
Davide Lazzati

Alex Mote

 1

Abstract:
 High-performance computing has quickly become an integral part of scientific
advancement, and a great deal of work has gone into making deep learning software
easier to both create and deploy; however, many scientific projects have been
bottlenecked by hardware limitations, rather than software ones. This research
examines those limitations and investigates what changes can be made to minimize
them. FPGAs (Field Programmable Gate Arrays) prove to be a promising alternative to
GPUs (Graphical Processing Units) in both power consumption and interface flexibility,
and storage optimization allows for these accelerators to access data more quickly and
without the need for a CPU (Central Processing Unit) interface. Further research should
develop models for optimizing FPGA integration, and test physical science algorithms
on different processor and storage models to find optimal configurations.

Introduction:

As the questions we ask in the fields of science become better informed and
more complex, science professionals increasingly turn to the use of high-performance
computation and machine learning to find the answers. As a result of this increase in
demand, these fields have become a booming area of research, with many new
discoveries being made every day. However, a great deal of this research and its
implementations are made on a small-scale, case-by-case basis, requiring the regular
creation of entirely new systems and implementations which drastically increase the
time until actual scientific analysis can be done. On the other hand, large-scale
improvements, particularly those on the hardware level, require such a large upfront
financial and developmental investment that they are often rejected in favor of more
short-term projects.

This research aims to take a closer look at the long-term benefits of these
hardware-level improvements and optimizations, in order to see if they offset the initial
costs. Of particular interest in this area is the utility and selection of different processors,
their comparative benefits, and how they can best be used together to solve the
particular physical science problems encountered by NASA and its partners. In addition
to the use and combination of these processors, the storage and access of data is
another important area that hardware changes can improve and expedite. Through
these lenses, this paper will attempt to show that these improvements may be worthy of
further research; the next steps of this research will also be laid out and, hopefully,
explored in future efforts.

Alex Mote

 2

Problem Statement:
The ongoing problem with many projects that require high-performance

computing involves the “time-to-science”; the amount of time that it takes to perform
mathematical and engineering operations that fall mostly outside the realm of actual
scientific analysis. Often, modern physical science problems and questions are so
complex that they require the creation of entirely new systems to find an answer, and
the work of designing and implementing these systems on the physical level, writing and
testing code on the programming level, and deploying this code on the hardware level,
can quickly add up to a great deal of time and effort before scientific conclusions can be
made.

In the past, this problem has often been approached with the expectation that the
existing hardware is an immovable limitation. As a result of this, much of the research
on this issue attempts to solve it through optimization on the software and programming
level. Although a great deal of time can be saved in this way, by designing algorithms
and training models that minimize computation time, the hardware of high-performance
computing has seen many important advancements that this branch of research has not
entirely explored. Additionally, due to the multifaceted and complex nature of these
problems, software modifications and optimizations often must be done on a case-by-
case basis, further adding to the time-to-science for each individual project.

Hardware improvements and optimizations, on the other hand, require a large
initial investment of time, design, and budget, but can have an exponentially better
return on investment in the long term if the right design decisions are made, with fewer
restrictions allowing for less time to be spent on tweaking these algorithms, and more
and different types of computing power allowing for easier and faster deployment of
these models. Due to these advantages, the aim of this research is to find which
changes and advancements can be made to high-performance computing hardware to
minimize the “time-to-science” on the types of physical science problems currently
investigated by NASA and its partners.

Background Information:
 Although deep learning and artificial intelligence are quickly taking over the high-
performance computing space, the use of CPU systems for highly parallelable problems
cannot be overlooked. CPU-based supercomputers have been around for decades now,
and until recently were seen as the dominant systems in terms of computing power. The
easy parallelability of these systems have made them useful for the solution of partial
differential equations, as well as the Monte Carlo simulations used to model interactions
with many degrees of freedom. As such, they are the systems that are used to solve
many astrophysics problems, such as hydrodynamic equations and gamma ray bursts
(Mignone et al, 2007; Fryxell et al, 2000). CPUs are also seen as incredibly flexible in

Alex Mote

 3

terms of programmability, making them the ideal processor to handle many of the serial
tasks required for high-performance computing projects (Jawandhiya, 2018).

