
E l e c t r i c a l E n g i n e e r i n g a n d C o m p u t e r S c i e n c eC O L L E G E O F E N G I N E E R I N G

Tyrone Stagner

(stagnert@oregonstate.edu)

Nathan Searles

(searlesn@oregonstate.edu)

Drew Gehrke

(gehrkean@oregonstate.edu)

Nicholas McBee
(mcbeen@oregonstate.edu)

HARDWARE
• GPS: Global Position System. Latitude and

longitude of robot's current position. Used

to navigate between waypoints.

• IMU: Inertial Measurement Unit. Measures

accelerations in 6 degrees. Used to give

the robot's quaternion orientation.

• LiDAR: Light Detection and Ranging. Used

to remotely detect solid objects within the

surroundings of the robot.

• ESP32: Microcontroller used as the main

interface between the ROS2 system and

the hardware. All firmware was written in

C++.

• R. Pi: Raspberry Pi 4. Responsible

for all ROS functionality and web

interfacing. Serves as

the core computational hardware for the

system.

SOFTWARE
• WEB INTERFACE: The site is hosted on Amazon

webservers and uses Amazon Amplify to process

users for login.

• WEB BACKEND: The site is using React and

node.js with the Web Bridge to process data from

the system to the site or from the site to the

system using WebSockets.

• ROS NAVIGATION: Provides interface between

sensor hardware, real world localization and

mapping algorithms. Used to produce and

generate paths between origin and destination

positions for the robot.

• SENSOR INTERFACE: Utilizing the ESP32, many

hardware interfaces were serialized and

transmitted to ROS on the Raspberry Pi. GPS

data and inertial measurement data were

interpreted by through this program

INTRODUCTION

This goal of the Autonomous Package Delivery

Robot (APDR) is to automate campus package

deliveries. The key design aspects of this
project include a web user interface and a

variety of sensors to navigate between

locations. These include IMU, LiDAR, and GPS.

The mapping and navigation algorithms are

provided by the Robot Operating System
(ROS). The frame, motors, and batteries are

recycled from an old electric wheelchair.

AUTONOMOUS PACKAGE DELIVERY ROBOT
Intelligent Path Following with ROS and LiDAR

E C E . 0 2 5

DESIGN REQUIREMENTS

• Path Following: The system will follow a

predefined path between an origin and

destination.

• Object Reaction: The system will safely

traverse around stationary objects in its path.

• Lock Box: Packages will be transported in a

secure container that can be unlocked by an

authorized user.

• Data streamed to Website: The admin web

interface will display a live feed of information

about the robot's status.

• Data steamed from Website: Notifications

about robot and delivery status will be sent to

administrators and clients through the website.

• Emergency Stop: The system will shut down

within 500ms of the emergency button or

collision sensor activating.

• Edge Detection: The system will determine

the bounds of pathways and maintain a safe

distance from the edges.

• Battery Monitoring: The system will measure

the voltage of the onboard batteries within an

accuracy of 100mV.

APDR TEAM MEMBERS

OUR PROJECT SHOWCASE

Throughout this project

Andrew oversaw integrating the

hardware peripherals, like the
ESP32 and motor controller,

into ROS2. He also designed

and fabricated the enclosure.

Andrew Pehrson
https://Pehrsona.com

Throughout this project

Tyrone oversaw building the

website, integrating ROS Bridge
Suite with the website, setting

up ROS2 on the Raspberry Pi 4,

and creating the GitHub and

Wiki page.

Nathan was responsible for the

implementation of optical

sensors and the configuration of
the ROS Navigation stack. This

included setting up a network of

multiple python nodes to

perform a SLAM algorithm.

Drew was responsible for the

lock box, sensor inputs, and

PCB design. Sensors included
the GPS and IMU. The PCB,

designed in Altium Designer, is

the interconnect for the ESP32

and sensors.

Nick headed up the power

management sub-system for this

project. Nick also configured the
ROS Navigation stack and created

a Python script for sending

waypoints.

Simultaneous localization and mapping
(SLAM) with costmap generation

PCB with ESP32, GPS, and IMU
connected to R. Pi

mailto:stagnert@oregonstate.edu
mailto:searlesn@oregonstate.edu
mailto:gehrkean@oregonstate.edu
mailto:mcbeen@oregonstate.edu
https://pehrsona.com/

