Overview:

This project is intended to be an intuitive, contactless way for multiple users to scan and record their temperature. The system alerts the user if a fever is detected via an OLED screen and an audible noise. The user information is stored onto a micro SD card until it is manually deleted.

Electrical Specifications:

Part	Electrical Specifications
Raspberry Pi Zero W	5 v, 2 mA
128x32 Mini OLED Display	5 v, 21.1 mA
HDR-F-2.54_1x2 (speaker)	5 v, 500mA
IR Beam Break Sensor	3.3 v, 10mA
Melexis Contactless Infrared Sensor - MLX90614	3.3v, 25mA

User Guide:

First plug the device in. To start a new scan, wave your hand between the beam break sensor mounts. This will display your patient number and instruct you to place your head in front of the scanner. Follow these instructions, and it will display the measured temperature and alert you if it detects a fever. To access the stored patient data, you must SSH into the Linux system running on the Raspberry Pi Zero, and open the file "User_Data.csv".

Developer Guide:

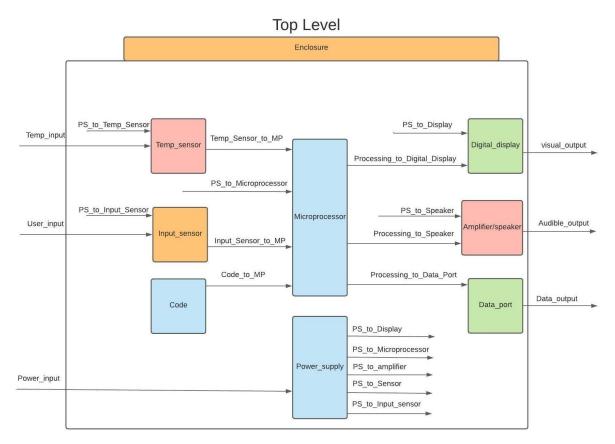


Figure 1: Top level block diagram

This figure shows the communication between the different parts of the system. In order for the system to be contactless, the temperature sensor needs to be an infrared sensor, and the input sensor needs to be a beam break. The beam break sensor is essentially acting as a button that is used to detect when the user is ready to begin a scan. The data port also has options that would work, such as a USB flash drive, or an SD card. The amplifier is built into the PCB, and the temperature sensor and digital display both communicate with the processor through an I2C bus built into the PCB. The power supply is built into the Raspberry Pi Zero that also functions as the microprocessor.

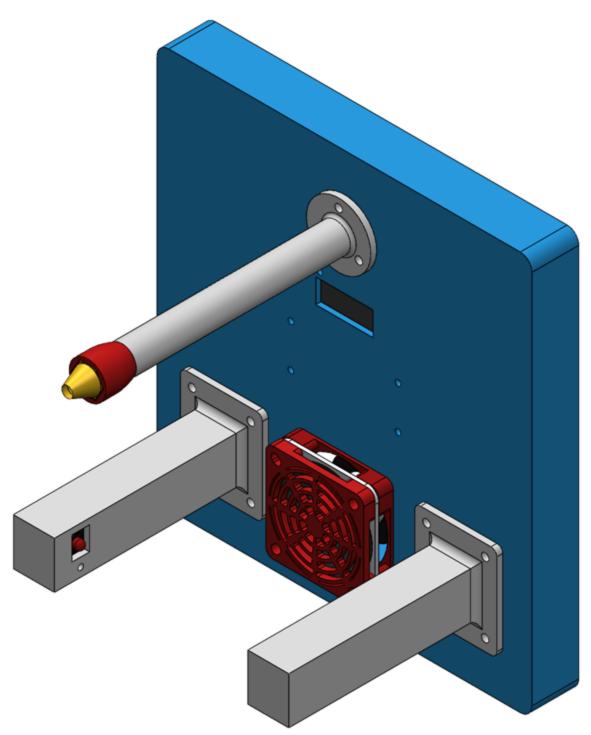


Figure 2: 3D model of the device

The device enclosure was mostly 3D printed in 7 parts; the backboard(blue), the temperature sensor mount (top white), the temperature sensor end (top red), the left and right beam break sensor mounts (bottom white) and the speaker mount and grill (bottom red). It also requires a brass fitting to focus the temperature scanner, and several screws to attach the pieces together. The exact screws necessary are shown in the "Part Information" section of this guide.