However, as deep learning and neural networks have begun to reshape our
understanding of how computers can solve problems, CPUs have begun to be
supported of other types of processors, known generally as accelerators. In other
words, while the majority of programming and interfacing is done with CPUs, and a
great deal of computing is still done by these processors, accelerators offer a boost in
performance at the cost of flexibility (Jawandhiya, 2018). These accelerators account for
over one-third of all performance power in high-end supercomputers today (TOP500,
2020; see Figure 1 in Appendices), and have quickly become the main focus of
hardware optimization research. These accelerators generally come in three varieties;
namely, GPUs, FPGAs, and ASICs. Some “big data” companies like Google have
developed their own proprietary processors as well; however, the nature and use of
these devices are closely held by these companies, and as such will not be discussed in
this paper.

Graphical Processing Units, or GPUs, have become the “poster child” of modern
deep learning systems. Originally designed for the kinds of vector operations used in
graphical rendering, their processing speeds eventually began to exceed that of the
average CPU with respect to certain mathematical operations. Conveniently, these
operations are also used in the deployment of many types of neural networks and
parallel computation problems, making them an ideal candidate for use in both high-
performance computing and deep learning systems. In particular, deep learning
systems have a wide range of applications beyond traditional computing, from image
recognition and signal processing, to identifying new planets and phases of matter.
These processors exhibit far better performance than CPUs with respect to both cost
and power consumption, but are not as versatile as CPUs and are more difficult to
program for, and thus are generally used through a CPU-based interface, with CPUs
offloading certain operations to GPUs for faster processing (Jawandhiya, 2018). Figure
2 in Appendices (Galloy, 2013) shows how the optimal processing power of GPUs has
grown to vastly outperform that of CPUs.

One of the biggest issues currently affecting GPU viability is power consumption.
Although GPUs have higher optimal processing power than CPUs per unit of power
consumed, the amount of power required to reach this optimal level is still quite vast,
especially at a high-performance level with dozens or hundreds of GPUs. Figure 3 in
Appendices shows how high-end GPUs consume an average of 100 more Watts than
high-end CPUs, a power spike that would actually increase if not for the fact that GPUs
begin to overheat at this level (Rupp, 2016). The waste heat generated by these units
also creates a size constraint for designers, forcing them to build larger computation
units that must be carefully cooled in order to achieve as close to optimal performance

Alex Mote

 4

as possible (Berten, 2016). Additionally, the nature of pushing these processors to
perform duties outside their original graphical purpose means that optimizing their vast
parallelization capabilities is often a huge design challenge (Bakhoda et al, 2009). In
other words, some problems are too big or strange for GPUs to easily solve with the
cores and instruction sets they have, and this often causes a great deal of design time
on the software level to adjust the solution approach in a way that fits the parameters a
GPU is equipped to solve.

Field Programmable Gate Arrays, or FPGAs, are perhaps the most exciting
possible solution being explored to address some of the shortcomings of the GPU.
Although previously overlooked due to low performance compared to GPUs, FPGAs
have quickly become a contender in this field due to their high processing ability per unit
of power consumed (Berten, 2016). The main benefit of FPGAs, aside from their low
power consumption, is their ease of reconfiguration; specifically, FPGAs essentially
allow for the “rewiring” of logic gates and memory elements based on parameters set by
the programmer. This allows for the rapid prototyping of hardware configurations, and
optimization of circuit functionality per unit area (Jawandhiya, 2018). This also allows
FPGAs to perform certain types of operations more efficiently than GPUs, even
outperforming them on some neural networks (Nurvitadhi et al., 2016).

