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I. Overview

1.1 - Executive Summary
The goal of this project is to develop a robotic tentacle arm that can move freely within a

3D environment with a high degree of accuracy, while maintaining the cost of the final product at
under $300. Robotic arms available on the market can be roughly divided into two categories,
high-level control for high cost, and low-level control for low cost. The aim of this project is to
develop a highly posable robotic tentacle arm with accurate and repeatable positioning that can
be inexpensively reproduced using 3D-printable models and software that will be made open
source. Due to its target cost of $300, the arm will be a viable choice for less expensive
ventures.

The tentacle arm will use a coordinate system in order to position itself accurately and
consistently in 3D space. It will be able to move an object or attached manipulator accurately up
to within 2.0 cm within its coordinate range. The project will also include a control system in the
form of a user application. The user will be able to enter numerical or qualitative input into the
application and the arm will move according to the specified instructions. The tentacle arm will
be 3D printed and made using inexpensive components so that it can be replicated easily and at
low cost.

Use cases of the finished product include in manufacturing and robotics automation,
remote-operation in hazardous work environments, and in prosthesis technologies.

1.2 - Team Communication Protocols and Standards
This section includes the team communication protocols table, the team standards table, and
the team individuals’ contact information. Contact between group members will mainly be
conducted over Discord.

Table 1.2.1 - Protocols and Standards Table

Topic Protocol Standard

On-time
Deliverables and
Team
Collaboration

Team members should complete
all parts of project tasks that are
given to them before the set
deadlines.

Complete work will include all given
requirements for said task to be included in
the final item.

Task
Management

Team will use Google Sheets for
task assignments assigned to
individuals and to the group.

During team meetings, the team will review
tasks to be completed and assign new tasks
as needed to team members who have
finished. Team members will update the
sheet with their %completed to keep
everyone else up to date on progress.



Completed
assignments and
documentation

When finishing documents, they
will be uploaded to the teams
shared google drive so they can
be accessed and reviewed by
everyone

Complete work will be put in the correct
folders in the google drive so it can be
accessed easily by group members.

Discord
Communications

Team members are expected to
check-in on the team Discord
channel on a daily basis, and
confirm that they’ve seen
messages from other members.

Every member will check at least once a day
and should have notifications on so they
receive important information quickly. When
asked questions directly, communication
time should be within 24 hours.

Absences Team members are expected to
be present for scheduled meetings
or classes unless specified
beforehand.

All members will be present unless they
have told the group they will be absent at
least 3 hours beforehand.

Table 1.2.2 - Communication Analysis

Protocol Assessment Parameters

Project partner role Project partner will act as a silent partner observing progress and
communicating any specifics that the project should be focusing
on. Additionally if the team needs assistance they can reach out
to the project partner for assistance.

Project partner profession Project partner works on a company that mass produces
mechanical arms for factories and assembly lines. He oversees
the project design of said arms.

Project partner expectations Arm should have a design that will allow it to move in 3
dimensions. The arm should be produced with materials costing
less than $300 total. The partner would like access to this
information as the project is being designed, and would like to
know what materials will be used. They will also like to know what
functions the arm will have

Project Partner knowledge level Project partner should know all terminology related to building,
designing and producing a robotic arm. He will also have lots of
engineering experience and knowledge, but may not have a
tremendous amount of knowledge about coding and
programming arms.



Project partner communication and
sharing.

Project partner prefers communication through email and wants
periodic project update emails sent to them. They may share
progress with their coworkers or bosses who may or may not
have the same technical knowledge as them.

Table 1.2.3 - Team Member Contact Information

Member Phone E-mail

Ben Chan 971-295-0807 chanbe@oregonstate.edu

Jordan Porter 925-640-9233 portejor@oregonstate.edu

Cale Hallamasek 650-681-7321 hallamac@oregonstate.edu

Triet Nguyen 971-506-6589 nguytrie@oregonstate.edu

Project Partner (None) N/A N/A

1.3 - Gap Analysis
While mechanical arms are commonplace in many parts of industry (manufacturing,

prosthetics), they are often expensive and require a high level of experience to program.
Modern robotic arms can cost anywhere from $500 for a tabletop toy robotic arm, to over
$50,000 for industrial grade large-scale robotics [2]. Price is also often related to possibility:
robotic arms exhibit multiple points of articulation, with the three most common points of
articulation being at the base, shoulder, and wrist of the robotic arm [3]. The last issue with
robotic arms is control: The more degrees of freedom a robot has, the more difficult it is to
control. Therefore, the targeted gap in the market would be for an arm that is inexpensive,
highly articulated, and easy to program/control.

The tentacle arm will have a maximum budget of $300, which will make it affordable.
This price point falls below the cost of most small to medium scale robotic arms that are freely
available on the market at the moment. The software developed as well as its design will also
be made open-source on the web for educational use. Materials used will be
consumer-available materials - such as 3D printing and laser cutting - that will allow people to
reconstruct their own tentacle arm robot using this project document, as well as the
aforementioned open-source design files and code.

The tentacle arm will have many points of articulation and rotation. This will make it
highly adaptable to multiple situations, and also give it an edge over traditional robotic arms that
often have less points of articulation. Comparable robotic arms used in an industrial automation
setting are either three-axis robotics, meaning two degrees of horizontal/rotational motion at the
base and one degree of vertical motion at an elbow, or four-axis robotics, which have an
additional axis of motion in a tool or manipulator attached to the end of the arm [4].



In regards to control, the tentacle arm will be developed with user friendliness in mind;
an easy to use controller and GUI will allow the user to make full use of the arms movement.
The user-interface will feature a 3D simulator that will allow the user to preprogram and visualize
the motion path of the robot.

1.4 - Timeline
This section will include the timeline table and charts that are being used to manage the

project. The timeline table contains information about the target start and end dates for each
task, as well as the current percent complete state of each task.

Table 1.4.1 - Project Timeline

TASK NAME START DATE END DATE MANAGER
PERCENT

COMPLETE

Fall Term Documentation

Week 4 Presentation video 10/14 10/21 Group 100%

Draft - Proj. document sec. 1 10/15 10/22 Ben 100%

Week 4 Project partner update 10/15 10/22 Cale 100%

Week 5 Presentation video 10/21 10/28 Group 100%

Draft - Proj. document sec. 2 10/22 10/29 Ben 100%

Week 6 Presentation video 10/28 11/4 Group 100%

Team Communication Evaluation 10/29 11/5 Group 100%

Week 7 Presentation video 11/4 11/11 Group 100%

Week 7 Project partner update 11/5 11/12 Cale 100%

Proj. document sec. 1-2 10/15 11/12 Ben 100%

Week 8 Presentation video 11/11 11/18 Group 100%

Draft - Proj. document sec. 3 11/12 11/19 Ben 100%

Week 10 Presentation video 11/25 12/2 Group 100%

Week 10 Project partner update 11/23 11/30 Cale 100%

Proj. document sec. 1-3 10/15 12/3 Ben 100%

Overall Timeline

Early Documentation Phase 10/14 11/15 Group 100%

Testing 11/15 12/12 Group 60%

Modular Testing 1/3 3/12 Group 100%

System Level Testing 2/15 3/12 Group 50%

Presentation Preparation 3/12 4/30 Group 30%



Project Closing Documentation 4/30 6/12 Group 30%

Technology Transfer 6/12 6/18 Group 0%

Electrical

Microcontroller research 11/24 1/7 Triet 100%

Design Power Supply (Component

Selection) 1/27 2/4 Ben 100%

Design Power Supply (Schematic) 2/4 2/11 Ben 100%

FGPA research

Software

Simulator Research 11/24 1/7 Jordan 100%

Blender Plugin Research 11/24 1/7 Cale 100%

Coordinate Conversion Development 1/28 2/21 Cale 100%

Simulator Development 1/7 1/28 Jordan 90%

FPGA Programming 3/14 4/28 Ben 70%

Mechanical

Prototype CAD 11/24 12/21 Ben 100%

Prototype 3D printing 12/17 1/21 Ben 100%

3D Model Revisions 1/14 1/28 Ben 100%



Figure 1.4.1 - Project Timeline Gantt Chart. Dark blue lines on the chart show completed
progress. Light blue indicates the timeline for yet to be completed tasks. Vertical gridlines are

separated by 7-day increments, aligning with Monday of each week.
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II. Requirements Impacts and Risks

2.1 - Requirements
This section goes over the project requirements. Each requirement includes a

description, a failure condition, and any quantitative values that may be used to evaluate that
requirement.

2.1.1 - The system will extend 1.0 meters in any direction
● ER: At full extension, the system will have a minimum reach of 1.0 meters. The system

will be able to extend in any direction originating from it’s base.
● Verification: The system passes if when the tentacle arm system is fully extended in

any direction parallel to the ground, the center of the base of the arm is a minimum of 1.0
meters away from the end of the tip of the tentacle.

2.1.2 - The system will support a mass of 0.5 kilograms
● ER: At full extension, the system will support a mass of 0.5kg placed at the tip of the

tentacle. The system must be stable and be able to move while the system is supporting
the mass. The mass can take the form of an attachable manipulator (grabbing device) or
a non-functional weight with a measured mass of 0.5kg.

● Verification: The system passes if it moves at full extension while supporting a load with
a mass of at least 0.5kg.



2.1.3 - The system will be accurate
● ER: The system will be able to move to the user-specified location with an accuracy of

±2.0cm.
● Verification: The system passes if it is able to move to a location within 2.0cm of the

user-specified coordinates.

2.1.4 - The system will be reliable
● ER: The system will move to the user-specified location with a success rate of 90%.
● Verification: The system passes if it is able to move to the user-specified location 9/10

times.

2.1.5 - The system will be self-powered
● ER: The system will operate continuously for a minimum of 2 hours on a fully-charged

battery. Batteries will be rechargeable.
● Verification: The system passes if it is able to operate continuously without recharging

for 2 hours.

2.1.6 - The system will be portable and easy to use
● ER: The system will be portable and user friendly. 9/10 users will agree that the user

interface and system are portable and easy to use.
● Verification: The system passes if 9/10 users agree that the interface and system are

easy to use.

2.1.7 - The system will output a user-friendly 3D visual.
● ER: The system will output a 3D simulation of the arm for motion control and user

reference. Users should be able to move the real arm to a target location using only the
3D model in the simulation.

● Verification: The system passes if 9/10 users are able to move the arm to a location
within 2.0cm of a target location using the 3D simulation.

2.1.8 - The system will support input in spherical, cylindrical, and cartesian format
● ER: The system will accept input coordinates in spherical, cylindrical, or cartesian (XYZ)

formats. If the coordinates are not within the range of the arms motion, then the system
will warn the user.

● Verification: The system passes if it is able to parse the three formats of input
coordinates correctly, and indicate to the user if those coordinates are within the bounds
of the arms motion with 95% success in 30 trials.

2.2 - Design Impact Statement

2.2.1 - Introduction
This document serves to explore the impacts that the development of a robotic tentacle

arm will have on society and the environment. This project’s main focus is on the development
of a low-cost robotic tentacle appendage with the ability to manipulate small objects. The project
aims to design and manufacture an inexpensive and easily reproducible tentacle robot driven by



a compliant cable system. The tentacle arm will have a length of approximately 3 to 4 feet.
Possible applications of such a technology include automation in industry, prosthesis
technologies, and manipulation of hazardous materials in a research setting. For areas of
negative impact discussed in this document, plans will be made to mitigate their potential
effects.

In each of the following five sections, a different area of impact of this project will be
discussed. Firstly, in regards to health and safety, the use of robotics in job automation and in
jobs concerning hazardous environments, as well as the application of the technology to the
field of prosthesis will be discussed. Next, the negative impacts of robotic job automation on the
working class in the manufacturing sector will be considered, as well as how those effects are
disproportionately spread through the population. Third, this paper will bring up the effects on
the environment regarding plastic waste and energy consumption. Fourth, the economic factors
of the robotic tentacle project will be discussed. The document will then conclude with
recommendations for going forward with this project while minimizing any negative impacts.
Robotics and their applications can provide health and safety benefits. The automation of jobs in
manufacturing or dealing with hazardous materials serves to increase the safety of those in
dangerous environments. By removing workers from dangerous work environments or tasks,
robotics can be used to improve their health and safety. Furthermore, the development of the
tentacle arm robot will help improve technologies that are also used in robotic prosthetics.

2.2.2 - Public Health, Safety, and Welfare Impacts
Safety is the number one priority. One of the many possible uses of the robotic tentacle

arm will be in working jobs that require a high-level of precision in dangerous work
environments, such as in hands-on assembly jobs with dangerous materials, or factory work
where workers are subject to extremely loud noises. According to the CDC, manufacturing jobs
are disproportionately represented in terms of workplace injuries. While manufacturing accounts
for only 5% of US employment, over 8% of US workplace fatalities can be attributed to
manufacturing [1]. One of the goals for the development of this robotic arm is to make it reliable
enough such that it can be used for remote operation in dangerous work environments. by
allowing workers to control the appendage remotely, they can perform many of the same
manufacturing tasks without putting themselves at risk of harm.

Another area where robotic arms could be used is in jobs that deal with hazardous
materials. This includes transportation, manufacturing, and disposal of hazardous materials and
waste. During a study performed by the CDC and the HSEES, nine states were monitored for
chemical related incidents. Between 1999 and 2008, a total of 57,975 separate chemical
incidents were reported from those nine states, during which 15,506 people were reported to
have been injured [2]. 70% of injuries reported involved the volatilization or aerosolization of the
hazardous material. By making the switch to remote-operated tools or robotic automation, the
majority of those hazardous material incidents could have been avoided. A robotic arm capable
of manipulating objects with a high degree of precision and repeatability would be able to
perform those dangerous tasks instead, and therefore improve the safety of workers in
environments with hazardous materials.

There is a second to robotics in job automation that must be brought up when discussing
safety and public health, and this is the fact that robots are dangerous. Wolters Kluwer gave an
example of an accident that occurred in 2015 that involved the death of a factory worker [3].
According to the source, “the sensor’s alarm [of a robotic, driverless forklift] was triggered by a
piece of plastic wrap underneath the elevated forks of the LGV. Unfortunately, the victim did not



initiate the emergency stop, and was crushed by the forklift after it resumed its automated
functions.” Since the technology is so new, the OHSA has yet to have clear guidelines in place.
As of early 2020, the strongest robot being used in the industry for large-scale assembly was
the M-2000iA/2300 [4]. Capable of lifting 2,300 kilograms and reaching a distance of up to 4.6
meters away from its base. This means that there is a 30 foot diameter circle in which the robot
is able to apply almost 23,000 newtons of force in any location. Without the proper safety
precautions, this could be deadly for the unaware worker.

