
Pomodoro Timer Developer Guide

1

Table of Contents:

System Overview .2

Electrical Specifications .2

User Guide .2

Design Artifact Figures .3

PCB Information .6

Bill of Materials .7

Arduino Code .8

ECE342 Pomodoro Timer Developer Guide Alexander Mote

 2

System Overview:
This timer can detect an object such as a phone by use of a sonic ranger, and

sound a 440Hz alarm via an attached speaker if the object was removed from sight. The
timer has a 25-minute and 5-minute setting, as well as an automatic setting that
switches between the two, and is accurate to less than one second of error per minute.
The LED display has three brightness settings. The timer and its components run on an
Arduino Uno. The timer can be powered via USB or 9V barrel jack, and power can be
cut off from the device by unplugging it.

Electrical Specifications:
 Recommended Supply Voltage: 7-12V
 Maximum Supply Voltage: 20V
 Operating Temperature: -55 to 125 °Celsius
 Operating Current: 500mA

Operating Voltage: 6V

User Guide:
 First, select the timer setting using the timer select switch: either 25 minutes, 5
minutes, or the automatic timer which will switch between 25 and 5 minutes once each
timer has counted down to zero. Once this setting is selected, place an object in front of
the sonic ranger that will stay there while the timer runs. Plug the timer into a power
source via either USB cable or the 9V barrel jack. The LED display should show the
time remaining based on the chosen timer mode. The brightness of this display can be
changed at any time by using the brightness select switch.

If the object is removed from the view of the sonic ranger, an alarm will sound
until the object is placed back into view. The timer will reset if this occurs. In automatic
mode, the sonic ranger does not check for an object during the 5-minute timed sections.
This allows the user to use the object during these 5 minutes, and place it back in the
view of the sonic ranger once these 5 minutes have passed and the timer is ready to
change to a 25-minute section.

Once the timer reaches zero, a sound will play informing the user that they have
reached the end of the specified time. In either of the non-automatic modes, the user
will have to disconnect power from the timer in order to choose a new timer setting or
restart the timer, and reconnect it once this selection has been made. In automatic
mode, the timer will switch from 25 minutes to 5 minutes (and vice versa) after this
sound is played. The user can disconnect power from the timer whenever they are
finished using it to deactivate the device.

ECE342 Pomodoro Timer Developer Guide Alexander Mote

 3

Design Artifact Figures:

Figure 1: Block Diagram of Timer Design.

This block diagram shows the individual components of the design, and how they

interact with the Arduino Uno and its processor. The LED and Alarm are used to output
information like remaining time and lack of object detection to the user. The two
switches on the top are used to control the timer’s settings. The user also provides
power through the DC barrel jack, and gives the sonic ranger an object to detect so that
the timer can count down.

ECE342 Pomodoro Timer Developer Guide Alexander Mote

 4

Figure 2: Wiring schematic for Timer.

 This diagram shows how the different components are wired to the Arduino so
that the Arduino’s code will run the timer properly. The two switches are hooked up to
Analog inputs on the Arduino, and the values they output when switched on or off are
used to select the proper brightness and timer values. The Adafruit 7-segment I2C
backpack allows us to run all of the many pins of a traditional 7-segment LED display on
a mere four pins.

ECE342 Pomodoro Timer Developer Guide Alexander Mote

 5

Figure 3: STL file of enclosure design.

 The enclosure is designed so that all components can be secured via screws; the
Arduino itself slides into the bottom of the enclosure and will be secured using a plastic
base that was included with the Arduino Uno. This base will also screw into the
enclosure. The arc in front of the sonic ranger is designed to avoid detection while also
providing a space for an object to easily rest while the timer is in use. Two holes at the
top of the enclosure are provided for the two switches, and the rectangular hole is
designed for the LED display. The USB port and barrel jack have openings as well,
allowing the device to be powered via USB or wall power.

ECE342 Pomodoro Timer Developer Guide Alexander Mote

 6

PCB Information:

Figure 4: PCB schematic for Arduino shield.

 This Arduino Uno shield PCB is 68.7mm wide and 53.5mm long. The traces in
this PCB allow for all of the components to be easily hooked up to their respective
locations on the shield, and the holes are placed so that screws can go through both the
Arduino and the PCB to secure the entire circuit into the enclosure design.

