worthy of 
further research; the next steps of this research will also be laid out and, hopefully, 
explored in future efforts. 
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Problem Statement: 
The ongoing problem with many projects that require high-performance 

computing involves the “time-to-science”; the amount of time that it takes to perform 
mathematical and engineering operations that fall mostly outside the realm of actual 
scientific analysis. Often, modern physical science problems and questions are so 
complex that they require the creation of entirely new systems to find an answer, and 
the work of designing and implementing these systems on the physical level, writing and 
testing code on the programming level, and deploying this code on the hardware level, 
can quickly add up to a great deal of time and effort before scientific conclusions can be 
made. 

In the past, this problem has often been approached with the expectation that the 
existing hardware is an immovable limitation. As a result of this, much of the research 
on this issue attempts to solve it through optimization on the software and programming 
level. Although a great deal of time can be saved in this way, by designing algorithms 
and training models that minimize computation time, the hardware of high-performance 
computing has seen many important advancements that this branch of research has not 
entirely explored. Additionally, due to the multifaceted and complex nature of these 
problems, software modifications and optimizations often must be done on a case-by-
case basis, further adding to the time-to-science for each individual project. 

Hardware improvements and optimizations, on the other hand, require a large 
initial investment of time, design, and budget, but can have an exponentially better 
return on investment in the long term if the right design decisions are made, with fewer 
restrictions allowing for less time to be spent on tweaking these algorithms, and more 
and different types of computing power allowing for easier and faster deployment of 
these models. Due to these advantages, the aim of this research is to find which 
changes and advancements can be made to high-performance computing hardware to 
minimize the “time-to-science” on the types of physical science problems currently 
investigated by NASA and its partners. 
 
Background Information: 
 Although deep learning and artificial intelligence are quickly taking over the high-
performance computing space, the use of CPU systems for highly parallelable problems 
cannot be overlooked. CPU-based supercomputers have been around for decades now, 
and until recently were seen as the dominant systems in terms of computing power. The 
easy parallelability of these systems have made them useful for the solution of partial 
differential equations, as well as the Monte Carlo simulations used to model interactions 
with many degrees of freedom. As such, they are the systems that are used to solve 
many astrophysics problems, such as hydrodynamic equations and gamma ray bursts 
(Mignone et al, 2007; Fryxell et al, 2000). CPUs are also seen as incredibly flexible in 
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terms of programmability, making them the ideal processor to handle many of the serial 
tasks required for high-performance computing projects (Jawandhiya, 2018). 

However, as deep learning and neural networks have begun to reshape our 
understanding of how computers can solve problems, CPUs have begun to be 
supported of other types of processors, known generally as accelerators. In other 
words, while the majority of programming and interfacing is done with CPUs, and a 
great deal of computing is still done by these processors, accelerators offer a boost in 
performance at the cost of flexibility (Jawandhiya, 2018). These accelerators account for 
over one-third of all performance power in high-end supercomputers today (TOP500, 
2020; see Figure 1 in Appendices), and have quickly become the main focus of 
hardware optimization research. These accelerators generally come in three varieties; 
namely, GPUs, FPGAs, and ASICs. Some “big data” companies like Google have 
developed their own proprietary processors as well; however, the nature and use of 
these devices are closely held by these companies, and as such will not be discussed in 
this paper. 

Graphical Processing Units, or GPUs, have become the “poster child” of modern 
deep learning systems. Originally designed for the kinds of vector operations used in 
graphical rendering, their processing speeds eventually began to exceed that of the 
average CPU with respect to certain mathematical operations. Conveniently, these 
operations are also used in the deployment of many types of neural networks and 
parallel computation problems, making them an ideal candidate for use in both high-
performance computing and deep learning systems. In particular, deep learning 
systems have a wide range of applications beyond traditional computing, from image 
recognition and signal processing, to identifying new planets and phases of matter. 
These processors exhibit far better performance than CPUs with respect to both cost 
and power consumption, but are not as versatile as CPUs and are more difficult to 
program for, and thus are generally used through a CPU-based interface, with CPUs 
offloading certain operations to GPUs for faster processing (Jawandhiya, 2018). Figure 
2 in Appendices (Galloy, 2013) shows how the optimal processing power of GPUs has 
grown to vastly outperform that of CPUs. 