To avoid the risk of robotics and automation related injuries, there are a few steps that
can be taken. Firstly, before using the arm, a ‘danger-zone’ should be marked out in a circle
around the tentacle arm. This would help prevent unaware persons from wandering into an area
in which they may be hit. Secondly, the use of external sensors or emergency stop triggers to
avoid injuring any person within the effective reach of the tentacle arm. Automation safety
companies such as SICK [5] are already using features like this that immediately stop all
motors, preventing the arm from hitting a user at high speed. Alternatively, the same sensors
could be used to disable all motors in the system, such that if they do hit a user, the cables in
the arm are slack and thus exert less force on impact. Thirdly there are also non-software
related technical solutions such as using compliant materials that would cause less harm in the
case of impact, such as flexible plastics or soft outer coatings [5].

Within the United States, approximately 185,000 people have one or more limbs
amputated each year, and in total, the US is home to nearly 2 million amputees [6]. The
development of the robotic tentacle arm project would generate research and technologies that
would be beneficial to the field of robotic prosthesis, specifically in regard to lightweight robotics
with a high degree of control. By helping to improve robotic prosthetic technologies, this project
would be having a positive impact on the health and wellbeing of some of the amputees.

2.2.3 - Cultural and Social Impacts
While removing workers from dangerous work environments does provide a positive

impact in terms of health and wellbeing, it also has a negative effect. The downside to removing
workers from dangerous environments is that they are also being removed from their
employment, and therefore their source of income.

It’s been estimated by robotics and AI researchers that upwards of 50% of all jobs (both
manufacturing and service jobs) will be automated by robotics or AI by the early 2030’s [7]. This
claim is supported by data from the United States Bureau of Labor Statistics; ever since the
number of manufacturing jobs in the US peaked in the 1980’s, jobs in the manufacturing sectors
have been on the decline. As of the most recent data in 2021, the number of manufacturing jobs
in the US has fallen by over 30% [8]. By developing a low-cost robotic appendage with a high
degree of freedom, this project may help speed along the automation of jobs within the US and
in doing so lead to unemployment for those working unskilled labor jobs. While it would be ideal
for more industries to make use of remote-controlled robotics for increasing safety in the
workplace, full robotic automation has greater appeal.

Another concern is that the automation of manufacturing jobs will disproportionately
affect people of color and already disadvantaged communities. In 2020, the percentage of
manufacturing workers who identified as black or hispanic was 27.6%, while the percentage of
those in professional or technical services (doctors, researchers, accountants, etc.) who
identified as black or hispanic was only 17.0%  [9]. By introducing a technology that will assist in



the automation of jobs in the manufacturing sector, this project will have a disproportionate
impact on historically disadvantaged communities of color.

The final social impact that arises is in regards to the manufacturing of parts - specifically
the treatment of employees in factories that produce motors, microcontrollers, and other
electronic parts. Foxconn is a well known Taiwanese multinational electronics manufacturer, and
as of 2019 have accrued repeated violations in regards to occupational rights at its factory in
China. According to BBC News [10], “the investigation found that workers put in over 100 hours
of overtime a month during peak production season, violating Chinese law which says monthly
overtime cannot exceed 36 hours”. There are other numerous regulations that the company has
violated. With the current chip shortage and worker shortage, it is not a surprise that these
manufacturers have increased the workload of their current employees to meet the high rising
demands.

Luo Fuxing, a Chinese factory worker, compared Chinese factories to American prisons:
“He read that American criminals had tattoos of spiders’ webs inked onto their elbows to show
time spent behind bars. Mr Luo got one too, because ‘factory was just a bigger prison’” [11].
These experiences clearly show how the parts used in our tentacle arm project have significant
social impacts that might go unseen if this research wasn’t conducted. These unfair labor
practices not only put workers in danger, but also affect the productivity of the company. A
healthy work environment can create opportunities for employees to contribute to an
organization’s growth. In an industry such as the tech industry, productivity and growth are
extremely significant. To mitigate this impact, companies from countries with ethical work
policies will be prioritized in parts selection. Unfortunately, it is inevitable that some of the parts
will be sourced from overseas companies where workers rights are not as well protected or
enforced.

2.2.4 - Environmental Impacts
The majority of non-electrical components for the tentacle arm project are intended to be

3D printed or laser cut. 3D printing was selected as the main method of manufacturing because
it allows the creation of high-complexity parts at a low manufacturing cost while generating very
little waste. Laser cutting will be reserved for parts where greater strength is required, however;
laser cutting typically creates more waste and pollutes the environment more than 3D printing.

The most used form of 3D printing available to the typical consumer is fused deposition
modeling (FDM). FDM printers work by reheating a thin filament of plastic from a spool, and
ejecting it at computer defined positions to create any object. According to a CleanTechnica
article about whether or not 3D printing can be described as a “clean” technology, the main
environmental benefits come from the type of filament used, as well as the additive
manufacturing approach [12]. Additive manufacturing is where objects are built-in layers from an
empty base, the opposite of subtractive manufacturing. While this is an improvement due to how
complex the 3D printing process is, many printed objects may not turn out the way that they are
expected to, resulting in the need to reprint parts. The downside to FDM printing is that it
requires a high amount of energy to create plastic spools and later remelt them for the 3D
printing process. It’s estimated that it takes approximately 0.5kWh per hour of print time for the
average consumer’s FDM printer [13]. For comparison, the typical home microwave uses
0.3kWh per day (assuming 15-30 minutes of usage)[14]. For large-scale prints running an entire
day continuously, a single FDM printer can easily use more than 12kWh; equivalent to running a
microwave continuously for 40 hours.



The material used contributes strongly to the environmental impacts of any product; in
this case, the 3D printing filament is very eco-friendly. The CleanTechnica article mentions that
one of the most common 3D printing filament materials is PLA. This material is “derived from
biological sources, often from plants like corn”, and that it “is not toxic to organisms like other
types of plastics” [12]. While the material is biodegradable, it can take centuries to fully
decompose, so it cannot be thoughtlessly discarded into natural environments. Although PLA
appears to be the best option when it comes to mitigating environmental harm, we will remind
the user that the plastic should still be properly discarded, and that extra parts should be printed
only if necessary.

To mitigate the environmental impact of the project in regard to energy consumption, the
tentacle arms motion should first be simulated to determine if the 3D modelled parts would be
suitable for the required motion range. This would help avoid printing/cutting multiple part
iterations in which only minor changes are being made. Secondly, the parts used should be
designed as light as possible. This serves two purposes: firstly to reduce the amount of material
being used in manufacturing, and secondly to reduce the total amount of mass being moved,
and therefore reducing the energy expended for the system.

2.2.5 - Economic Factors
One of the primary goals for the development of the robotic tentacle arm is to keep it low

cost, with a maximum development budget of $300. By keeping the cost of the development of
the tentacle arm low, it allows reproduction of the technology at an even lower cost.

Modern prosthetic arms typically fall into three price ranges. Cosmetic prosthetics with
no robotic functions cost up to $5000, while low-end robotic arms can cost up to $10,000. A fully
equipped myoelectric capable arm can cost $20,000 to $100,000 [15]. Not only are robotic
prosthetics expensive, but they are also subject to failure due to prolonged wear; a typical
prosthetic limb must be replaced every three to five years [16] or more often if the user outgrows
the prosthesis. By restricting the cost of the arm to $300, this project aims to develop a low-cost
alternative to typical prosthetics. Another design goal for the tentacle arm project is to make the
arm easily accessible and repairable; failure of one or two components shouldn’t warrant
replacing the full assembly. This will also help reduce cost in the long run.

Automation technologies used in manufacturing are also expensive. For example, high
precision robotics used in automobile manufacturing for welding processes start at $28,000, and
can cost as much as $50,000 depending on what options or packages are selected [17]. While a
$300 tentacle arm would not be able to replace a $50,000 industrial grade robot, the
development of the low-cost alternative could open up future paths towards inexpensive
robotics.

An additional cost that comes with any piece of technology is maintenance and repair.
Proprietary parts and closed-source designs are commonplace in the industry, resulting in large
amounts of e-waste, as products usually get thrown out or replaced if they stop working. Without
careful consideration, our product would be similarly wasteful. Solutions include providing
publicly available designs and free software, making it much easier for the user to maintain and
fix the product. An ongoing movement exists called “Right To Repair”, which promotes the idea
of fixing and reusing tech products to avoid e-waste [18]. By supporting this, we can allow for
more affordable secondhand use of our product, as well as the freedom for customers to modify
and fix the arm for no additional cost.



Producing a low-cost alternative to expensive technologies can help lower prices for
those in need, but it also reduces profits for robotics research competitors. One possible
negative impact that must be considered is saturating the market with low-cost robotics that
reduce profits for other robotics research companies. In doing so, the low-cost technology
introduced to the market would therefore lead to a reduction in research capabilities for future
robotics technology.

2.2.6 - Accessibility Impacts
A versatile arm could be used to assist differently-abled people in performing tasks that

may be difficult for them. Better Aging overviews the upcoming shortage of caretakers for the
elderly in Japan, and discusses how robotics can be used to mitigate the labor shortage [19].
However, this would require routines to be programmed on a per-user basis, requiring a lot of
work to configure the arm for each user. For those without programming experience, it can be
difficult or impossible to customize a robotic device. A solution is to make the arm’s
programmable interface very easy to understand and use, so that scripts or routines could be
easily created.

Accessibility extends to the user’s understanding of the device as well. From an
engineering perspective, it is an easy mistake to assume that if a device can be used by the
team creating it, it will be easy for others to use as well. To avoid making this mistake,
documentation should still be written in a technical manner, but the inclusion of an accessible
user guide could help those with a non-technical background. Practices such as using
accessible language, as noted in Google’s documentation style guide, help both developers and
non-developers by writing for a wider audience [20]. Further examples of these practices include
avoiding ableist language, designing web documents for screen readers, and defining acronyms
or abbreviations so that they are made clear to those who may be unfamiliar with them.

2.2.7 - Conclusion
The development of the robotics tentacle arm will have both positive and negative

impacts on public health and safety, culture and society, the environment, and the economy. In
addition, the tentacle arm system will also have accessibility impacts due to its possible
applications in automation and relevance to prosthetics. In regards to future development of the
tentacle arm, it would be wise to keep these impact factors in mind, especially during the design
and manufacturing phase.

As with most robotics related research and development, the future use of the developed
technologies in the field of automation will serve to improve the safety and health of those
working in hazardous conditions or in manufacturing jobs. But similarly, by advancing
automation technologies the development of the robotic tentacle arm may also lead to
unemployment for those whose jobs become automated in the future. The possible automation
of jobs in the manufacturing sector is particularly important as the manufacturing sector
disproportionately employs people of black or hispanic identity when compared to jobs in
service industries that cannot be automated. By helping to automate certain industries, this
project may help further the divide between communities. One solution to these problems is to
develop the robotic tentacle arm with the goal of human-operation and human-cooperation.
Instead of fully automating the tentacle arm with artificial intelligence or preprogrammed
maneuvers, it would instead be more effective to develop it as a remote-operation tool that
workers can be trained in. As a manufacturer tool rather than a manufacturer replacement, the
robotic tentacle arm would be able to assist workers in dangerous work environments, while



avoiding the issue of replacing workers in manufacturing jobs. Human and robot cooperation is
dangerous, however; by maintaining proper safety protocols and designing safety features such
as emergency stop and proximity sensors, the number of injuries caused by the robot can be
minimized.

Another key area of impact to keep in mind is the environmental impact of the tentacle
arm. During the design and manufacturing phase, it would be smart to design 3D printed or
laser cut parts in such a way to minimize material waste and energy consumed, to reduce the
carbon footprint of the project. Reducing the material used in the parts would also reduce the
mass being moved in the system, which would save energy used in the motors. Aside from
designing parts to be as light as possible, another possible solution to material waste generated
from 3D printing is to determine a viable bio-compostable FDM 3D printing filament that would
suit the material needs of the project. Such a material would need to be selected based on four
factors: its weight, cost, durability, and printing temperature. If a biocompatible filament is not as
strong or is more expensive than the ABS alternative then it may not be ideal. Alternatively, if it
is just as strong and at the same price point, but uses a much higher printing temperature, then
the increase in energy consumption may outweigh the reductions in material waste produced.

Future system iterations should require more impact evaluations, especially as the
design progresses and use cases become better defined. The introduction of new items, such
as interfaces for software, documentation, and physical components will all need to be
evaluated to ensure that they are properly usable and do not have preventable negative
externalities.

2.3 - Risks
This section will include the risks assessment table. The table includes columns for the

risk description, category, probability, impact, indicator, and the action plan for the risk. The risks
in the risk assessment table have been assigned to individual members of the group.

Table 2.3.1 - Risks Assessment Table

ID Description Category Prob.
(%)

Impact
(L, M, H) Performance Indicator Party Action plan

R1 3d printing
issues/error with
produced parts

Technical/
timeline

20% M All 3d printed parts should
work correctly for arm to
function optimally

Ben Avoid 3D printing
issues. Fix/retain
parts that are
salvageable.

R2 App to arm interface
is incompatible

Technical 20% H Application should be able to
connect to arm

Cale Get basic
communication
working first.
Redesign if
necessary.

R3 User interface
incompatible with
control system

Technical 10% H Controller should be able to
connect to the application.
Arm should move when
controlled.

Cale Retain and fix the
application so that it is
compatible (correct
output format).

R4 Production cost
exceeds budget

Financial 5% M Production cost should be
under $300, and should leave

Jordan Avoid selecting
expensive



emergency funds to deal with
risk factors.

components. Reduce
additional costs via
redesign.

R5 Incompatible or
defective parts

Technical/
financial

10% M Assembly should contain all
originally intended parts.

Ben Reduce risks of
purchasing
incompatible parts.

R6 Order delays Technical 30% M Parts arrive on time Ben Reduce order wait
time by purchasing
early or from
alternative sources.

R7 Incompatible power
supply

Technical 5% H Power supply voltage and
current should be compatible
with what’s required for the
PCB

Triet Redesign compatible
system.

R8 PCB or
microcontroller
failure

Technical 5% H Boards should exhibit the
intended behavior.
PCB/microcontroller should
not break or overheat after
prolonged use.

Triet Redesign hardware.
Replace components
if needed.