Another small benefit to FPGAs is their higher resistance to radiation compared
to other processors (Richter, 2021), which may be an advantage when building high-
performance computing systems for deep space deployment. Their interfacing
capabilities also far exceed GPUs, allowing further versatility and more optimal access
to things like memory (Berten, 2016). However, their low performance in traditional deep
learning operations does bring up some concerns with regards to the high-level
computations required for physical science simulations and problem-solving. Figure 4 in
Appendices (Berten, 2016) shows a few of the benefits and tradeoffs of using FPGA
accelerators versus GPUs.

On the extreme end of the efficiency scale are Application-Specific Integrated
Circuits, or ASICs. These devices are similar to FPGAs, only they cannot be
reconfigured and are essentially hardwired to perform a specific set of functions. While
the performance power of ASICs cannot be beat by any of our other accelerator
options, their absolute lack of flexibility and high engineering costs make them less than
ideal for the kinds of computing projects done by NASA and its partners (Jawandhiva,
2018). Although not widely available or feasible for large-scale computational physics at
the time of this writing, a great deal of work is also being done in the realm of
neuromorphic computing, with new microchips and circuits being developed for the
express purpose of simulating the human brain. Although the majority of these
advances and implementations are designed for the medical field (Berggren et al,
2020), these advancements could bring about a new, more powerful generation of

Alex Mote

 5

neural networks in the near future, and their development should be watched closely by
those in the computer hardware industry.
 The storage and access of the data used by these processors is another area of
interest for optimization. CPU access to a system’s memory is relatively quick and easy
to manage, with high-end CPUs managing memory bandwidths as high as 50 gigabytes
per second (Jawandhiva, 2018). GPUs have a harder time managing the serialized
filesystems of most storage architecture, and as a result typically access this data by
interfacing with the CPU system, often causing the CPU to interrupt its computations to
handle the data transfer. The time it takes for the CPU to access and send this data
also means that the GPU is “waiting” for this data to arrive, and is unable to perform
calculations until the transfer is complete. All of this stalling and waiting adds up to a
great deal of wasted time in the pipelining of these memory operations. However, some
computation systems have experimented with a centralized storage system, such as
NASA’s Center for Climate Simulation. Their Transiting Exoplanet Survey Satellite
project implemented a system where several processor clusters were connected to a
single shared memory space (Carriere, 2020). This storage system allows for these
multiple high-performance computing systems to access large amounts of data
concurrently, significantly reducing computing time that is otherwise lost in data transfer.
 Another recent breakthrough in high-performance computing storage comes in
the form of SHIP, a system of Storage for Hybrid Interconnected Processors. Similar in
concept to the centralized storage system, this method of storage creates a “wrapper”
around a solid-state hard drive that performs the necessary file system operations for
any and all types of processors described above. Using remote direct memory access
(RDMA) protocols, the same ones currently used on many network-based computing
systems, the SHIP system essentially creates read/write drivers for different processors
to use as necessary, and deploys these drivers on FPGA processors at the memory
level, allowing the co-processors on a high-performance computing network to access
data storage directly. This eliminates the need for CPUs to handle these transfer
requests, and increases data transfer speed. Figure 5 shows an example
implementation of this storage system (Vega, 2020).

Another major advancement in big data storage that occurred during this
research period is computational storage drives, which attach FPGAs or other co-
processors to a solid-state drive. This allows for certain operations to be performed at
the memory level, with minimal data transfer distance. These co-processors can be
reprogrammed to handle a number of different jobs as required for the project or data
being processed, essentially allowing for computational acceleration directly at the
storage level of the system architecture (Salamat et al, 2021). This method still allows a
CPU-based system to offload computational work to a co-processor, and can lead to
immense reductions in computing time for the right operations.