One of the biggest issues currently affecting GPU viability is power consumption. 
Although GPUs have higher optimal processing power than CPUs per unit of power 
consumed, the amount of power required to reach this optimal level is still quite vast, 
especially at a high-performance level with dozens or hundreds of GPUs. Figure 3 in 
Appendices shows how high-end GPUs consume an average of 100 more Watts than 
high-end CPUs, a power spike that would actually increase if not for the fact that GPUs 
begin to overheat at this level (Rupp, 2016). The waste heat generated by these units 
also creates a size constraint for designers, forcing them to build larger computation 
units that must be carefully cooled in order to achieve as close to optimal performance 
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as possible (Berten, 2016). Additionally, the nature of pushing these processors to 
perform duties outside their original graphical purpose means that optimizing their vast 
parallelization capabilities is often a huge design challenge (Bakhoda et al, 2009). In 
other words, some problems are too big or strange for GPUs to easily solve with the 
cores and instruction sets they have, and this often causes a great deal of design time 
on the software level to adjust the solution approach in a way that fits the parameters a 
GPU is equipped to solve. 

Field Programmable Gate Arrays, or FPGAs, are perhaps the most exciting 
possible solution being explored to address some of the shortcomings of the GPU. 
Although previously overlooked due to low performance compared to GPUs, FPGAs 
have quickly become a contender in this field due to their high processing ability per unit 
of power consumed (Berten, 2016). The main benefit of FPGAs, aside from their low 
power consumption, is their ease of reconfiguration; specifically, FPGAs essentially 
allow for the “rewiring” of logic gates and memory elements based on parameters set by 
the programmer. This allows for the rapid prototyping of hardware configurations, and 
optimization of circuit functionality per unit area (Jawandhiya, 2018). This also allows 
FPGAs to perform certain types of operations more efficiently than GPUs, even 
outperforming them on some neural networks (Nurvitadhi et al., 2016). 

Another small benefit to FPGAs is their higher resistance to radiation compared 
to other processors (Richter, 2021), which may be an advantage when building high-
performance computing systems for deep space deployment. Their interfacing 
capabilities also far exceed GPUs, allowing further versatility and more optimal access 
to things like memory (Berten, 2016). However, their low performance in traditional deep 
learning operations does bring up some concerns with regards to the high-level 
computations required for physical science simulations and problem-solving. Figure 4 in 
Appendices (Berten, 2016) shows a few of the benefits and tradeoffs of using FPGA 
accelerators versus GPUs. 

On the extreme end of the efficiency scale are Application-Specific Integrated 
Circuits, or ASICs. These devices are similar to FPGAs, only they cannot be 
reconfigured and are essentially hardwired to perform a specific set of functions. While 
the performance power of ASICs cannot be beat by any of our other accelerator 
options, their absolute lack of flexibility and high engineering costs make them less than 
ideal for the kinds of computing projects done by NASA and its partners (Jawandhiva, 
2018). Although not widely available or feasible for large-scale computational physics at 
the time of this writing, a great deal of work is also being done in the realm of 
neuromorphic computing, with new microchips and circuits being developed for the 
express purpose of simulating the human brain. Although the majority of these 
advances and implementations are designed for the medical field (Berggren et al, 
2020), these advancements could bring about a new, more powerful generation of 
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neural networks in the near future, and their development should be watched closely by 
those in the computer hardware industry. 
 The storage and access of the data used by these processors is another area of 
interest for optimization. CPU access to a system’s memory is relatively quick and easy 
to manage, with high-end CPUs managing memory bandwidths as high as 50 gigabytes 
per second (Jawandhiva, 2018). GPUs have a harder time managing the serialized 
filesystems of most storage architecture, and as a result typically access this data by 
interfacing with the CPU system, often causing the CPU to interrupt its computations to 
handle the data transfer. The time it takes for the CPU to access and send this data 
also means that the GPU is “waiting” for this data to arrive, and is unable to perform 
calculations until the transfer is complete. All of this stalling and waiting adds up to a 
great deal of wasted time in the pipelining of these memory operations. However, some 
computation systems have experimented with a centralized storage system, such as 
NASA’s Center for Climate Simulation. Their Transiting Exoplanet Survey Satellite 
project implemented a system where several processor clusters were connected to a 
single shared memory space (Carriere, 2020). This storage system allows for these 
multiple high-performance computing systems to access large amounts of data 
concurrently, significantly reducing computing time that is otherwise lost in data transfer. 
 Another recent breakthrough in high-performance computing storage comes in 
the form of SHIP, a system of Storage for Hybrid Interconnected Processors. Similar in 
concept to the centralized storage system, this method of storage creates a “wrapper” 
around a solid-state hard drive that performs the necessary file system operations for 
any and all types of processors described above. Using remote direct memory access 
(RDMA) protocols, the same ones currently used on many network-based computing 
systems, the SHIP system essentially creates read/write drivers for different processors 
to use as necessary, and deploys these drivers on FPGA processors at the memory 
level, allowing the co-processors on a high-performance computing network to access 
data storage directly. This eliminates the need for CPUs to handle these transfer 
requests, and increases data transfer speed. Figure 5 shows an example 
implementation of this storage system (Vega, 2020). 