R9 Broken parts during
testing

Technical 20% H All circuit components should
function together as intended

Ben Avoid broken parts by
ordering earlier and
testing components.
Design with
repairability in mind.
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III. Top-Level Architecture
This section includes block diagrams and interface definition tables. Sub-blocks of the block
diagram will be shown and explained in detail in the following sections.

3.1 - Block Diagrams

Figure 3.1.1 - Black Box Block Diagram

Figure 3.1.2 - Full block diagram



3.2 - Block Descriptions

3.2.1 - Software Blocks

Figure 3.2.1 - Computer Application Sub-Block

Positional Data input - Lead: Cale Hallamasek
Refers to the method of coordinate input provided by the user. Coordinates are input in
cartesian, spherical, or cylindrical format. The application will then convert these
coordinates into normalized cartesian format coordinates that refer to the arm’s end goal
position. Coordinates are relative to the arm’s position, and can either be specified via
the visual interface or with manual input.

Control System Feedback Loop - Lead: Cale Hallamasek
This represents the most mathematically complex process, where the arm takes its
current position and end position and uses inverse kinematics to solve for where each
arm joint should end up. This process results in a set of instructions that will be used to
drive the motors.

Microcontroller communication - Lead: Jordan Porter
The positional data obtained through the previous step will be sent to each motor; in this
case, there are three tentacle sections that will receive this positional data. The signal
being sent will need to be optimized for communication lag (due to wireless
communication) and to avoid errors in commands that are sent.

Simulator Visualization - Lead: Jordan Porter
The simulator serves two functions: Firstly to provide the user with visual feedback of the
arm's current position and orientation, and secondly to help the user plan out the arm’s
future movement and target locations. The simulator will run an inverse-kinematics
rigged model of the arm that can be dragged into position.



3.2.2 - Microcontroller Blocks

Figure 3.2.2 - Microcontroller Sub-Block

ATMega128 and Accelerometer - Lead Triet Nguyen
This block represents the ATMega128 microcontroller, and it’s connected peripherals.
The ATMega128 will control the motors, and also gather positional feedback data using
the accelerometer. This device is powered by a 5V power source. By using its I/O ports,
it can be used to interface with both the mechanical and software components of the
arm. The accelerometer will be used to gauge the arm’s movement progress, and help
correct for potential error after movement instructions are completed. The accelerometer
will poll the arm’s position continuously, and compare it to the end goal to determine
what adjustments will need to be made to get it closer to its target.

Communication Antenna - Lead: Triet Nguyen
The antenna is used by the ATMega128 to receive control signals from the computer
application wirelessly. The ATMega128 will then parse these signals and output them
into a format that is readable by the motor controllers.



3.2.3 - Mechanical Blocks

Figure 3.2.3 - Mechanical Systems Sub-Block

Mechanical System Parts / Design - Lead: Ben Chan
The mechanical portion of the arm will be made up of a total of 12 discs, forming 3
individually controllable sections of 4 discs each. The assembly will be driven by 3
motors per section, with a count of 9 main motors. Each motor will have its own motor
controller. Additional motors will be used for manipulator or base motion. 3D modelled
parts will be imported into the 3D simulation as well.

3.2.4 - Power Supply Blocks

Figure 3.2.4 - Power Supply Sub-Block

Power Supply - Lead: Ben Chan
The main power source for the system will be a 12V battery bank that can be removed

and recharged. This will allow the tentacle arm to be used in places without a readily accessible
power outlet. The battery bank output is passed into a buck converter to reduce it to a voltage
that the other blocks in the system can handle. A buck converter provides step-down DC to DC
voltage. The output from the converter will be 5V, as this is the required voltage for the
ATMega128 board. The buck converter power supply will pass it’s output through an output filter
to reduce spikes in voltage. This serves to protect the ATMega from shorts or other issues with
the power supply. This block also includes the motor controllers, which will be purchased
modules. These motor controllers will use the filtered 12V supply from the PCB to step up the
voltage output from the microcontroller and FPGA block.



3.3 - Interface Definitions
Below is the interface definition table. The leftmost column of the table has been color coded to
match the colors used for each sub-block of the block diagram. Rows with two colors indicate
interfaces that are used between two sub-blocks. Rows color coded with white are interfaces
that serve as either inputs or outputs of the overall system.

Table 3.3.1 - Interface Definition Table

I O Name Type Value Description

user_in User Input Coordinate or positional
data.
• Rectangular (X, Y, Z)
• Spherical (r, θ, φ)
• Cylindrical (r, θ, z)
• 3D position from IK
simulation

User input can take the form of input target
coordinates (XYZ, spherical, cylindrical) or 3D
simulation data passed to the system via the 3D
simulation plugin.

app_corr_data Internal Variable Parsed positional data
(USB)
• Accelerometer feedback.
• XYZ delta from previous.

Provides correctional data from the microcontroller
back to the control system application.

app_transform Digital Signal List of nine motor
commands. (USB)

Data sent from the application to the board on the
arm. Signals will be passed along to the motor
controllers to control the 9 motors.

target_coords Internal Variable Converted coordinate
data
• Spherical (r, θ, φ)
• Data from IK rigged
model

System converts input data (coordinate or positional
data) into standardized rectangular coordinates.
Outputs to IK control system.

sim_data Internal Variable IK and rigging information IK control system data feedback from the Blender
simulation.

sim_vis Internal Variable IK and rigging information IK control system data from the Blender simulation to
update the render.

uc_corr_data Internal Variable Parsed positional data
(USART)
• Accelerometer feedback.
• XYZ delta from previous.

Provides correctional data from the microcontroller
back to the control system application.

uc_transform Digital Signal List of nine motor
commands. (USART)

Data sent from the application to the board on the
arm. Signals will be passed along to the motor
controllers to control the 9 motors.

render_out GUI Output Render Viewport 3D environment visualization within the Blender
viewport.

12v_pwr DC Power Volts: 12.0V Input 12V sourced from a wall jack, or a portable
battery.

motor_sig [1..9] DC Power, control Volts: 0 - 5.0V 0 to 5.0V is the supported range on the motor
controllers.

sensor_pwr DC Power Volts: 5V 5V stepped down and filtered the supply.

motor_pwr [1..9] DC Power, control Volts: 0 - 6.0V While the motor controllers can output up to 12.0V at
maximum output, the motors have a rated long-term
voltage of 6.0V.



motor_sig [1..9] PWM signal Array of 9 integer values
in the range (0, 255)

A total of nine individual control signals that are being
sent from the microcontroller to the motor controllers
on board the arm.

tentacle_motion Mechanical motion 3D motion The direction and curvature of the 12 discs of the
tentacle arm.
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IV. Block Validations

4.1 - Mechanical Structure and Motors Block Validation
Champion: Ben Chan

4.1.1 - Description
This block validation is for the mechanical structure design, and motor implementation in the
robotic tentacle arm project. The mechanical system is made up of 18 vertebrae discs, forming 3
individually controllable sections of 6 discs each. The assembly is driven by 3 motors per
section, with a total count of 9 main motors. Motors control the system using 9 tensioning
cables, and can curl the tentacle by applying a tension force to the vertebrae. Each motor has
its own motor controller.
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Figure 4.1.1: Mechanical systems, black box diagram.

3D modeled parts have also been imported into the 3D simulation in Blender, and rigged using
inverse-kinematic relationships. The 3D models are a part of this block, while the Blender
rigging and simulation will be detailed later in a separate block validation.

Figure 4.1.2: Tentacle model rendered in Blender.

4.1.2 - Design
This section will cover the design components of the mechanical systems of the tentacle arm.
This encompasses the block diagrams (black box, and expanded), design drafts, and part
drawings and dimensions.

In the following figures, tentacle positioning has been constrained to 2D in both hand drawn and
computer rendered models. This is simply for clarity purposes. The final system will have full 3D
motion (see rendered image in Figure 1.2 above). This first figure is the black box diagram of
the mechanical systems for the tentacle arm. The only input is the motor_sig [1..9] interface that
includes the motor signals for the 9 motors. The output of the mechanical system is the
tentacle_motion interface, which as its name describes, is the physical motion and position of
the tentacle.



Figure 4.1.3: Mechanical systems, expanded block diagram.

This is the expanded block diagram for the mechanical systems of the tentacle arm. The same
input and outputs to the system exist, however now internal functionality is displayed.

The first function of the mechanical system is contained on the mounting plate. The mounting
plate provides a stable base to the tentacle, as well as provides space for the microcontroller
and 9 motors to be mounted. Each of the nine motors is attached to a 3D printed pulley that will
be press-fit to the motor shafts. Rotary hall-effect sensors will be mounted on the motors to keep
track of revolutions. Communication with the sensors is further explained in the validations for
the microcontroller and sensor blocks.

The second function is the control of cable tension via the  rotational motion of the pulley, which
is controlled by the motors on the mounting plate. This interface between the cable and the
motors has been defined as ‘pulley_rot’. The second interface, cable_tens, is the applied
tension to the connected tentacle discs. These functionalities have been split due to distinctions
in what considerations must be made in regard to their design and validation.



Figure 4.1.4: Early design draft with annotations.

Figure 2.2 above includes an overall side view with various tentacle positions, as well as a
closer sliced view of the cables running through the tentacle. An additional isometric view of the
disc was included to help clarify where cables would run through the discs. While the 3D
modeled design appears different from this early draft, the key features are the same: three
controllable sections, and 9 holes for cables.

In figures 2.3 through 2.5 below, the 3D modeled designs for the vertebrae disc and cable pulley
are shown. The cable pulley and motor is the interface for pulley_rot, with interface type
rotational motion. The vertebra disc which is put under tension by the cables running through
the holes is the interface cable_tens. To prevent the tension applied by pulley_rot from
compressing/retracting the tentacle, a non-compressible material is used to separate the discs.
This material will be pneumatic tubing (OD 0.25”), which sits against a chamfered hole in the
center of each disc. The chamfer helps keep the tubing centered, while the hole (OD 0.125”,
smaller than the tubing diameter) allows a cable to run through the center of the entire tentacle,
helping to keep the discs compressed together.



Figure 4.1.5: Vertebrae disc drawing. Only critical dimensions are labeled.

Figure 4.1.6: 3D model of vertebrae disc. Figure 4.1.7: 3D model of cable pulley on
motor.

The following are renders of the tentacle assembly. The overall system comprises 18 vertebrae
discs, 9 cables (not pictured), a central cable (pictured in red), and a polycarbonate base plate
for mounting the electronics and pulley motors. In the following figures, the three sections of the
tentacle have been constrained
at 90°, 0°, and 180°(in order
from the base of the tentacle
toward the tip).



Figure 4.1.8: Tentacle system side view.

Figure 4.1.9: Tentacle system
isometric view, with visible base
plate.



4.1.3 - General Validation

Vertebrae Validation

The design of the individual vertebrae is based on how the movement of the tentacle will be
calculated. The defining values to determine the position of the tentacle are the radial distance
of the tension cables from the center of the tentacle, the arclength of the tentacle section, and
the angle difference between the first and final vertebrae of the section.

This means that the critical values for the vertebrae design are not the outer diameter of the
disc, nor the relative position of the holes for the cables, but only the radial distance of the
cables holes, and the absolute distance between the discs. With these values, and the known
angle position of the target destination, the arclength of the tentacle (which is the length of the
control cables) can be determined.

From figure 2.3 it can be seen that the bottom side of the vertebrae is flat, with minimal cutouts
or protrusions other than through-holes. This design was a conscious choice made to improve
the speed and quality of parts via 3D printing while requiring minimal post-processing.
(Deburring, removal of supports, drilling through holes, etc.) Furthermore, no complex
extrusions have been made in any horizontal direction so that the part can be easily mass
produced via resin casting or injection molding (at large scale production). As an optional
feature, small grooves have been modeled along the outer circumference to aid in drilling holes
for mounting set screws if deemed necessary. In this case, the groove was suppressed before
3D printing.

Reach Requirement Validation

One of the system requirements is that the system must have a maximum horizontal reach of at
least three feet (36.0”). Using the arc length equation [1], and the known fact that all three
sections of the tentacle must have a constant arc length, the minimum distance between discs
can be determined. Solving symbolically with R being the total reach of the arm, and x being the
distance between discs, the following equation can be used.

𝑅 = 6 𝑥 +  6𝑥 +  [6𝑥 / (π/2)] 
Solving the equation to isolate x, and plugging in R.

𝑥 =  (𝑅 × π) / [12(π + 1)]
𝑥 =  2. 276" =  (36" × π) / [12(π + 1)]

Round up to 2.50” to comfortably exceed the requirement. Plugging in 2.50” to the original
equation yields the following:

𝑅 =  39. 55" = 12(2. 50") +  [6𝑥 / (π/2)] 
Thus the arm has a maximum vertical reach of 45.0”, and a maximum horizontal reach of 36.0”

These values can be checked in the 3D model in Inventor Professional. The following two
screenshots show the measured radial distance of the arm in the vertical and horizontal
positions.



Figure 4.1.10: Vertical reach measurement in Inventor Professional

Figure 4.1.11: Horizontal reach measurement in Inventor Professional

Load Bearing Requirement Validation
Another system requirement is for the system to remain free standing while supporting a load of
0.5kg at it’s tip in any position. The most extreme case would be when the tentacle is at it’s
furthermost horizontal position (as calculated above). To determine the physical properties
required for this, a torque analysis can be done to determine the tension force applied to the
load-bearing cable.

In the following diagram, distances have been converted to their metric values, and weights
have been labelled with L, W1, and W2 (the load mass, mass of the straight section of the
tentacle, and the mass of the curved section respectively).
Torque is determined using the applied force times the length of the moment arm. In this case,
the forces on the right side of the arm are known, while the tension force applied to the cable is
unknown.



∑ 𝜏 = 0 𝑁𝑚 =  𝑎 × 𝐿𝑔 +  𝑏 × 𝑊
1
𝑔 + 𝑐 × 𝑊

2
𝑔 +  𝑑 × 𝐹

𝑇

Figure 4.1.12: Torque analysis diagram for a load at the end of the tentacle.

Simplify this equation to isolate FT, the tension force. The right side is negative, indicating that
FT acts in the opposite direction.

𝐹
𝑇

= 
−𝑔(𝑎×𝐿 + 𝑏×𝑊

1
+𝑐×𝑊

2
)

𝑑
The values for the distances a, b, c and d are determined using the following diagram. In the
case of c, the center of mass of the curve was estimated to be at an angle of π/4 radians. These
values are plugged into the equation to solve for the tension force. The values for W1 and W2
were estimated to be 0.24kg and 0.12kg respectively. (This was determined using the mass
estimate of the ABS plastic part in Inventor Professional 2022, and a 3D printing infill of ~70%.)
.