Alex Mote

 6

Solution:
 Unsurprisingly, when you combine a field as complex as high-performance
computing with the enormously complicated questions of physical science, it is difficult
to find a single satisfying answer. However, if one were to begin designing a new high-
performance computing system for NASA and its partners today, there are several
useful tools that would allow a designer to make smart decisions and get the system as
close to optimal for the greatest possible number of problems that may be tackled by
NASA and its partners. Ultimately, these choices come down to a few key factors:
computing power, memory access, and power consumption.
 Computing power is definitely the hardest factor to generalize in this design
process. As previously mentioned, GPUs have long been considered the ideal balance
of flexibility and efficiency, but FPGAs have begun to show that they can keep up in
certain scenarios. For example, binarized and recurrent neural networks have both
been shown to run efficiently on FPGAs (Nurvitadhi et al., 2016), and even
convolutional neural networks can be accelerated by FPGA systems, albeit at a slight
loss of precision (Richter, 2021). Unfortunately, the many possible processes and
applications of high-performance computing systems means that there is no singular
clear answer for which processor to use in all cases. Overall, if one were designing a
single high-performance computing system for use on multiple physical science
problems, a combination of CPU, GPU, and FPGA processors may be optimal for
reducing overall time-to-science on future projects, as each of these processors will be
either faster at performing the necessary operations, able to consume less power for an
acceptable loss in speed, or easier to design deep learning algorithms necessary for
each individual project.
 Memory access is perhaps the area with the most immediate available options
for improvement. The centralized storage system described above is a huge step
forward in high-performance computing, and the shared data structure allows for much
faster GPU processing (Carriere, 2020). The SHIP architecture is another large
advancement, which would allow for FPGAs to access data an order of magnitude
faster than current methods (Vega, 2020). In general, some combination of these
systems would likely be ideal for NASA and its partners, with computational storage like
the “SmartSSDs” accessible by CPU, GPU, and FPGA systems alike through RDMA
protocols, allowing all computing systems to access data concurrently and “pass off”
specific computations and processes to the memory-level FPGAs.
 Power consumption has also become a hotspot for high-performance computing
research. As previously mentioned, this is another area where FPGAs have an
advantage over traditional high-performance computing methods, with far better power
efficiency than both CPUs and GPUs (Richter, 2020). Additionally, if FPGAs are not a
viable option due to their lower computing power, there are tools to model and optimize

Alex Mote

 7

the power consumption of GPU systems, such as the NeuralPower framework
(Marculescu et al, 2018). This is another area that is hard to design for on a general
basis; however, a high-performance computing system with a combination of all three
processors, as described above, would be able to provide the most options to reduce
overall power consumption across multiple types of simulations and deployments.
 However, if one is designing for a single specific project with a known algorithm
design in mind, there are tools to more effectively determine the type of processor or
processors that will be best suited for the job, and even allow the designer to optimize
the ways in which these processors are configured. McPAT, a tool developed by
Hewlett-Packard, is able to model CPU architectures with multiple different
configurations, and offer feedback on speed, size, and power consumption of each
configuration. Figure 6 shows the block diagram of this framework (Li et al, 2009).
GPGPU-Sim, a tool based on NVIDIA’s CUDA programming model, performs similar
modeling and offers similar results for GPU-based computations (Bakhoda et al, 2009).
Deep neural network accelerator designs can also be simulated using MIT’s Timeloop
infrastructure, again modeling a great deal of hardware options and finding ideal
configurations. Figure 7 shows the tool flow of this framework (Prashar et al, 2019).
Currently, FPGAs do not have an ideal method of simulation; however, they can be
quickly prototyped and modified as necessary to find an optimal configuration.