Another major advancement in big data storage that occurred during this 
research period is computational storage drives, which attach FPGAs or other co-
processors to a solid-state drive. This allows for certain operations to be performed at 
the memory level, with minimal data transfer distance. These co-processors can be 
reprogrammed to handle a number of different jobs as required for the project or data 
being processed, essentially allowing for computational acceleration directly at the 
storage level of the system architecture (Salamat et al, 2021). This method still allows a 
CPU-based system to offload computational work to a co-processor, and can lead to 
immense reductions in computing time for the right operations. 
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Solution: 
 Unsurprisingly, when you combine a field as complex as high-performance 
computing with the enormously complicated questions of physical science, it is difficult 
to find a single satisfying answer. However, if one were to begin designing a new high-
performance computing system for NASA and its partners today, there are several 
useful tools that would allow a designer to make smart decisions and get the system as 
close to optimal for the greatest possible number of problems that may be tackled by 
NASA and its partners. Ultimately, these choices come down to a few key factors: 
computing power, memory access, and power consumption. 
 Computing power is definitely the hardest factor to generalize in this design 
process. As previously mentioned, GPUs have long been considered the ideal balance 
of flexibility and efficiency, but FPGAs have begun to show that they can keep up in 
certain scenarios. For example, binarized and recurrent neural networks have both 
been shown to run efficiently on FPGAs (Nurvitadhi et al., 2016), and even 
convolutional neural networks can be accelerated by FPGA systems, albeit at a slight 
loss of precision (Richter, 2021). Unfortunately, the many possible processes and 
applications of high-performance computing systems means that there is no singular 
clear answer for which processor to use in all cases. Overall, if one were designing a 
single high-performance computing system for use on multiple physical science 
problems, a combination of CPU, GPU, and FPGA processors may be optimal for 
reducing overall time-to-science on future projects, as each of these processors will be 
either faster at performing the necessary operations, able to consume less power for an 
acceptable loss in speed, or easier to design deep learning algorithms necessary for 
each individual project. 
 Memory access is perhaps the area with the most immediate available options 
for improvement. The centralized storage system described above is a huge step 
forward in high-performance computing, and the shared data structure allows for much 
faster GPU processing (Carriere, 2020). The SHIP architecture is another large 
advancement, which would allow for FPGAs to access data an order of magnitude 
faster than current methods (Vega, 2020). In general, some combination of these 
systems would likely be ideal for NASA and its partners, with computational storage like 
the “SmartSSDs” accessible by CPU, GPU, and FPGA systems alike through RDMA 
protocols, allowing all computing systems to access data concurrently and “pass off” 
specific computations and processes to the memory-level FPGAs. 
 Power consumption has also become a hotspot for high-performance computing 
research. As previously mentioned, this is another area where FPGAs have an 
advantage over traditional high-performance computing methods, with far better power 
efficiency than both CPUs and GPUs (Richter, 2020). Additionally, if FPGAs are not a 
viable option due to their lower computing power, there are tools to model and optimize 
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the power consumption of GPU systems, such as the NeuralPower framework 
(Marculescu et al, 2018). This is another area that is hard to design for on a general 
basis; however, a high-performance computing system with a combination of all three 
processors, as described above, would be able to provide the most options to reduce 
overall power consumption across multiple types of simulations and deployments. 
 However, if one is designing for a single specific project with a known algorithm 
design in mind, there are tools to more effectively determine the type of processor or 
processors that will be best suited for the job, and even allow the designer to optimize 
the ways in which these processors are configured. McPAT, a tool developed by 
Hewlett-Packard, is able to model CPU architectures with multiple different 
configurations, and offer feedback on speed, size, and power consumption of each 
configuration. Figure 6 shows the block diagram of this framework (Li et al, 2009). 
GPGPU-Sim, a tool based on NVIDIA’s CUDA programming model, performs similar 
modeling and offers similar results for GPU-based computations (Bakhoda et al, 2009). 
Deep neural network accelerator designs can also be simulated using MIT’s Timeloop 
infrastructure, again modeling a great deal of hardware options and finding ideal 
configurations. Figure 7 shows the tool flow of this framework (Prashar et al, 2019). 
Currently, FPGAs do not have an ideal method of simulation; however, they can be 
quickly prototyped and modified as necessary to find an optimal configuration. 
 