𝐹
𝑇
 = −𝑔( 1.005 × 0.5 + (0.381 + 0.243) × 0.24 + [0.243 ( 1 − 2/2)] × 0.12)

(0.051)

𝐹
𝑇
 =  127𝑁 ≈  12. 95𝑘𝑔

When at the most extreme position, and carrying a 0.5kg load at the end of the tentacle, the
system exerts 127N of tension along the outermost cable under ideal circumstances. This is the
equivalent of 12.95kg or 28.55lb. The cable that will be used for controlling the tentacle system
is a nylon/fluorocarbon fishing line with a load rating of 50lb [2]. Multiple cables can be used per
motor to increase the maximum capacity.



28. 55 / (50. 0) = 57. 1% 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑎𝑡𝑒𝑑 𝑙𝑜𝑎𝑑 
28. 55 / (2 × 50. 0) = 28. 55% 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑟𝑎𝑡𝑒𝑑 𝑙𝑜𝑎𝑑 

Lastly, when not carrying an additional load (ie, only looking at the tentacle system with no
additional forces), the tension force applied to the cable is the following:

𝐹
𝑇
 = −𝑔(  (0.381 + 0.243) × 0.24 + [0.243 ( 1 − 2/2)] × 0.12)

(0.051)

𝐹
𝑇
 =  30. 5𝑁 =  3. 1𝑘𝑔

3.1kg is the equivalent of 6.8lb. Without the additional load, the system is well within the
maximum rated load of a single cable.

Pulley Validation
The validation of the pulleys depends on the specific motors and gearboxes that are used for
the system. The motors can be selected knowing that the maximum tension force experienced
by the cables will be 127N. Converting this into a torque rating with a pulley radius of 1.50”
(0.0381m) gives a minimum requirement of 4.84Nm of torque (0.49g/cm).

Using a larger pulley radius allows the tentacle system to move faster, but also increases the
torque requirement. For example, using a pulley with a 3.0” radius results in a required torque of
9.68Nm. This increased radius would allow the tentacle system to accelerate twice as fast, as
the winding speed of the pulley is proportional to its circumference, and circumference is
proportional to radius: .𝑐 =  2π𝑟

For the tentacle system, a worm-drive gearbox would be a good selection, since it cannot be
back-driven by high torques. One such worm-drive gearbox available on Amazon is $14.99,
making it inexpensive as well [3]. Alternatively, conventional motors with high torque ratings
would be simpler and less prone to failure. The potential motor and gearbox combination on
Amazon is also $14.99, and has a torque rating of 6.0 kg/cm, 1200 times more torque than
calculated as necessary [4]. The downside to a conventional motor is that it can be backdriven
unless it has built-in braking in which case they can only be backdriven when the system is
completely powered down.

Overall, meeting the 4.84Nm torque requirement for the pulley motors is not an issue.



4.1.4. Interface Validation

Interface Property Why does this interface
have this value?

Why do you know that the
design details for this block

meet or exceed each property?

motor_sig [1..9]

V_min = -5.0V This is the input signal from
the motor drivers. A DC
voltage value between -6.0
and 6.0 volts is determined in
the microcontroller and sent
to the motors.

The motors are rated for continuous operation
at up to 6V DC. The rated current of the motors
is 0.6A, and it’s stall current is 3.3A. Continuous
operation at 0.5A is within the rated limits, while
short spikes of 2.0A will not trigger a ‘stall’
condition. The motor drivers have a max
continuous current output of 2.0A, and are able
to output 5.0V to 35.0V as directed by the
logical current input.

V_max = 5.0V

I_nominal = 0.5A

tentacle_motion

F_t, nominal = 30.5N This is the tension on the
cable when in its most
extreme position with no
external load.

The cable chosen has been rated for 50lb of
weight, which is the equivalent of 222.5N of
force. 222.5N provides a safety factor of 7.3
over the expected tension force of 30.5N.

F_t, max = 127N This is the tension exerted on
the cable when in its most
extreme position with a 0.5kg
external load at its tip.

The 222.5N rated cable provides a safety factor
of 1.75 over the expected tension force of
127.0N. Taking into account the triangular
shape of the vertebrae, the tension will typically
be split along two cables. In these situations,
the tension force would be 63.5N per cable,
and results in a safety factor of 3.5.

Reach, vert. = 40.0” This is the total vertical length
of the tentacle.

The length of the tentacle when all cables are
of equal length (within each section) should be
45.0”. This is because the vertebrae have a
consistent spacing of 2.5”. With a total of 18
vertebrae (not counting the base plate), the
length is 2.5” × 18 = 45.0”.

Reach, hor. = 36.0” This is the required maximum
reach of the tentacle.

The maximum radial distance of the tentacle
from its origin point is 39.55”. This was
calculated using arc length to determine the
radius of the tentacle’s curvature. 39.55”
exceeds the 36.0” inch requirement.

4.1.5 - Verification Plan



This section is the step-by-step verification process for the mechanical tentacle system. This
includes testing the motion range of the tentacle, as well as the physical properties of the
system (load-bearing capacity, reach, and accuracy of motion). This verification process is to be
done after the mechanical systems have been fully manufactured and assembled.

1. Verify voltage and motor response.
a. If not connected to to the tentacle control system:

i. Set up a power supply and set it to 0V. Keep current below 0.6A.
ii. Connect one of the DC motors on the base to a voltage supply.
iii. Increase the voltage supplied. The motors should move and result in

tentacle motion. Be careful not to reach the maximum or minimum travel
of the motor.

1. If the motors do not show movement, it fails.
iv. Continue to increase the voltage supplied until reaching 5.0V. At this

voltage, the tentacle should be moving faster than at the lower voltage
rating. Optionally test the motor running in the opposite direction.

1. If the motors fail before reaching 5.0V, it fails.
v. Power off the power supply, disconnect motor, and repeat the test on a

different motor.
b. If connected to the tentacle control system (Verify control system independently

first):
i. In the control application, plug-in coordinates that align with the radial

direction of the tentacle cable (0°, 120°, 240°).
ii. Observe tentacle motion. Motion should be smooth and parallel with the

targeted direction.
1. Motion that does not align with the targeted direction indicates that

motors in one of the other two directions are failing.
2. Motion that is not smooth indicates motor or gearbox failure.

2. Determine vertical reach.
a. Straighten the tentacle system along a flat surface, or if mounted, extend it

vertically.
b. Measure the tentacle's length from the surface of the base plate, to the top of the

18th vertebrae (19th, if including the base plate).
i. If this distance is not greater than 40.0 inches, it fails.

3. Determine horizontal reach.
a. Straighten the upper two sections of the tentacle (even tension along the 6

motors for sections 2 and 3).
b. Bend the lowermost section of the tentacle to 90°.
c. Measure the radial distance from the origin axis (where the tentacle is mounted

to the base) to the tip of the tentacle. This should measure 39.6”.
i. If this distance is not greater than 36.0”, then it fails.

4. Determine maximum load.
a. With the tentacle in it’s maximum horizontal reach position, attach a 100g load to

the tip of the tentacle. The tentacle should remain free-standing.
i. If the tentacle system breaks, it fails.
ii. If the tentacle system sags or drops such that the tip touches the ground,

it fails.



b. Move the tentacle. The tentacle system should be able to move accurately even
when carrying an external load. Test different positions for all three sections, as
well as movement of all three sections at once.

i. If the tentacle system no longer responds to controls, or breaks when
carrying the load, it fails.

c. Increase the load by 100g and repeat until the total load reaches 500g.
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4.2 - Microcontroller Communication Block Validation

Champion: Jordan Porter

4.2.1 - Description

Send Data between the control system feedback loop and the ATMega128 microcontroller.
Microcontroller can communicate with a computer using USART serial data communication. The
microcontroller communication block will receive data from the control system feedback loop
and then send it via USART to the microcontroller. The Atmega128 microcontroller will then
send back updated rotations to the microcontroller communication block via USART. The
microcontroller block will then send this data back to the control system feedback loop so the
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program has the current location of the arm. USART stands for universal synchronous and
asynchronous receiver and transmitter [1]. The protocol is used for receiving and transmitting
data bit by bit relative to clock pulses on a single wire. The microcontroller uses two pins TXD
and RXD specifically for transmitting and receiving data serially and KCK as a clock pin [1]. The
Microcontroller uses UDR (a 16-bit buffer register) 8-bits are for transmitting (TXB) and 8- bits
are for receiving (RXD) [1].

4.2.2 - Design

Figure 4.2.1: Block Diagram

Figure 4.2.2: Flowchart of Code inputs



Figure 4.2.3 - USART Communication Diagram [2]

4.2.3 - General Validation

The system needs to be able to communicate from the microcontroller to the computer in order
for the Tentacle arm to receive new commands and for the simulation to be updated with the
arm's current location. The Atmega128 microcontroller has a built-in function for communication
using USART. USART receives data from an outside source bit by bit and stores it into a
register for use by the microcontroller. Additionally the microcontroller can also transmit data in
the same way. By communicating this way the microcontroller will be able to send and receive
data to and from the microcontroller communication code on a computer. USART is faster than
traditional UART which will be needed to make sure communication between the microcontroller
and computer is as quick as possible and if any error from sending data occurs it can be resent
quickly.

4.2.4 Interface Validation

atmg128_mcrcntrllr_mcrcntrllr_cmmnctn_data : Input

Interface Property Why is this interface this
value?

Why do you know that
your design details for

this block
above meet or exceed

each property?

Datarate: Will send data at
least 10 times per second

Data needs to be sent fast
enough from the
microcontroller so the
simulation runs smoothly

Data will be sent from
the microcontroller at
least 10 times per
second



Messages: Data will
contain Rotations for each
motor sent one at a time

Data will contain the current
rotations for each motor

Data will be received 1
motor at a time and
stored in microcontroller
communication to be
sent later

Protocol: Will use Usart to
send data between
atmega128 microcontroller
and the Microcontroller
communication

USART is a built in
communication interface so
the microcontroller can talk
to outside sources.

USART will be used to
communicate between
the ATMega128 and the
microcontroller
communication code

cntrl_systm_fdbck_lp_mcrcntrllr_cmmnctn_data : Input

Datarate: Data will be sent
only when a change in final
position in the arm is
entered by a user

The ATMega128 will need
the total rotation needed for
each motor to be sent at
once so it can move to the
final position smoothly

When new rotations are
sent from the Control
System Feedback loop
they will immediately be
stored by the
microcontroller
communication

Messages: Data will be
sent in sets of 3 so each
motor receives its own
rotations

Data will contain all the
rotations for every motor

Motors will be in sets of 3
that will be stored in the
microcontroller
communication

Messages: Data will
contain the total amount of
rotations for a motor

The data sent for rotations
will be the total rotation for
each motor

Each Motor will receive
the total amount of
rotations it needs to
complete

mcrcntrllr_cmmnctn_atmg128_mcrcntrllr_data : Output

Datarate: When new
rotations for motors are
received from control
system feedback loop the
rotations will be sent to the
microcontroller

The ATMega128 will need
the total rotation needed for
each motor to be sent at
once so it can move to the
final position smoothly

When new rotations are
Stored in the
microcontroller
communication they will
immediately be sent to
the microcontroller

Messages: Data will be
sent in  order 1 at a time
until all motors are sent

Data will contain all the
rotations for every motor

Motors will be in order
that microcontroller will
read and will be sent to
the ATMega128



Protocol: Will use Usart to
send data between
atmega128 microcontroller
and the Microcontroller
communication

USART is a built in
communication interface so
the microcontroller can talk
to outside sources.

USART will be used to
communicate between
the ATMega128 and the
microcontroller
communication code

mcrcntrllr_cmmnctn_cntrl_systm_fdbck_lp_data : Output

Datarate: Will send data at
least 10 times per second

Data needs to be sent fast
enough from the
microcontroller so the
simulation runs smoothly

Data will be sent as soon
as it is received from the
ATMega128

Messages: Data will
contain Rotations for each
motor sent in groups of 3

Data will contain all the
rotations for every motor

Motors will be set up in
groups of 3 so data will
be received in this way

Messages: Data will be the
change in rotations from
the last Data sent

Rotations will be the current
change since last rotation

By sending the change in
rotation the simulator will
be able to update its
current position

4.2.5 - Verification Plan

Control System Feedback Loop -> ATMega128 Microcontroller
1. New Total rotations will be sent for each motor from the Control System to the

Microcontroller Communication Block
2. Microcontroller Communication will store all rotations
3. Microcontroller Communication will then send data over USART to the ATMega128
4. Once all data is sent the Microcontroller will stop sending data.
5. Check that the Rotations are sent and received correctly to the ATMega128

ATMega128 Microcontroller -> Control System Feedback Loop
1. Microcontroller Communication will be constantly looking for new Data Sent from the

ATMega128 over USART
2. ATMega128 will send new rotations over USART
3. Microcontroller Communication will store new rotations for each motor until all motors

are   received
4. Check that Data is stored and received correctly
5. Microcontroller Communication will then send all rotation data for every motor to Control

System Feedback Loop
6. Microcontroller will then Start Listening for new Data being sent over USART
7. Check that the Rotations are sent correctly to Control System Feedback Loop
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4.3 - Simulator Visualization Block Validation
Champion: Jordan Porter

4.3.1 - Description

This block will simulate the arm with a visual model. Simulation will move based on the arms
current position. Users will be able to move the model simulation to different positions as input
to change the positioning of the arm. The simulation will be made in blender and programmed
using python.

4.3.2 - Design

Figure 4.3.1: Diagram
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Figure 4.3.2: Image of arm side

Figure 4.3.3: Image of arm top



The block will display a 2d image modeling the arm in a 3d coordinate plane. The simulation will
be updated with new coordinates of the arm's current position and then display the changes by
moving the arm around in the simulated environment. The user will be able to drag the arm to a
different position. While the user is moving the arm the simulation will not be updated to the
current coordinates of the arm to prevent the arm from moving back to its current position before
the user finishes moving the arm to their desired location. Once the user has finished moving
the arm into the desired position the user will hit S to send the new coordinates to the inverse
kinematics control system.