ECE342 Pomodoro Timer Developer Guide Alexander Mote

 7

Bill of Materials:

• 1 Arduino Uno Rev3
• 1 12V DC Power Supply
• 1 KW4-56NXUYA-P 4-digit 7-segment LED display
• 1 HT16K33 0.56” 7-segment LED I2C Backpack
• 1 Jameco 135694 8ohm 0.2W Speaker
• 1 HC-SR04 Sonic Ranger
• 2 MTS-103 3-position Toggle Switches

ECE342 Pomodoro Timer Developer Guide Alexander Mote

 8

Arduino Code:

#include <Wire.h>
#include <Adafruit_GFX.h>
#include "Adafruit_LEDBackpack.h"
#include "pitches.h"

const byte trigPin = 12; // trigger pin for sonic ranger
const byte echoPin = 11; // echo pin for sonic ranger
const byte buzzPin = 8; // buzzer pin for alarm
bool readDistance = false; // activates sonic ranger

int highPin = A0; // high brightness
int lowPin = A1; // low brightness
int shortPin = A2; // 5 minute timer select
int longPin = A3; // 25 minute timer select
bool autoTime = false; // auto timer select

uint16_t counter; // timer variable for countdown
uint16_t COUNT; // initial value for timer
Adafruit_7segment matrix = Adafruit_7segment(); // seven-seg function package

int duration, distance; // sonic ranger variables

void victoryTune() {
 // melody code from Arduino IDE example
 // "toneMelody" by Tom Igoe

 // notes in the melody:
 int melody[] = {
 NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3, NOTE_C4
 };

 // note durations: 4 = quarter note, 8 = eighth note, etc.:
 int noteDurations[] = {
 4, 8, 8, 4, 4, 4, 4, 4
 };

 // iterate over the notes of the melody:
 for (int thisNote = 0; thisNote < 8; thisNote++) {

 // to calculate the note duration, take one second divided by the note
type.
 //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
 int noteDuration = 1000 / noteDurations[thisNote];
 tone(8, melody[thisNote], noteDuration);

 // to distinguish the notes, set a minimum time between them.
 // the note's duration + 30% seems to work well:
 int pauseBetweenNotes = noteDuration * 1.30;
 delay(pauseBetweenNotes);
 // stop the tone playing:
 noTone(8);
 }
}

void timerInit() {

ECE342 Pomodoro Timer Developer Guide Alexander Mote

 9

 // set initial timer
 // when switch is active,
 // analogRead returns a value above 825

 if(analogRead(shortPin) >= 825) {
 COUNT = 2500; // 25-minute timer
 }
 else if(analogRead(longPin) >= 825) {
 COUNT = 500; // 5-minute timer
 }
 else {
 COUNT = 2500; // 25-minute timer
 autoTime = true; // auto timer activated
 }

 counter = COUNT; // initialize counter value
 readDistance = true; // initialize sonic ranger
}

void getDistance() {
 // Output pulse with 1ms width on trigPin
 digitalWrite(trigPin, HIGH);
 delay(1);
 digitalWrite(trigPin, LOW);
 // Measure the pulse input in echo pin
 duration = pulseIn(echoPin, HIGH);
 // Distance is half the duration divided by 29.1 (from HC-SR04 datasheet)
 distance = (duration/2) / 29.1;
}

void setup()
{
 pinMode(trigPin, OUTPUT); // outputs sonic pulse
 pinMode(echoPin, INPUT); // measures pulse response
 pinMode(buzzPin, OUTPUT); // controls alarm
 pinMode(highPin, INPUT); // high brightness input
 pinMode(lowPin, INPUT); // low brightness input

 pinMode(shortPin, INPUT); // 5-minute timer select
 pinMode(longPin, INPUT); // 25-minute timer select

 matrix.begin(0x70); // initialize seven-seg
 timerInit();

}

void loop()
{
 matrix.println(counter);
 matrix.drawColon(true);
 matrix.writeDisplay();

 if(readDistance) {
 getDistance();
 }
 else {distance = 0;}

ECE342 Pomodoro Timer Developer Guide Alexander Mote

 10

 while (distance >= 20) { // sound alarm if object is too far (>20 cm)
 tone(buzzPin, 440);
 delay(499); // beep for half a second
 counter = COUNT; // reset timer
 getDistance(); // check distance again
 noTone(buzzPin); // stop beeping
 delay(500); // for half a second
 }

 noTone(buzzPin);
 if (counter != 0){ // decrement counter
 counter--;
 if (counter % 100 == 99){ // skip from 99 to 59 when necessary
 counter -= 40;
 }
 }
 else {
 victoryTune(); // you did it!
 if(autoTime) { // swap timer from 25 minutes to 5 minutes
 if(COUNT == 2500) {
 readDistance = false; // stop yelling at the user
 COUNT = 500; // for 5 minutes
 counter = 500;
 }
 else {
 readDistance = true; // resume yelling at the user
 COUNT = 2500; // for 25 minutes
 counter = 2500;
 }
 }
 else {while(true);}
 }

 // Detect brightness setting:
 // when switch is active,
 // analogRead returns a value above 850
 if(analogRead(highPin) >= 850) {
 matrix.setBrightness(15); // full brightness
 }
 else if(analogRead(lowPin) >= 850) {
 matrix.setBrightness(0); // low brightness
 }
 else {
 matrix.setBrightness(8); // mid brightness
 }
 delay(999); // wait for the rest of the second
}