Conclusion: 
 High-performance computing is an incredibly fast-moving field with a seemingly 
endless string of potential changes on the horizon, but there are improvements that can 
be made to our current computing systems right now. GPUs have long been 
implemented as accelerators for these complex computations, but they often wind up 
being underutilized and consume a great deal of power. Comparatively, FPGAs have 
begun to show promise as a low-power alternative, with better speeds per unit of power 
compared to GPUs in a large number of deep learning environments. FPGAs may also 
be a favorable co-processor in deep space computation systems, due to their higher 
resistance to radiation. Additionally, changes in data storage can allow for multiple 
computing clusters to access relevant sections of data simultaneously and without 
passing through multiple layers of drivers or other processors, further parallelizing the 
necessary computations. 
 Due to the level of familiarity and understanding researchers currently have with 
CPUs and GPUs, several tools exist to model these systems and optimize for speed 
and power consumption. Further research into hardware optimizations of these high-
performance computing systems should focus on creating similar models for FPGA 
deployments, and analyzing the benefits of modified storage access, such as 
centralized storage systems or SHIP architecture, with multiple types of processors. 
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Furthermore, while this research was built on the tests and modeling done by other 
professionals in the field, testing the types of algorithms commonly used in physical 
science projects on a number of different hardware configuration models would allow a 
deeper investigation into the benefits of these proposed changes. 
 

Overall, the biggest changes that could be made to the development of a high-
performance computing system today are: 

• Consider implementing FPGAs where they are currently viable to decrease 
power consumption 

• Continue to implement centralized storage wherever possible, to minimize data 
transfer time between processors 

• Consider the addition of SmartSSDs to allow co-processors direct memory 
access and/or perform specific calculations at the memory level 

Future research into the hardware optimization of high-performance computing 
systems would benefit by examining: 

• Simulation models to iterate and optimize FPGA hardware configuration for more 
high-performance computing problems 

• Further development time with FPGAs to further optimize their use in high-
performance computing systems 

• The deployment and testing of physical science algorithms and code bases on 
these systems to verify their increases in speed, efficiency, and power 
consumption 
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Appendices: 

 
Figure 1: Share of co-processor computing performance in the top 500 fastest 

supercomputers over time; as we can see, accelerators account for over 38 percent of 

all performance in these computers as of November 2020. (Top500, 2020) 
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Figure 2: Comparison of optimal processing power for single- and double-precision 

floating point operations (FLOPS) in CPUs (blue) and GPUs (green) over time. 
(Galloy, 2013) 
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Figure 3: Comparison of power consumption between high-end CPUs and GPUs over 
time. The Xeon Phis seen in black are a kind of “hybrid model”, but generally behave 

similarly to GPUs in high-performance computing. (Rupp, 2016) 
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Figure 4: Comparison of GPU vs. FPGA accelerators in several categories. These 

primarily highlight GPUs’ high processing power and lower cost, versus FPGAs’ lower 
power consumption and ease of interfacing. (Berten, 2016) 
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Figure 5: A basic example of SHIP memory architecture in a cloud network. Multiple 

different processor models can send RDMA requests to the server, which are handled 
via drivers at the memory level, eliminating the need for co-processors to interface with 

the CPU to access memory. (Vega, 2020) 
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Figure 6: A block diagram of the McPAT framework used to optimize CPU 

parallelization. (Li et al, 2009) 
 

 
 
 
 
 

 
Figure 7: A diagram showing the tool flow of Timeloop’s code framework, used to 

optimize the performance of neural networks on high-performance computing systems. 
(Parashar et al, 2019) 