4.3.3 - General Validation

The system needs a simulation in order for the user to visually move the arm into the desired
location. Then coordinates will be sent from the simulation to change the physical position of the
arm, which should mirror the position the simulated arm was dragged into. In order for the
simulated arm to position itself properly so the user can move it to the desired location, the
simulator needs the updated coordinate data of the arm's current location. In order for the
changes to the arms position entered by the user to take effect the simulator will need to send
new coordinates to the inverse kinematic control system to convert them to usable coordinates
for the physical arm. The design of the simulator visualization block includes interfaces for user
input, current coordinates from the inverse kinematics control system and new coordinates for
the arm to move sent back to the inverse kinematics control system.

4.3.4 - Interface Validation

otsd_smltr_vslztn__usrin : Input

Interface Property Why is this interface this value? Why do you know that your
design details for this block

meet or exceed each property?

Timing: user input
will only be
received after arm
has finished
moving from
previous
commands

By limiting when user input will be
received there will be less issues
when moving the arm

User can only change coordinates
in the simulator after the arm
stops moving.

Usability: User can
drag arm to
intended
positioning

User can interact with the
simulation to change the position
of the arm. In this case the user
should see where they drag the
arm to.

User will be able to drag the arm
to a new position then the arm will
move to the new position. If the
user can't move the arm this
property fails.

invrs_knmtc_cntrl_systm_smltr_vslztn__data : Input



Messages: The
control system will
send updated
coordinate data to
the simulation
using (x,y,z)

The simulation needs to move with
the arms current location, which
will require updated coordinates to
be sent to the simulation.

Input is received by the simulation
for the current coordinates of the
arm in format starting with X , Y,
Then Z

Datarate: control
system should
send updated
coordinates of the
arm at least 10
times a second

If the arm simulation is not
updated with new coordinates fast
enough then the movement of the
simulation will be choppy and hard
for the user to see how the arm is
moving. Additionally if the arm isn’t
updated the user won’t know what
position the arm is currently in

Input is received at least 10 times
every second and the arms
current simulation is updated each
time a new coordinate is received.

smltr_vslztn__invrs_knmtc_cntrl_systm_data : Output

Datarate: will send
data as soon as
user enters
information and
confirms

User needs to see the arm
responds to its input. Sending
input right away will increase time
for the arm to start moving to a
new location

Input is received for the current
coordinates of the arm

Messages:
Message should
contain (x,y,z)
coordinates

There needs to be consistent
messages sent from simulation to
the controller

Sent message will contain values
for (x,y,z) in that order

4.3.5 - Verification Plan

Inverse kinematic controller -> display
1.      Controller inputs will be simulated using many different points
2.      Controller will send coordinates to the simulator
3.      Simulator will receive the inputs and store them
4.      Simulator will change the points on the arm in the simulation
5.      Simulator will update the simulation display with the new coordinates
6.      Check that the coordinates are the same as the ones entered
7.      Repeat until all coordinates have been simulated

User input -> inverse kinematic controller
1.      User will hit ‘G’ button to start dragging arm
2.      Simulator will stop updating with input from the controller
3.      User will drag the arm and the simulator will show the arm moving with the user



4.      When user is finished they will Left click with mouse to stop dragging
5.      User will hit ‘S’ to send coordinates or ‘G’ to re-drag object
6.      Simulator will calculate the new coordinates for its current position
7.      Simulator will output current coordinates to control system
8.      Simulator will then switch back to receiving updated input from the controller
9.      Verify that the coordinates outputted are the same as the position of the arm the user
entered

4.3.6 - References and File Links

[1] Heer, Scheel, ECE44X: Block Validation(s), Oregon State University, Jan. 2022,
https://docs.google.com/document/d/e/2PACX-1vQr1_5Ums-TEmYtEsfE2Che7WDH
YhHQG9de33L0gSmAmbFrz3qruWEbAZlcBCEDAmjmCRK6njbntr7i/pub

[2] Porter, Jordan, Blender Simulation Code, Google Drive, Jan. 2022,
https://drive.google.com/file/d/1QQLtw3lfajnqOiVgTYPJgQNQ3oLCbo8I/view?usp=shari
ng

4.3.7 - Revision Table

3/3/2022 Jordan Porter: added block to project document

1/20/2022 Jordan Porter: Updated information with feedback and more specific details

1/7/2022 Jordan Porter: set up and filled out rough draft of interface validation

4.4 - Control System Loop Block Validation
Champion: Cale Hallamasek

4.4.1 - Description

When moving the arm, an accelerometer will be used to identify how the arm is actually moving
in physical space compared to the calculated movement instructions. If there is significant error
between where the arm is and where it should be, adjustments can be made using a feedback
loop to reposition the arm to a more accurate destination. This block represents that feedback
loop, and will also interface with the simulator and inverse kinematics system to generate
movement instructions. These will be sent to the microcontroller communication block, which will
later be polled for newer accelerometer data so that the loop can continue. When a certain
threshold or acceptable margin of error is reached, the loop will terminate until new input is
provided.

https://docs.google.com/document/d/e/2PACX-1vQr1_5Ums-TEmYtEsfE2Che7WDH%20YhHQG9de33L0gSmAmbFrz3qruWEbAZlcBCEDAmjmCRK6njbntr7i/pub
https://docs.google.com/document/d/e/2PACX-1vQr1_5Ums-TEmYtEsfE2Che7WDH%20YhHQG9de33L0gSmAmbFrz3qruWEbAZlcBCEDAmjmCRK6njbntr7i/pub
https://docs.google.com/document/d/e/2PACX-1vQr1_5Ums-TEmYtEsfE2Che7WDH%20YhHQG9de33L0gSmAmbFrz3qruWEbAZlcBCEDAmjmCRK6njbntr7i/pub
https://drive.google.com/file/d/1QQLtw3lfajnqOiVgTYPJgQNQ3oLCbo8I/view?usp=sharing
https://drive.google.com/file/d/1QQLtw3lfajnqOiVgTYPJgQNQ3oLCbo8I/view?usp=sharing
https://drive.google.com/file/d/1QQLtw3lfajnqOiVgTYPJgQNQ3oLCbo8I/view?usp=sharing


A software PID algorithm [1] will be implemented for the control loop. Tuning can be done during
testing, although a reasonable range of values can be defined beforehand.

4.4.2 - Design

Black Box Diagram

Figure 4.4.1: Block diagram

Pseudocode

// something will need to stop the arm if it doesn't reach its destination in time,

to prevent it from moving forever

TIMEOUT_MS = 5000

// when the arm reaches its target position within this threshold, it will cease

movement

GOAL_POSITION_THRESHOLD_MM = 6

CLEAR_LOOP = False

on_update_from_ui():

CLEAR_LOOP = True

set target_position from UI

control_loop():

if CLEAR_LOOP is True, reset values and return it to False

else:

current_position = read_encoders()

target_delta = compare(current_position, target_position)

if target_delta < GOAL_POSITION_THRESHOLD_MM:

https://spin.atomicobject.com/2016/06/28/intro-pid-control/


exit loop

movement_speed = get_speed_from_delta(target_delta)

adjust target_delta through software PID algorithm

movement_set = get_inverse_kinematics_set(target_delta, movement_speed)

send_movement_to_atmega(movement_set)

4.4.3 - General Validation

This block’s design allows it to have one main function (generating a target position to be
communicated to the microcontroller) that is not overly complex. Instead of computing the
inverse kinematics for each motor and handling the microcontroller communication directly, it
can act as a simple feedback loop that obtains data and suggests corrections. This makes the
block much easier to test, which is very important for control loops, which can be approached
and tuned in many different ways.

A big part of this block’s design is interfacing with various other blocks in order to compute all of
the movement information. This block can be easily integrated with the UI, as both the
coordinate input and calculations can run in their own threads in the same program. The block
will also request calculations from the inverse kinematics and visualization, and process them
accordingly. Handling microcontroller communication is the primary output of this block because
it delivers the necessary control information to another part of the device.

4.4.4 - Interface Validation

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

crdnt_npt_cntrl_systm_lp_data : Input

Desired coordinates: three
floating-point values (in any
of three coordinate systems:
spherical, cartesian,
cylindrical)

The user will enter their
desired arm position as
coordinates in the UI, as well
as their desired coordinate
system. The coordinates
then will be translated to the
project’s standard coordinate
system, and sent to this
block.

Having a standardized
coordinate system will make
calculations easier. The user
input will be used as a
starting point to trigger the
loop, or restart it if the arm is
already trying to reposition
itself to somewhere specified
earlier.

cntrl_systm_lp_smltr_vslztn__data : Output

Desired coordinates: three
floating-point values (in

The simulator block, which is
also responsible for

Updating the simulator
visualization in a loop allows



simulator’s coordinate
system)

calculating inverse
kinematics, will receive the
control system’s target
position and update
accordingly.

the user to identify where the
arm is intending to move,
and also allows it to
calculate inverse kinematic
instructions for these values
that will be requested later.

Movement speed: floating
point value between 0 and 1

Depending on how far the
target position is from the
current position, a speed
value can be calculated for
the arm’s movement.

Getting a value that is lower
when the arm is closer to the
target is relatively
straightforward, although it
will require some fine tuning
and testing.

cntrl_systm_lp_mcrcntrllr_cmmnctn_data : Output

Set of inverse kinematic
instructions: list of
three-value pairs:

- motor ID
- motor speed
- motor time

These values will need to be
given constraints according
to the motor’s specifications,
but they represent the output
obtained from the inverse
kinematic calculations
requested by this block. This
output will be sent to the
microcontroller, as can be
seen in the following
interface.

This allows the block to
request inverse kinematics
calculations based on the
arm’s current positional
accuracy, and then deliver
them to the microcontroller.

invrs_knmtc_cntrl_systm_cntrl_systm_lp_data : Input

Set of inverse kinematic
instructions: list of
three-value pairs:

- motor ID
- motor speed
- motor time

The same values as in the
previous interface, although
they will first need to be
used as input before they
can be sent to the
microcontroller.

This fulfills one of the block’s
purposes, which is being an
intermediary between the
inverse kinematics and the
microcontroller.

mcrcntrllr_cmmnctn_cntrl_systm_lp_data : Input

Motor encoder data: format
currently unknown

Data obtained from the
motor encoders will be used
for measuring the arm’s

The block’s ability to correct
for error requires some type
of input that tells it about the



position, and making minor
adjustments if the position is
outside of the threshold.

state of the arm’s position,
which in this case is
obtained through the
encoders.

4.4.5 - Verification Plan

1.) Test the interface between this block and the simulator visualization by passing in
coordinates, and retrieving inverse kinematics instructions

2.) Test the interface between the UI and this block by passing UI values to the control loop
3.) Create and test a PID algorithm using randomized values for “offsets”
4.) Add and test variables to the PID algorithm that are modular, so that fine tuning later is

easier
5.) Determine motor movement speed, and create an equation for obtaining speed based

on how far the motor is from its target
6.) Re-evaluate a threshold for arm accuracy based on past requirements, and implement it

in the code

4.4.6. References and File Links

[1] J. Schaenzle, “Introduction to the PID control algorithm,” Atomic Spin, 30-Dec-2017.
[Online]. Available: https://spin.atomicobject.com/2016/06/28/intro-pid-control/.
[Accessed: 05-Feb-2022].

4.4.7 - Revision Table

2/18/2022 Cale: Finalized document for submission.

2/13/2022 Cale: Added to general validation.

2/4/2022 Cale: Created document from template.

4.5 - Coordinate Input Block Validation
Champion: Cale Hallamasek

4.5.1 - Description

This block represents a graphical user interface (GUI) which will allow the user to input
coordinates for the tentacle arm to move to in one of three formats (spherical, cylindrical, and
cartesian). This program will attempt to connect to the arm, and provide status messages about
the arm’s state, which will be used for debugging and troubleshooting. If the user enters invalid
values, the program will give appropriate feedback. Automatic coordinate conversion between



the three options will be performed (if possible). A scrolling text log at the bottom of the interface
will provide feedback about previous commands.

For this block’s implementation, a prototype is being written in Python, with the Tkinter library
being used for creating the window and adding elements to the interface. Python allows for
quick prototyping due to its interpreted and flexible nature. In the future, this program can be
rewritten in C++ with the Qt library for a more portable, smaller application.

4.5.2 - Design

Black-box Diagram:

Figure 4.5.1: Black box diagram



Interface:

Figure 4.5.2: Screenshot of coordinate input user interface

The interface is designed to be relatively straightforward. The parts that can be interacted with
are in the upper portion of the interface. The message box in the bottom section will provide
feedback to the user, such as if the arm is connected or disconnected, and if instructions have
been properly sent.

Pseudocode / Application state:

// Constants/values (at the beginning of the program):

const enum coord_input_type = {

SPHERICAL, CARTESIAN, CYLINDRICAL

};

// Entry point/initialization (in __main__ for Python):

create_window()

load_ui();

poll_for_input();

exit();

// Translating coordinates

x, y, z = get_coord(0), get_coord(1), get_coord(2)



check system type, then:

call corresponding library function to convert units

return (x, y, z)

// Upon receiving user input (in poll_for_input or similar method):

coord_input_type system = get_type_from_ui();

coords = get_and_translate_coords_to(system);

if (not !valid_coords(coords, system))

error_log("Please enter values within the range [ 5, -5]");

else

send_coords_to_inverse_kinematics();

4.5.3 - General Validation

This design fits the system because the arm needs some way to be controlled from the user’s
computer. One way that this could be done is through a command-line interface, but this is not
the most user-friendly option. A cross-platform graphical interface allows the user to easily
understand what data they should enter to control the arm (provided that the interface is
well-labeled). The purpose of the feedback messages is to inform the user of the arm’s current
state, and to assist in troubleshooting, if necessary.

To improve the arm’s versatility from a software standpoint, three types of coordinate systems
are supported. While only one coordinate system is necessary to move the arm, multiple options
allow for users familiar with other systems to operate the arm with ease. Certain applications
may also be better suited to one coordinate system than the others. It is also a relatively
straightforward feature, so it will not cost excess development time or resources.

This block will be relatively easy to implement because of the chosen programming language
and libraries (Python and Tkinter). Because this is just a single interface and not a
high-performance application (such as the simulator), Python allows the developer to create a
fully-functional interface very quickly. A rewrite in C++ later would not impact functionality or be
needed to progress, but would make the application smaller and more efficient with a bit of extra
effort.

4.5.4 - Interface Validation

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

otds_crdnt_npt_usrin: Input

Three coordinates -
array of three
numbers

There will be three fields where
x, y, and z (or other unit type)
values can be entered by the
user. These need to be stored as
numbers so that they can be

Keeping the input as a set of
numbers ensures that the correct
number of values is stored, and
that they will be able to be used
by the software later.



used mathematically.