Conclusion:
 High-performance computing is an incredibly fast-moving field with a seemingly
endless string of potential changes on the horizon, but there are improvements that can
be made to our current computing systems right now. GPUs have long been
implemented as accelerators for these complex computations, but they often wind up
being underutilized and consume a great deal of power. Comparatively, FPGAs have
begun to show promise as a low-power alternative, with better speeds per unit of power
compared to GPUs in a large number of deep learning environments. FPGAs may also
be a favorable co-processor in deep space computation systems, due to their higher
resistance to radiation. Additionally, changes in data storage can allow for multiple
computing clusters to access relevant sections of data simultaneously and without
passing through multiple layers of drivers or other processors, further parallelizing the
necessary computations.
 Due to the level of familiarity and understanding researchers currently have with
CPUs and GPUs, several tools exist to model these systems and optimize for speed
and power consumption. Further research into hardware optimizations of these high-
performance computing systems should focus on creating similar models for FPGA
deployments, and analyzing the benefits of modified storage access, such as
centralized storage systems or SHIP architecture, with multiple types of processors.

Alex Mote

 8

Furthermore, while this research was built on the tests and modeling done by other
professionals in the field, testing the types of algorithms commonly used in physical
science projects on a number of different hardware configuration models would allow a
deeper investigation into the benefits of these proposed changes.

Overall, the biggest changes that could be made to the development of a high-
performance computing system today are:

• Consider implementing FPGAs where they are currently viable to decrease
power consumption

• Continue to implement centralized storage wherever possible, to minimize data
transfer time between processors

• Consider the addition of SmartSSDs to allow co-processors direct memory
access and/or perform specific calculations at the memory level

Future research into the hardware optimization of high-performance computing
systems would benefit by examining:

• Simulation models to iterate and optimize FPGA hardware configuration for more
high-performance computing problems

• Further development time with FPGAs to further optimize their use in high-
performance computing systems

• The deployment and testing of physical science algorithms and code bases on
these systems to verify their increases in speed, efficiency, and power
consumption

Alex Mote

 9

References:

Bakhoda, A., Yuan, G. L., Fung, W. W. L., Wong, H., & Aamodt, T. M. (2009). Analyzing CUDA
workloads using a detailed GPU simulator. 2009 IEEE International Symposium on
Performance Analysis of Systems and Software, 163–174. IEEE Xplore.
https://doi.org/10.1109/ispass.2009.4919648

Berggren, K., Xia, Q., Likharev, K. K., Strukov, D. B., Jiang, H., Mikolajick, T., Querlioz, D.,
Salinga, M., Erickson, J. R., Pi, S., Xiong, F., Lin, P., Li, C., Chen, Y., Xiong, S.,
Hoskins, B. D., Daniels, M. W., Madhavan, A., Liddle, J. A., & McClelland, J. J. (2020).
Roadmap on emerging hardware and technology for machine learning.
Nanotechnology, 32(1), 012002. https://doi.org/10.1088/1361-6528/aba70f

Berten. (2016). GPU vs. FPGA performance comparison. In Berten DSP S.L.
http://www.bertendsp.com/pdf/whitepaper/BWP001_GPU_vs_FPGA_Performance_Co
mparison_v1.0.pdf

Carriere, L. (2020, November 6). NASA@SC20: Enabling AI/ML in an HPC environment.
Www.nas.nasa.gov; NASA. https://www.nas.nasa.gov/SC20/demos/demo21.html

Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q., MacNeice, P.,
Rosner, R., Truran, J. W., & Tufo, H. (2000). FLASH: An adaptive mesh hydrodynamics
code for modeling astrophysical thermonuclear flashes. The Astrophysical Journal
Supplement Series, 131(1), 273–334. https://doi.org/10.1086/317361

Galloy, M. (2013, June 11). CPU vs. GPU performance.
https://michaelgalloy.com/2013/06/11/cpu-vs-gpu-performance.html

Jawandhiya, P. (2018). Hardware design for machine learning. International Journal of Artificial
Intelligence & Applications, 9(1), 63–84. https://doi.org/10.5121/ijaia.2018.9105

Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen, D. M., & Jouppi, N. P. (2009).
McPAT: An integrated power, area, and timing modeling framework for multicore and
manycore architectures. Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture - Micro-42. https://doi.org/10.1145/1669112.1669172