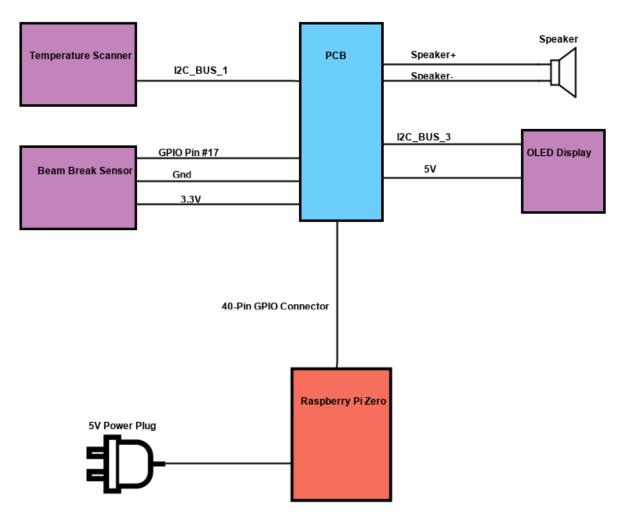


Figure 3: Top level system schematic

This is the top level schematic of the system. The Raspberry Pi is connected directly on to the PCB through a 40-pin GPIO connector, and provides the power and processing to the rest of the system. The PCB also has a 40-pin GPIO passthrough so that the components can connect to it as if they were connected directly to the Raspberry Pi, and allow for additional components to be connected later.

PCB Information:

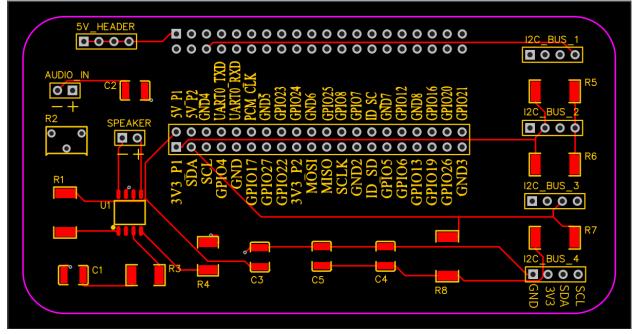


Figure 4: PCB layout. Printed on a 100x50mm board. Component values are shown in the "Part Information" section of this guide.

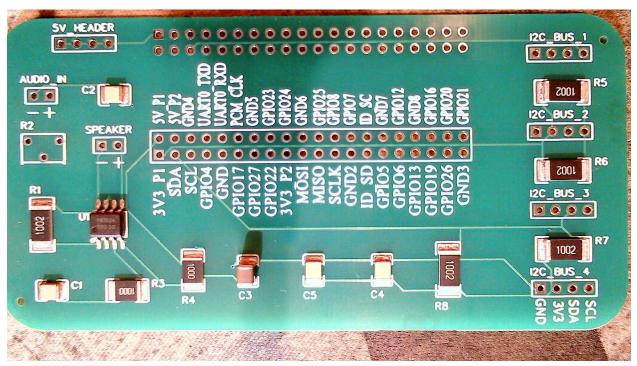


Figure 5: Image of the assembled PCB.

			1 Kg								Quantity																			Quantity
		-	6	4	2 M3	4 M4	1 M3	4 M3	8 M4	3 M4	Size			1 each	1 each	1 each	2 each	1 each	5 each	1 each	5 each	1 each	1 each	4 each	2 each	1 each	1 each	1 each	1 each	Unit
		1/4" Brass nut	3D Printer Fillament for Enclosure	Command Strips	Beam Break Sensor Mount	Speaker Mount to Backboard	OLED Mount to Backboard	Raspberry Pi Mount to Backboard	Beam Break Sensor Mount to Backboard	Temperature Scanner Mount to Backboard	Part in Assembly	Enclosure Part Information		N/A	JLCPCB	U1	R3,R4	R2	R1, R5, R6, R7, R8	M_HEADER	5V_HEADER, I2C_BUS_1, I2C_BUS_2, I2C_BUS_3, I2C_BUS_4	F_HEADER	C	C1,C2,C4,C5	AUDIO_IN, SPEAKER	Input_sensor	Temp_sensor	Digital_Display	Microprocessor	Reference Designators
Total	Subtotal:				13-15mm	25-27mm	8-10mm	10-13mm	13-15mm	12-15mm	Length	mation		SAMSUNG EVO Select 64GB microSDXC	PCB	PAM8302AADCR	100	10K	10K	HDR-M-2.54_2x20	HDR-F-2.54_1x4	HDR-F-2.54_2x20	10uF	100nF	HDR-F-2.54_1x2	IR Beam Break Sensor	Contact-less Infrared Scanner	128x32 Mini OLED Display	Raspberry Pi Zero W	Part name
		\$4	\$25	\$3	\$1	\$1	\$1	\$1	\$3	\$1	Estimated Cost		Subtotal:	MB-ME64HA	Y3-3565453A	C112137	C63036	C81167	C270956	C50980	C225501	C50982	C380537	C527375	C49661	2167	MLX90614	3527	3708	Part Number
													\$79.23	\$10.99	\$20.00	\$0.23	\$ 0.04	\$0.32	\$0.03	\$0.12	\$ 0.09	\$0.16	\$0.25	\$0.12	\$0.03	\$1.95	\$15.95	\$14.95	\$14.00	Cost
														\$10.99 http://www.ama		https://lcsc.com	https://lcsc.com	https://lesc.com	https://lcsc.com	https://lcsc.com	https://lcsc.com	\$0.16 https://lcsc.com	https://lcsc.com	https://lcsc.com	https://lcsc.com	adafruit.com/pr	https://www.ada	https://www.ada	\$14.00 https://www.ada	URL to part