Coordinate system -
enums for Cartesian,
Cylindrical, and
Spherical)

Enums are the best way to
represent a set of abstract states
or values in programming, so
having an enum to represent the
chosen coordinate system
makes the most sense.

Enums are supported in Python,
and using a modern IDE can
ensure that the coordinate
system’s value does not change
to something invalid.

Send input to arm
command - Button

This value is a button because it
gives the user a way to validate
and send their desired positional
values to the arm without
needing a programmatic
solution.

Buttons can be created easily in
Tkinter, the UI library, and are
easy to connect to the software’s
backend.

crdnt_npt_invrs_knmtc_cntrl_systm_data : Output

Coordinate values - set of
floating point numbers

This was chosen so that the
values could be sent directly
in a numeric format to the
microprocessor

Our block does not output
values in a way that is overly
complex (JSON or other
serialized format), or as a
string, which would require
extra computation for the
microprocessor

Status messages - strings
generated from
microprocessor’s status
codes

Displaying messages about
the arm’s current state
(calculating, moving,
disconnected, etc.) was
chosen in order to make
troubleshooting and
debugging easier

The ability to print out
feedback messages is
relatively straightforward, and
would likely be implemented
for internal purposes
anyways

Log file - text file generated
by program upon each run,
with a timestamped filename

The program should leave a
log so that troubleshooting
does not require the program
to remain on, and so error
messages are easier to share

Our block can easily
implement this by adding
something to our UI message
code that writes a line of text
to a continually-open file. The
file should be time stamped
so that it is not possible to
override an existing log.

4.5.5 - Verification Plan

To verify this block, the following steps should be taken:

1.) Install the latest Python interpreter



2.) In the folder with the Python script, run setup.bat (Windows) or setup.sh (macOS/Linux)
for first-time setup

a.) This will install the Tkinter UI library and create configuration files (if necessary)
3.) Execute the main file and test every UI component (buttons, text fields, dropdowns) to

ensure that the application is usable and that the UI library is compatible with the OS
4.) From otds_crdnt_npt_usrin, obtain numeric values from the application’s UI for the x, y,

and z coordinates. Additionally, obtain the selected coordinate system, and convert the
coordinates to the arm’s native choice.

5.) Send the coordinates to the arm, and communicate with the user through
crdnt_npt_invrs_knmtc_cntrl_systm_data, updating the status message log. Ensure that
the status updates are properly corresponding to the arm’s state.

6.) Close the application and ensure that everything shuts down correctly (no background
processes, leftover temporary files, open connections).

4.5.6 - References
[1] G. Strang, “12.7: Cylindrical and spherical coordinates,” Mathematics LibreTexts,

02-Jan-2021. [Online]. Available: https://math.libretexts.org/Bookshelves/Calculus/
Book%3A_Calculus_(OpenStax)/12%3A_Vectors_in_Space/12.7%3A_Cylindrical_and
_Spherical_Coordinates#:~:text=To%20convert%20a%20point%20from,and%20z%3D
%CF%81cos%CF%86. [Accessed: 03-Mar-2022].

[2] “Tkinter - Python interface to TCL/TK¶,” tkinter - Python interface to Tcl/Tk - Python
3.10.2 documentation. [Online]. Available: https://docs.python.org/3/library/tkinter.html.
[Accessed: 03-Mar-2022].

4.5.7 - Revision Table

1/21/2022 Cale: Included more content, implemented
Cale: feedback changes from peer review.

1/8/2022 Cale: Created document from template.

4.6 - Power Supply and Distribution Block Validation
Champion: Ben Chan

4.6.1 - Description
This block validation is for the power supply and power distribution in the tentacle robot system.
The tentacle system contains 9 sets of motors, motor drivers, and encoders. In addition, the
system will also make use of an ATMega128 microcontroller board and an FPGA. The power
block supplies a constant 5V voltage at low current to each of the 9 encoders. Additionally, the
power supply will filter the input 12V and supply the constant filtered 12V to the motor drivers.
The microcontroller will be powered separately via USB from the computer application, and
does not need to be considered in this block.

https://math.libretexts.org/Bookshelves/Calculus/Book
https://math.libretexts.org/Bookshelves/Calculus/Book


Figure 4.6.1: Mechanical systems, black box diagram.

4.6.2 - Design
This section will cover the design components of the power supply and distribution system. This
encompasses the expanded block diagram, design drafts, relevant datasheet information, circuit
schematics, and dimensions.

Figure 4.6.2: Power supply and distribution, expanded block diagram.

Figure 2.1 shows the expanded block diagram of the power supply system. The internal
functionality has been displayed.

The first function is the power distribution board. This board consists of a DC-DC 12V to 5V
buck converter, a low-pass filter, and an array of pin headers to organize and distribute the
required power to each of the components in the system. The example power converter circuit
included in the MC33063 datasheet is shown in figure 2.2 below.

Two  pins are used for the 12V input. 9 of the pin headers included on the board output a filtered
12V; this is used for motor drivers. 10 of the pin headers are used as the buck converter’s 5V
output; these are used to power the encoders in the tentacle arm system, as well as the FPGA.
The remaining. 19 pins serve as ground pins for each of the 5V and 12V outputs. In addition to
the pin headers, a barrel jack has been included as an alternate input terminal. The barrel jack



has been hooked up such that when a jack is inserted, it cuts off the two input voltage pins. This
allows the system to use alternate power sources such as batteries [1].

Figure 4.6.3: MC33063 Datasheet: power converter application.

The second function is the motor drivers. The 12V output of the board is used to power 9 motor drivers.
Each of the drivers takes a 0-5V logical input from the ATMega128, and outputs a 0-6V output at the
motors required current. The motor drivers are used since the ATMega128 has a maximum output
current of 40.0mA per pin [2], and thus cannot drive the high-torque motors (under load) used in the
system.

Figure 2.3 below is the schematic of the system. On the top of the figure is the buck-converter, and on
the bottom is the array of pin headers and the barrel jack input.



Figure 4.6.4: Autodesk Eagle schematic. 12-5 DC Buck converter and pin headers.

4.6.3 - General Validation

Component Selection
Component selection was based on the equations provided in the MC34063AP datasheet [3],
the desired input and output values, and the provided buck-converter example schematic. The
datasheet equations used are contained in figure 3.1 below. The desired input voltage is 12V
DC, the output voltage is 5V DC with 5% voltage ripple, and the output current is 1.0A with 20%
maximum current ripple.

The first component selection to be made was the diode. The 1N5819 diode was selected due
to its availability and low cost. Examining the datasheet for the 1N5819 diode [4], it can be
determined that at 1A instantaneous forward current, it draws a forward voltage of 0.60V.



Figure 4.6.5: Equation table for the MC34063AP, taken from component datasheet.

Since the inductor is in series with the output, the peak inductor current is equal to the output
current. IL,AVG 1.0A.  The ripple current, the frequency, and the duty cycle are determined using
the desired values for ripple and voltage.

𝐼
𝑝𝑒𝑎𝑘

= 𝐼
𝐿,𝑎𝑣𝑔

+ 𝐼
𝑟𝑖𝑝𝑝𝑙𝑒

/2 =  1. 0 +  (1. 0 × 20%)/2 =  1. 1𝐴
𝑓 =  50𝑘𝐻𝑧,  𝑇 =  1/𝑓 =  20𝜇𝑆

𝐷 =  𝑡
𝑜𝑛

/𝑡
𝑜𝑓𝑓

= (𝑉
𝑜𝑢𝑡

+ 𝑉
𝑓,𝑑𝑖𝑜𝑑𝑒

)/(𝑉
𝑖𝑛

− 𝑉
𝑠𝑎𝑡

− 𝑉
𝑜𝑢𝑡

)
𝐷 = (5𝑉 + 0. 6𝑉)/(12𝑉 − 1. 0𝑉 − 5. 0𝑉) = 0. 93

𝑡
𝑜𝑓𝑓 

=  𝑇 / (1 + 𝐷) =  20𝜇𝑆 / (1 +  0. 93) =  10. 36𝜇𝑆
𝑡

𝑜𝑛
 =  𝑇 − 𝑡

𝑜𝑓𝑓
 = 20𝜇𝑆 −  10. 36𝜇𝑆 =  9. 64𝜇𝑆

Next, the short circuit resistor’s value was calculated.
𝑅

𝑠𝑐
=  0. 3/𝐼

𝑝𝑒𝑎𝑘
 =  0. 3/1. 1𝐴 =  0. 273Ω



Once the duty and ripple values are determined, the values for the timing capacitor, output filter
capacitor, and the buck converter inductor can be decided. Note that the equations used
determine the minimum capacitor and inductor values. A higher capacitance or inductance can
be used to further reduce the ripple and provide a safety factor.

𝐶
𝑡

= 4 × 10−5× 𝑡
𝑜𝑓𝑓

 =  4 × 10−5× 10. 36𝜇𝑆 = 385. 4𝑝𝐹
𝐶

𝑜𝑢𝑡
= (𝐼

𝑝𝑒𝑎𝑘 
× 𝑇)/(8  × 𝑉

𝑟𝑖𝑝𝑝𝑙𝑒
) =  (1. 1𝐴 × 20 385𝜇𝑆)/(8 × 0. 25𝑉) = 11𝜇𝐹

𝐿
𝑚𝑖𝑛

=  𝑡
𝑜𝑛

× (𝑉
𝑚𝑖𝑛

− 𝑉
𝑠𝑎𝑡

− 𝑉
𝑜𝑢𝑡

)/𝐼
𝑝𝑒𝑎𝑘

𝐿
𝑚𝑖𝑛

= 9. 64𝜇𝑆 × (12𝑉 − 1. 0𝑉 − 5. 0𝑉)/1. 1𝐴 = 51. 1𝜇𝐻

Lastly, a voltage divider is used on the MC34063AP chip’s output to bring the voltage back up to
the desired 5V. The equation from the datasheet can be solved for the ratio . To determine𝑅

2
/𝑅

1
the value of , a resistance of 2kΩ is chosen for .𝑅

2
𝑅

1
𝑉

𝑜𝑢𝑡
= 1. 25(1 + 𝑅

2
/𝑅

1
) 

=𝑅
2
/𝑅

1
𝑉

𝑜𝑢𝑡
 /1. 25 − 1  =  3

𝑅
2

= 𝑅
1 

× 3 =  2𝑘Ω ×3 = 6𝑘Ω

A spreadsheet was used to determine the power dissipated by each of the selected
components. Using that value, the efficiency of the system can be determined by comparing the
power in and out of the system.

𝑃
𝑖𝑛

= 𝑃
𝑜𝑢𝑡

 +  𝑃
𝑙𝑜𝑠𝑠

= 5. 0𝑊 +  1. 29𝑊 =  6. 29𝑊
𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝑃

𝑜𝑢𝑡
/𝑃

𝑖𝑛
= 5. 0𝑊 / 6. 29𝑊 =  79. 5%

Input Interface Validation
Inputs to the system are the 12_pwr interface, and the motor_sig[1..9] interface.

12v_pwr is a 12V input from an external power supply. The chip used in the buck converter can
handle a range of 3.0V to 40V before failure. Given the determined input power of 6.29W above,
the input current of the converter buck converter should draw no more than 0.53A (6.29W /
12V). The motor drivers used each have a maximum current draw of 3.0A, and a rated draw of
2.0A [5]. Since each motor driver can control two motors, a total of 5 drivers are needed, with a
maximum instantaneous current draw of 15.0A, and an estimated nominal of 3.0A (Assuming no
more than three motors experience max torque load at a single moment).

motor_sig[1..9] is the logical signal received from the microcontroller. The motor_sig bus
contains 9 signals, each of which will connect to a separate motor driver. The rated logical
voltage of each driver is 5.0V, and the logical current is 0.36A [5]. The ATMega128 board is able
to output a 0-0.4A current and 0-5.0V voltage per output pin, which satisfies both of the
requirements for this interface.



4.6.4 - Interface Validation

Interface Property Why does this interface
have this value?

Why do you know that the
design details for this block

meet or exceed each property?

12v_pwr

V_max = 13.5V This is the peak expected
voltage variation of 15%

This is the input power source to the buck
converter and motor drivers. The buck
converter chip is the MC34063AP, which
accepts a range of 3.0 to 40.0V. The motor
drivers accept a drive voltage range of 5.0
to 35.0V.

V_min = 10.5V This is the peak expected
voltage variation of -15%.

V_nominal =
12.0V

This is the expected 12.0V
input to the 12V-5V buck
converter. The buck
converter was designed
with this value in mind.

motor_sig [1..9]

I_peak = 0.4A This is the logical current
maximum for the motor
drivers.

The ATMega128 board is able to output a
0-0.4A current along any of its output pins.

V_max = 5.0V This is the logical voltage
maximum for the motor
drivers.

The ATMega128 board is able to output 0
to 5.0V per output pin.

sensor_pwr [1..9]

I_peak = 1.0A The encoders have a
current draw of 10mA per
encoder. With 9 encoders,
the power supply must be
able to supply at least
0.1A.

The buck converter was designed with a
1.0A current draw in mind. The converter
was also designed with a ripple of 20%
(0.9A to 1.1A). In the worst case scenario
of all 9 encoders drawing 10mA, the
system should still have enough current.

V_max = 5.5V The encoders are able to
run on any voltage with a
value of 3.5 to 20.0V. 5.0V
was a relatively low power
consumption value that
was compatible with other
voltage in the system.

The buck converter outputs 5.0V with a
ripple of 5%. 4.5V and 5.5V are outside of
the expected ripple range.V_min = 4.5V



motor_pwr [1..9]

V_min = -6.0V This is the output signal to
the motors. A DC voltage
value between -6.0 and 6.0
volts is determined in the
motor driver and sent to
the motors.

The motors are rated for continuous
operation at up to 6V DC. The rated current
of the motors is 0.6A, and it’s stall current
is 3.3A. Continuous operation at 0.5A is
within the rated limits, while short spikes of
2.0A will not trigger a ‘stall’ condition. The
motor drivers have a max continuous
current output of 2.0A, and are able to
output 5.0V to 35.0V as directed by the
logical current input.

V_max = 6.0V

I_nominal = 0.5A

I_peak = 2.0A

4.6.5 - Verification Plan

This section is the step-by-step verification process for the power distribution system.