Marculescu, D., Stamoulis, D., & Cai, E. (2018). Hardware-aware machine learning.
Proceedings of the International Conference on Computer-Aided Design, 1–8. ACM
Digital Library. https://doi.org/10.1145/3240765.3243479

Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A.
(2007). PLUTO: A numerical code for computational astrophysics. The Astrophysical
Journal Supplement Series, 170(1), 228–242. https://doi.org/10.1086/513316

Nurvitadhi, E., Sheffield, D., Sim, J., Mishra, A., Venkatesh, G., & Marr, D. (2016). Accelerating
binarized neural networks: Comparison of FPGA, CPU, GPU, and ASIC. 2016
International Conference on Field-Programmable Technology (FPT), 77–84. IEEE
Xplore. https://doi.org/10.1109/fpt.2016.7929192

Alex Mote

 10

Nurvitadhi, E., Sim, J., Sheffield, D., Mishra, A., Krishnan, S., & Marr, D. (2016). Accelerating
recurrent neural networks in analytics servers: Comparison of FPGA, CPU, GPU, and
ASIC. 2016 26th International Conference on Field Programmable Logic and
Applications (FPL). https://doi.org/10.1109/fpl.2016.7577314

Parashar, A., Raina, P., Shao, Y. S., Chen, Y.-H., Ying, V. A., Mukkara, A., Venkatesan, R.,
Khailany, B., Keckler, S. W., & Emer, J. (2019). Timeloop: A systematic approach to
DNN accelerator evaluation. 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 304–315. IEEE Xplore.
https://doi.org/10.1109/ispass.2019.00042

Richter, H. (2021, February 19). FPGA acceleration of convolutional neural networks. Core
Deep Learning; ASIC Design Services.
https://register.gotowebinar.com/recording/8979723971769866243

Rupp, K. (2016, August 18). CPU, GPU and MIC hardware characteristics over time. .
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Salamat, S., Haj Aboutalebi, A., Khaleghi, B., Lee, J. H., Ki, Y. S., & Rosing, T. (2021).
NASCENT: Near-storage acceleration of database sort on SmartSSD. The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
https://doi.org/10.1145/3431920.3439298

TOP500. (2020, November). Development over time. Top500.org; TOP500 Supercomputer
Sites. https://www.top500.org/statistics/overtime/

Vega, J. C. (2020). SHIP: A storage system for hybrid interconnected processors [MAS
Thesis].

Alex Mote

 11

Appendices:

Figure 1: Share of co-processor computing performance in the top 500 fastest

supercomputers over time; as we can see, accelerators account for over 38 percent of

all performance in these computers as of November 2020. (Top500, 2020)

Alex Mote

 12

Figure 2: Comparison of optimal processing power for single- and double-precision

floating point operations (FLOPS) in CPUs (blue) and GPUs (green) over time.
(Galloy, 2013)

Alex Mote

 13

Figure 3: Comparison of power consumption between high-end CPUs and GPUs over
time. The Xeon Phis seen in black are a kind of “hybrid model”, but generally behave

similarly to GPUs in high-performance computing. (Rupp, 2016)

Alex Mote

 14

Figure 4: Comparison of GPU vs. FPGA accelerators in several categories. These

primarily highlight GPUs’ high processing power and lower cost, versus FPGAs’ lower
power consumption and ease of interfacing. (Berten, 2016)

Alex Mote

 15

Figure 5: A basic example of SHIP memory architecture in a cloud network. Multiple

different processor models can send RDMA requests to the server, which are handled
via drivers at the memory level, eliminating the need for co-processors to interface with

the CPU to access memory. (Vega, 2020)

Alex Mote

 16

Figure 6: A block diagram of the McPAT framework used to optimize CPU

parallelization. (Li et al, 2009)

Figure 7: A diagram showing the tool flow of Timeloop’s code framework, used to

optimize the performance of neural networks on high-performance computing systems.
(Parashar et al, 2019)