1. Buck Converter Verification
a. Connect system input headers to a constant voltage power supply.
b. Connect an oscilloscope to output headers.
c. While measuring the output voltage and output current, vary the input voltage

between 10.5V and 13.5V
i. If the system’s output voltage drops below a value of 4.5V or exceeds a

value of 5.5V, it fails.
ii. If the power supply’s current draw exceeds a value of

2. Motor Driver Verification
a. Connect system input headers to a constant voltage power supply.
b. Connect an oscilloscope to the output headers of any single motor driver.
c. While measuring the output voltage of the motor driver on the oscilloscope, use

the 5V output of the buck converter and a potentiometer (voltage divider set-up)
to vary the voltage on the logical input of the motor driver.

i. The oscilloscope should display a change in the motor driver voltage.

d. Connect a single motor driver to a constant current power supply.
e. Connect an oscilloscope to the output headers of any single motor driver.
f. While measuring the output voltage of the motor driver on the oscilloscope, use

the constant current power supply to vary the logical input of the motor driver.
i. The oscilloscope should display a change in the motor driver voltage

proportional to the logical current.
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4.7 ATMega128 and Accelerometer Block Validation
Champion: Triet Nguyen

4.7.1 - Description
This block includes the schematic and code design for the ATMega128 microcontroller that is
capable of controlling the tentacle arm. The ATMega128 will be powered by a 3.3V USB
connection to a laptop. This microcontroller will communicate through I/O ports with nine DC
motors mounted on the tentacle arm to control its movement. The board will receive coordinate
inputs to move the motors to their required positions. In return, these motors will also send
signals back to the microcontroller through their built-in encoders, the microcontroller will
determine which motor to communicate with using its on-board SPI interrupts. The positions of
these motors will be constantly updated to a computer to verify the accuracy of the arm.

4.7.2 - Design

Figure 4.7.1: Black box design

https://ww1.microchip.com/downloads/en/DeviceDoc/doc2467.pdf
https://www.onsemi.com/pdf/datasheet/mc34063a-d.pdf
https://www.vishay.com/docs/88525/1n5817.pdf
https://www.amazon.com/Aideepen-Driver-H-Bridge-Replace-Stepper/dp/B07L892P54?th=1
https://www.amazon.com/Aideepen-Driver-H-Bridge-Replace-Stepper/dp/B07L892P54?th=1


Figure 4.7.2: AVR board schematic

Figure 4.7.3: Encoders



Pseudocode:
// Tentacle Arm

#define DP    0b01111111    // PM

#define SNOOZE_TIME 10

#include <avr/io.h>

#include <util/delay.h>

#include <avr/interrupt.h>

#include <string.h>

#include <stdlib.h>

#include "uart_functions.h"

uint8_t  count  = 0x00;

uint16_t sum    = 0x0000;

//holds data to be sent to the segments. logic zero turns segment on

uint8_t segment_data[5];

// Encoder status

uint8_t old_A[2];

uint8_t old_B[2];

// Display

uint8_t minutes = 0; // Clock minutes

uint8_t hours   = 0; // Clock hours

//decimal to 7-segment LED display encodings, logic "0" turns on segment

uint8_t dec_to_7seg[12] = {

ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, COLON, DP

};

/***********************************************************************/

//                            spi_init

//Initializes the SPI port on the mega128. Does not do any further

//external device specific initializations.  Sets up SPI to be:

//master mode, clock=clk/2, cycle half phase, low polarity, MSB first

//interrupts disabled, poll SPIF bit in SPSR to check xmit completion

/***********************************************************************/

void spi_init(void){//MOSI

DDRB |=    (1<<PB0)  | (1<<PB2) | (1<<PB1); //Turn on SS, MOSI, SCLK (SRCLK)

SPCR |=    (1<<MSTR) | (1<<SPE);            //enable SPI, master mode

//SPSR |=    (1<<SPI2X);                      // double speed operation

}//spi_init (Bar Graph)

//******************************************************************************

//                            spi_read

//  Reads the SPI port.

//******************************************************************************

uint8_t spi_read(void){

SPDR = 0x00;                      //"dummy" write

while(bit_is_clear(SPSR,SPIF)){}  //wait till 8 clock cycles are done



return (SPDR);                    //return incoming data from SPDR

}

/***********************************************************************/

//                              tcnt0_init

//Initialize timer/counter0 (TCNT0). TCNT0 is running in async mode

//with external 32khz crystal.  Runs in normal mode with no prescaling.

//Interrupt occurs at overflow 0xFF.

//

void tcnt0_init(void){

//timer counter 0 setup, running off i/o clock

TIMSK |= (1<<TOIE0);                        //enable interrupts

ASSR |= (1<<AS0);                          //use external oscillator

TCCR0 |= (0<<CS02) | ((0<<CS01) |1<<CS00);  //normal mode, no prescaler

}//tcnt0_init

//***********************************************************************************

//                                   segment_sum

//takes a 16-bit binary input value and places the appropriate equivalent 4 digit

//BCD segment code in the array segment_data for display.

//array is loaded at exit as:  |digit3|digit2|colon|digit1|digit0|

void segsum(uint16_t hours, uint16_t minutes) {

//determine how many digits there are

//break up decimal sum into 4 digit-segments

for(int i = 0; i < sizeof(segment_data); i++){

if(i < 2){

segment_data[i] = dec_to_7seg[minutes % 10];

minutes /= 10;

}

else{

segment_data[i] = dec_to_7seg[hours % 10];

hours /= 10;

}

}

}//segment_sum

//*************************************************************************

//                        Read encoder

//*************************************************************************/

void encoder_chk(uint8_t h, uint8_t m){

uint8_t new_A[2], new_B[2];

PORTE |= 0x80;                    // SH/LD low (bit 6)

PORTE &= ~(0x40);                 // CLK_INH high (bit 7)

_delay_ms(1);

PORTE |= 0x40;                    // CLK_INH low

PORTE &= ~(0x80);                 // SH/LD high

uint8_t data = spi_read();        // Read current encoder state



//Read new state of encoders (See which one is spinning)

new_B[0] = ((data & 0x01) == 0) ? 0 : 1;

new_A[0] = ((data & 0x02) == 0) ? 0 : 1;

new_B[1] = ((data & 0x04) == 0) ? 0 : 1;

new_A[1] = ((data & 0x08) == 0) ? 0 : 1;

//sum = new_A[0];

int counter = 0;

// int return_val = -1; // default return value , no change

for(int i = 0; i < 2; i++){

if ((new_A[i] != old_A[i]) || (new_B[i] != old_B[i])){ //if change occurred

if ((new_A[i] == 0) && (new_B[i] == 0)) {

if (old_A[i] == 1){

if(i == 1){h++;}

else      {m++;} // sum += count;

}

else {

if(i == 1){h--;}

else      {m--;} // sum -= count;

}

}

else if ((new_A[i] == 0) && (new_B[i] == 1)) {

if (old_A[i] == 0){

if(i == 1){h++;}

else      {m++;}// sum+=count;

}

else {

if(i == 1){h--;}

else      {m--;}// sum-=count;

}

}

else if ((new_A[i] == 1) && (new_B[i] == 1)) {//detent position

if (old_A[i] == 0){ if(counter == 3){sum += count;}} //one direction

else              { if(counter == -3){sum -= count;}} //or the other

counter = 0; //count is always reset in detent position

}

else if ((new_A[i] == 1) && (new_B[i] == 0)) {

if (old_A[i] == 1) {

if(i == 1){h++;}

else      {m++;}// sum+=count;

}

else {

if(i == 1){h--;}

else      {m--;}// sum-=count;

}

}

} //if change occurred

old_A[i] = new_A[i]; //save what are now old values

old_B[i] = new_B[i];

}

hours = h;

minutes = m;// 1/32768         = 30.517578uS



}

/*************************************************************************/

//                           timer/counter0 ISR

//When the TCNT0 overflow interrupt occurs, the count_7ms variable is

//incremented. Every 7680 interrupts the minutes counter is incremented.

//TCNT0 interrupts come at 7.8125ms internals.

//(1/32768)*256 = 7.8125ms

//(1/32768)*256*64 = 500mS

/*************************************************************************/

ISR(TIMER0_OVF_vect){

uint8_t tempA = PORTA;

uint8_t tempB = PORTB;

uint8_t DDRA_temp = DDRA;

uint8_t DDRB_temp = DDRB;

encoder_chk(hours, minutes);

segsum(hours,minutes);

PORTA = tempA;

PORTB = tempB;

DDRA = DDRA_temp;

DDRB = DDRB_temp;

}

//********************************************************************************

//              MAIN

//********************************************************************************

int main()

{

tcnt0_init();

spi_init();

sei();

//set port bits 4-7 B as outputs

DDRB  |= 0xF0; //Set to all outputs, change back to 4-7

DDRE  |= 0xFF; //Set PORTE to output

PORTE |= 0x00; //COM_LVL On

PORTE |= 0x40; //SH/LD On

DDRC  |= 0xFF;

// DDRD  |= 0xFF; //Speaker on

// DDRD  &= ~(0x20);

while(1){

PORTB = 0x00;

/***********************************************

//               7 Seg Display Output



***********************************************/

DDRA = 0xFF;

4.7.3 - General Validation

For this block validation, I will test the input from the encoders and display the encoder data on
a pre-built LED display. The overall purpose of this block validation is to test for encoder input.
In the design of the system, we will be using motors to control the tentacle arm. These motors
have built-in encoders, which will function as sensors that will record the rotation status of the
motors. The ATmega128 board will receive these inputs to verify the accuracy of the motors’
positions. There are many reasons why this method of validation will be beneficial for the
system as a whole. The first reason why I volunteered to be responsible for this block is
because of prior engineering knowledge from working with the ATmega128 microcontroller and
encoders in past projects. Since this project uses a microcontroller as a driver to receive inputs
from the motors’ encoders, past experience will come in handy.

When it comes down to efficiency, we want to prioritize and use what is already available to us
to save money as well as time. For this reason, I am reusing my ATmega128 microcontroller
and encoders to verify my design. In the design impact assessment we did from fall term, I
mentioned how chip manufacturers are producing their products ethically inappropriate, along
with that there are also many impacts of how manufacturing and delivering our electronic parts
can potentially affect the environment. By using existing parts, I believe we will reduce our
environmental footprint. When looking at the code, all I/O ports are initialized.

The encoder function is the most important function of this code. It will use the SPI interrupt to
read the current encoder state, and output the changes being made. Timer/counter 0 (TCNT0)
runs in normal mode to detect encoder input as well as outputting the changes to the LED
display. The validation method of using the 7-segment LED display is efficient because it shows
the recognition of the encoders while our motors are still being delivered. Since each motor will
have its own binary input and will also take 5V of power similar to each segment on the LED
display, we can use the LED display segments to verify that the right voltage and input to be
supplied once the motors are connected.

4.7.4 - Interface Validation

Interface
Property

Why is this interface
of this value?

Why do you know that your design details for
this block

above meet or exceed each property?

atmega128_spi_input: Input

spi_register: ATmega128 SPI
interrupt

I expect the SPI interrupt to be able to register
data from the encoders. The AVR board will be
powered by a computer to turn on those
interrupts. SPI interrupts will verify the direction
that the encoders turn (left/right).



enc_new_data: Encoder data will be
transmitted into the SPI
interrupt port of the AVR
board

I expect the encoders to be connected by two
connections, gnd and power; their signals will be
connected to the AVR board to read their inputs.
The newly recorded data will be recorded and
displayed on an LED display.

enc_data: Output

enc_new_data Encoder data will be
displayed on an LED
display.

This process will allow the user to verify which
direction the encoder is turning (left/right).

LED_display V_max: 5V The LED display is used to verify that the correct
voltage is sent out to the motors which are also
powered by a 5V power supply.

4.7.5 - Verification Plan

1. Plug AVR board into a computer
2. Follow encoder connections in code file
3. Verify LED segments turn on
4. Turn encoders left/right
5. Verify encoder’s right turn is valid if number increases
6. Verify encoder’s left turn is valid if number decreases

4.7.6 - References
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4.8 - Encoder Sensors Block Validation
Champion: Triet Nguyen

4.8.1 - Description
This block involves the encoder sensors that come with the motors that we use to power our
tentacle arm. The general idea of why we decide to use motors with encoder sensors is to keep
track of the rotation of the motors. The coordinate data will be computed on a software on the



computer to find how many rotations each motor needs to spin, this number will be sent to the
microcontroller and in return, the built-in encoder sensors will update the number of rotations it
they have rotated back to the microcontroller, once the required rotation is accomplished, the
microcontroller will verify with the computer and the new rotation instruction will be sent. This
microcontroller will use its interrupts and ports to communicate the information with the
encoders. Since the sensors are built into the motors, they are expected to share the power with
the motors. This power supply will come from my partner’s power supply block. This power is
expected to be around 5V.

4.8.2 - Design

Figure 4.8.1: Black box diagram

Figure 4.8.2: Motor schematic



Figure 4.8.3: System Design

4.8.3 - General Validation
For this block validation, I will test the encoder data and verify that the encoders spin up to the
required revolution. The overall purpose of this block validation is to test how the motors’
encoders and the ATMega128 interact with each other to control the tentacle arm. The
ATMega128 board will receive the encoder sensors’ data input from a main computer through its
USART. The data will contain instructions to either spin the motors left or right, and which motor
the instructions will be directed to. Since the encoders are built into the motors, it will share the
power supply input with the motors. The appropriate values are listed in the Interface Validation
section. This design will ensure the motors move to their required positions. The encoder
sensors will be giving feedback data to the microcontroller to verify the required amount of
rotations is met. This data will verify that the system is working correctly. The ATMega128 will be
designed to record a revolution at every 16 single edge counts done by the encoders.

4.8.4 - Interface Validation

Interface
Property

Why is this interface
of this value?

Why do you know that your design details for
this block

above meet or exceed each property?

pwr_spply_encdr_snsrs_dcpwr: Input

● Ipeak: 1A Maximum current going
to motors

This current is the maximum current that can be
drawn by the Hall sensor.



● Vmax: 5.5V Maximum voltage to
power motors

Motors will need this maximum voltage in order
to rotate to its full torque capacity

● Vmin: 4.5V Minimum voltage to
power motors

Motors will need this minimum voltage in order to
rotate to its minimum torque capacity.

atmg128_mcrcntrllr_encdrs_snsrs_data: Output

● Messages:
Left
Rotation

Instruction for encoders
to spin left

This instruction comes from the software block
that instructs the encoders to spin left.

● Messages:
Right
Rotation

Instruction for encoders
to spin right

This instruction comes from the software block
that instructs the encoders to spin right.

● Messages:
Motor

Instruction for motors This instruction instructs which motor to spin

encdr_snsrs_atmg128_mcrcntrllr_asig: Input

● Vmax: 5V Maximum voltage
output of Hall sensor

The Hall sensor requires input voltage, this
voltage matches VCC

● Vmin: 3.3V Minimum voltage output
of Hall sensor

The Hall sensor requires input voltage, this
voltage matches VCC

● Left
Rotation:
16 counts

Controlling encoder to
spin left

Using just a single edge of one channel results
in 16 counts per revolution of the motor shaft, so
the frequency of the A output in the above
oscilloscope capture is 16 times the motor
rotation frequency.

● Right
Rotation:
16 counts

Controlling encoder to
spin right

Using just a single edge of one channel results
in 16 counts per revolution of the motor shaft, so
the frequency of the A output in the above
oscilloscope capture is 16 times the motor
rotation frequency.

4.8.5 - Verification Plan

1. Connect motors to ATMega128 board
2. Connect encoder sensors to ATMega128 board
3. Power up ATMega128 board
4. Send revolution data to motors



5. Verify motors’ rotation

4.8.6 - References
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4.8.7 - Revision Table
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02/03/2022 Triet Nguyen: Update design, interface validation, and verification plan

02/02/2022 Triet Nguyen: Document Created

V. System Verification Evidence
This section will go over the system verification information and evidence. The first part of this
section (5.1) will be about the universal constraints - rules by which all OSU 2022 Capstone
projects had to abide by. The second part of this section (5.2) will go over each of the individual
requirements that were set for the system.

5.1 - Universal Constraints

5.1.1 - System may not include a breadboard
To satisfy this constraint, a custom PCB was developed to serve as both a DC-DC buck

converter, and as a distribution board to supply power to each of the devices connected to the
tentacle. Breadboards and protoboards were used to test and design the power supply PCB, but
were not used in the final product.

5.1.2 - Must contain a student designed PCB, and a custom Android/PC/Cloud
application

The project contains a student-designed PCB that contains a DC-DC buck converter,
and a distribution board to supply power to each of the motor drivers and encoders connected to
the tentacle.

The application used to control the arm runs on any PC that can sufficiently run Blender
(works on Windows, macOS, and Linux). There is an interface written in Python used to enter
coordinates, which interfaces with a Blender plugin that is also written in Python that updates
the arm in the simulation.

https://cdn.robotshop.com/rbm/a00a7635-653b-4220-aac9-b0c23c5c5e2c/8/8bb18634


5.1.3 - If an enclosure is present, the contents must be ruggedly
enclosed/mounted as evaluated by the course instructor

No enclosure was required for this system, however; all electrical components (inclusive
of motors, sensors, and motor drivers) have been securely mounted to the polycarbonate base
plate attached to the base of the tentacle.

5.1.4 - If present, all wire connections to PCBs and going through an enclosure
(entering or leaving) must use connectors

Wire connections to the PCB have been designed to attach via pin headers. In addition,
the proprietary cables that are used to connect the encoders and DC motors have been spliced
with pin header compatible cables. All wires in the system can be removed.

5.1.5 - All power supplies in the system must be at least 65% efficient
As discussed in section 4.6, the power supply was designed with a predicted power

efficiency of 79.5%. Using a spreadsheet from Texas Instruments,estimated power dissipated in
each of the selected components was determined, and used to calculate this power efficiency
value.

5.1.6 - The system may be no more than 50% built from purchased ‘modules’
In terms of software, no paid programs or code was used. Everything used in the

tentacle system was either free and open source, or self-developed.
In terms of purchased electronic modules, a total of 9 motors with encoders, and 5 motor

drivers were purchased. An ATMega128 development board was also used. The power supply
PCB and the tentacle arm were self designed and manufactured.

5.2 - The system will extend 1.0 meters in any direction

5.2.1 - Requirement
At full extension, the system will have a minimum reach of 1.0 meters. The system will
be able to extend in any direction originating from its base.

5.2.2 - Testing Processes
The system passes if when the tentacle arm system is fully extended in any direction
parallel to the ground, the center of the base of the arm is a minimum of 1.0 meters away
from the end of the tip of the tentacle.

5.2.3 - Testing Evidence
Following the verification procedure outlined in section 4.1.5 for determining the
maximum reach of the tentacle, the mechanical tentacle system was set in the vertical
and horizontal positions by tensioning the control cables. The following figures show the
measured radial lengths of the tentacle in these two positions. Note that the red-markers
on the tape-measure each indicate a distance of 12.0”.



Figure 5.2.1: Vertical reach, full length photo.

Figure 5.2.2: Vertical reach, close-up photo.

Figure 5.2.3: Horizontal reach, full-length photo.



Figure 5.2.4: Horizontal reach, close-up photo.

5.3 - The system will support a mass of 0.5 kilograms

5.3.1 - Requirement
At full extension, the system will support a mass of 0.5kg placed at the tip of the tentacle.
The system must be stable and be able to move while the system is supporting the
mass. The mass can take the form of an attachable manipulator (grabbing device) or a
non-functional weight with a measured mass of 0.5kg.

5.3.2 - Testing Processes
The system passes if it moves at full extension while supporting a load with a mass of at
least 0.5kg.

5.3.3 - Testing Evidence

5.4 - The system will be accurate

5.4.1 - Requirement
The system will be able to move to the user-specified location with an accuracy of
±2.0cm.



5.4.2 - Testing Processes
The system passes if it is able to move to a location within 2.0cm of the user-specified
coordinates.

5.4.3 - Testing Evidence

5.5 - The system will be reliable

5.5.1 - Requirement
The system will move to the user-specified location with a success rate of 90%.

5.5.2 - Testing Processes
The system passes if it is able to move to the user-specified location 9/10 times.

5.5.3 - Testing Evidence

5.6 - The system will be self-powered

5.6.1 - Requirement
The system will operate continuously for a minimum of 2 hours on a fully-charged
battery. Batteries will be rechargeable.

5.6.2 - Testing Processes
The system passes if it is able to operate continuously without recharging for 2 hours.

5.6.3 - Testing Evidence

5.7 - The system will be portable and easy to use

5.7.1 - Requirement
The system will be portable and user friendly. 9/10 users will agree that the user
interface and system are portable and easy to use.

5.7.2 - Testing Processes
The system passes if 9/10 users agree that the interface and system are easy to use.



5.7.3 - Testing Evidence

5.8 - The system will output a user-friendly 3D visual.

5.8.1 - Requirement
The system will output a 3D simulation of the arm for motion control and user reference.
Users should be able to move the real arm to a target location using only the 3D model
in the simulation.

5.8.2 - Testing Processes
The system passes if 9/10 users are able to move the arm to a location within 2.0cm of a
target location using the 3D simulation.

5.8.3 - Testing Evidence
The following is a screenshot of the Blender simulation visual output. In the Blender
environment, control explanations have been included on how to control the tentacle
arm.



Figure 5.8.1: Screenshot of Blender simulation.

5.9 - The system will support input in spherical, cylindrical, and cartesian
format

5.9.1 - Requirement
The system will accept input coordinates in spherical, cylindrical, or cartesian (XYZ)
formats. If the coordinates are not within the range of the arms motion, then the system
will warn the user.

5.9.2 - Testing Processes
The system passes if it is able to parse the three formats of input coordinates correctly,
and indicate to the user if those coordinates are within the bounds of the arms motion.
Values to be tested:

x y z Expected result

1 2 Invalid (z is empty)

2 4 -5 Invalid (z is negative)

38 0 4 Invalid (x > 36”)



r ϴ z Expected result

-8 1 2 Invalid (r < 0)

2 7 23 Invalid (theta must be
between 0 and 2 pi)

1 0 1 Valid

⍴ ϴ φ Expected result

3 3.3 2 Invalid (theta must be
between 0 and pi)

1 2 3 Valid

5.9.3 - Testing Evidence
The user is presented with a window to input coordinates. Changing the coordinate

system dropdown will automatically convert the coordinates to the new coordinate system
(provided that they’ve been entered). If the coordinates are invalid, a message will be output in
the message log.

Figure 5.9.1: Coordinate entry window, with some cartesian coordinates entered



Figure 5.9.2: The same coordinates after switching to spherical

Figure 5.9.3: Errors printed in the log if the coordinate values are invalid

5.4 - References and File Links

5.5 - Revision Table

3/14/2022 Ben Chan, Cale Hallamasek: Testing evidence for R2, R9



3/3/2022 Ben Chan, Jordan Porter, Cale Hallamasek: Created initial section

VI. Project Closing

6.1 - Future Recommendations

6.1.1 - Technical recommendations
The system uses a USB-B to UART cable for the communication between the computer

and the ATMega128. The cable doesn’t have any labels on its wires; therefore, it posed a
problem for the team to figure out the functionality of each wire during the process of setting up
the communication line. Based on this problem, a recommendation for the future is to label the
wires to help accelerate the testing process.

Something that can help software troubleshooting in particular is taking note of what
electronic devices your group members have at their disposal. It can be good to have a
collection of different computers for software testing, preferably with different operating systems.
Documenting what versions of software your group is using (applications, libraries,
dependencies), and defining a consistent code style can make integrating software blocks a lot
easier.

The coordinate entry interface is written in Python, as the language allows for rapid
prototyping and runs on many different operating systems. If the user has Blender installed for
the arm visualization, Python is automatically bundled in the installation; however, if the user
does not have Blender, they might have to install Python manually. Installing Python just for the
coordinate entry interface takes up more space than necessary; it is likely to use over 100 MB.
The interface could be re-written in a compiled language, such as C++, in order to use less
space and system resources.

The 3D modeled and manufactured parts for the mechanical tentacle segments were
designed with modularity and printing convenience in mind. As a result, these parts could also
be easily manufactured on a CNC, as there is very little complexity that could not be machined
with a simple milling machine or 3-axis CNC. If future group’s plan to re-use the same 3D
models, then this gives them the freedom of manufacturing the parts in different materials
(wood, aluminum, etc.) or at a larger scale than could be achieved on a small consumer-grade
3D printer.

Additionally, due to cost restraints, materials that were sourced for the development of
the 3D mechanical system were not ideal for the given application. One issue that was
encountered had to do with the chosen springs, and how they interfaced with the 3D printed
tentacle segments. Solutions to the spring issues involved decreasing the space between
tentacle segments (and therefore the spring lengths), increasing the strength of the springs (the
spring constant, k), and increasing the radius of the springs.

6.1.2 - Global impact recommendations
The materials used to build our physical arm were mostly plastic since the joints of the

arm were 3D printed. The use of plastic has been the major cause of ocean pollution in recent



years. We decided to 3D print our physical system to save time and money on purchasing more
expensive materials. By doing this, we admit we are contributing a small part to the rising issue
of marine pollution and we hope future teams can do better. A recommendation we have for the
material used in a future system is either wood or aluminum since these materials are cheap,
light, easy to work with, and sturdy. Some issues that could arise with using these materials is
that wood or metal manufacturing processes are typically subtractive, and would thus generate
more waste.

Another impact to be aware of is that due to the cost and time restraints of this project,
many components were sourced from overseas companies, specifically in regard to electronic
components such as resistors/capacitors/inductors. Additionally, the PCB machining company
chosen for the power supply board is also a Chinese company. The specific issues with
sourcing from these overseas companies is more explicitly outlined in the Design Impact
Assessment in section 2.2.

6.1.3 - Teamwork recommendations
Teamwork plays a big role since this project includes working interchangeably between

different blocks. The team needed to meet many times to discuss and to work on the
communication between our devices. The communication between the main computer and the
microcontroller uses USART which isn’t as efficient in decoding information as was originally
expected, therefore it took the team a long time to figure out how information was being sent
and received. Looking back at the experience as a team, we recommend future groups to
collaborate more to develop better and more efficient communication protocols.

Specific advice for future groups to work more efficiently are to meet in-person as often
as possible, and to check in on team members progress to both A) ensure that your blocks
interface correctly, and B) help one another with the problem solving progress. While our group
made an effort to meet together in-person when possible, the consistency and frequency of
those meetings could’ve been greater. Unfortunately due to world events (specifically Covid-19
and as a result of that, online courses) in-person meetings were difficult to schedule.

6.2 - Project Artifact Summary with Links

Documentation:
ATMega128 User Manual:
https://ww1.microchip.com/downloads/en/DeviceDoc/doc2467.pdf

Tkinter (Python GUI library):
https://docs.python.org/3/library/tkinter.html

Software:
Python 3.10.4 Release:
https://www.python.org/downloads/release/python-3104/

Blender, installation:
https://www.blender.org/download/

https://ww1.microchip.com/downloads/en/DeviceDoc/doc2467.pdf
https://docs.python.org/3/library/tkinter.html
https://www.python.org/downloads/release/python-3104/
https://www.blender.org/download/


Blender, add-on documentation:
https://docs.blender.org/manual/en/latest/editors/preferences/addons.html

Project repository: https://github.com/mangosaver/OSUCapstoneArm

Hardware:
3D part model - Tentacle segment v2 STL:
https://drive.google.com/file/d/1GngXeKhra0QlLi_Q6oG50bkjbQzriB2w/view?usp=sharing

3D part schematic - Tentacle segment v1:
https://drive.google.com/file/d/1Ol0qvrTrmCEtNq8yoThIJrNkuyL3HSpe/view?usp=sharing

3D part schematic - Tentacle segment v2:
https://drive.google.com/file/d/1NCF5LiGbf1Z7Ftos2sPW5bNW1jnsgaQp/view?usp=sharing

Buck Converter PCB - Top layer:
https://drive.google.com/file/d/1znSDSESc2elGaJGDSapxr766CZgGNvyu/view?usp=sharing

Buck Converter PCB - Bottom layer:
https://drive.google.com/file/d/1S116rQdohbOpnVSQU2i5t9s1NQExNqk5/view?usp=sharing

Buck Converter PCB - No planes:
https://drive.google.com/file/d/1O9gxm4l-9XDsGr8nZZtYHYCEKOsF_QnI/view?usp=sharing

Buck Converter PCB - Schematic (Autodesk Eagle):
https://drive.google.com/file/d/1PbvEtNjrtqu0pOp3Ozhru-ZWeG1D_qlS/view?usp=sharing

6.3 - Presentation Materials

6.4 - Revision Table

5/6/2022 Ben Chan: Added hardware artifacts.

5/6/2022 Cale Hallamasek: Added content to recommendations sections
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