
Contactless Thermometer System Verification
Documentation

By: Tyrone Stagner, Jordan Hendricks, Jimmy Parra, and Caspian Hedlund

Date Submitted: May 29, 2021

Project Mentor: Karthik Gopalakrishnan

Contents

1 Block Diagram and Interface Definitions 2

2 Electrical Schematic and PCB Trace 5

3 Mechanical Drawings 7

4 Time Report 17

5 Bill of Materials 18

6 Python Code 19

1

1 Block Diagram and Interface Definitions

Figure 1: Black Box Diagram

2

Figure 2: Top Level Block Diagram and Block Authors

3

Table 1: Interface Definitions

4

2 Electrical Schematic and PCB Trace

Figure 3: Electrical Schematic

5

Figure 4: PCB trace

6

3 Mechanical Drawings

Figure 5: Rendered front view of the device

7

Figure 6: Rendered side view of the device

8

Figure 7: Rendered front perspective view of the device

9

Figure 8: Rendered rear perspective view of the device

10

Figure 9: Backboard mechanical drawing

11

Figure 10: Beam break sensor mount mechanical drawing

12

Figure 11: Temperature sensor mount base mechanical drawing

13

Figure 12: Temperature sensor mount end mechanical drawing

14

Figure 13: Speaker mount mechanical drawing

15

Figure 14: Speaker grill mechanical drawing

16

4 Time Report

Figure 15: Time report

17

5 Bill of Materials

Table 2: Bill of materials

18

6 Python Code

Figure 16: Main program code flow chart

1. MAIN1.py

The following people helped create the code below
Caspian Hedlund, Jimmy Parra, Jordan Hendricks, Tyrone Stagner
File modified on 5/27/2021

from gpiozero import LED, Button
from signal import pause
from mlxfirmware import MLXSERIES
import time
import os
import ThermometerFunctions
from DisplayFuncs import *
from UserLogging import *

userNum = 1
curTemp = 0
mainLooper = 1
ledg = ['time', 'user', 'temp']
rows = []

MLX_IR_ADD = 0x5a #define I2C register address

#Pass register address back into MLXSERIES class and store read value
therm_data = MLXSERIES(MLX_IR_ADD)

#Main Program
InitDisp() #Initialize the OLED display
while mainLooper == 1:

will set gpio alt pins for 13 to make

19

sure speaker will work every time.
os.system('gpio_alt -p 13 -f 0')

ReadyDisp() # Will disply when ready

#loop until input is detected
while ThermometerFunctions.checkForInput() == False:

pass #Do nothing until the user wakes the system up

clearDisp() #clears display
UserDisp(userNum) #Display current user number

will call omxplayer and play wav file
os.system('omxplayer /home/pi/Documents/Place.wav')

#Calls ThermometerFunctions and creates a beep
ThermometerFunctions.beep()

clearDisp() #Clear Display

curTemp = therm_data.get_TEMP() #Get temperature

TempDisp(curTemp) #Display temperature
time.sleep(4)
If power is lost it will restart the user
#number to 1, but displays time and date for each user.
you will be able to tell when power is lost
#by it reseting the user number to 1.

getInfo(rows, userNum, curTemp) #gets info
CreateCsv(ledg, rows) # Creates the Text dat for CSV file
userNum = userNum +1 # will increment the user by 1 each time

if float(curTemp) >= 100.4:
will set gpio alt pins for 13 to make sure speaker will work every time.
os.system('gpio_alt -p 13 -f 0')
os.system('omxplayer /home/pi/Documents/Fever.wav')

time.sleep(1) # will sleep for 4 seconds before clearing diplay
clearDisp() #Turn off display

2. ThermometerFunctions.py

The following people helped create the code below
Caspian Hedlund, Jimmy Parra, Jordan Hendricks, Tyrone Stagner
File modified on 5/27/2021

from gpiozero import LED, Button, TonalBuzzer
from gpiozero.tones import Tone
import time

#Functions

#Checks if the beam on the beam break sensor is broken
def checkForInput():

btn = Button(17)
btn.wait_for_press()
time.sleep(1)

20

return True

#Beep once
def beep():

speaker = TonalBuzzer(13) #Set up speaker GPIO pin
#Beep a 550 Hz tone

speaker.play(Tone(550))
time.sleep(0.25)
speaker.stop

3. UserLogging.py

The following people helped create the code below
Caspian Hedlund, Jimmy Parra, Jordan Hendricks, Tyrone Stagner
File modified on 5/27/2021
import csv
from datetime import datetime
import random

Store the given information into a dynamic array
def getInfo(rows, UserNum, Temp):

now = datetime.today()
a = [now.strftime("%m/%d/%Y %H:%M:%S"), "User Number: " + str(UserNum),
str(Temp)]
rows.append(a)

Creates the CSV file from the information from the array
def CreateCsv(Legend, rows):

with open('User_Data', 'a+') as f:

using csv.writer method from CSV package
write = csv.writer(f)

write.writerow(Legend)
write.writerows(rows)

4. DisplayFuncs.py

The following people helped create the code below
Caspian Hedlund, Jimmy Parra, Jordan Hendricks, Tyrone Stagner
File modified on 5/27/2021

import time
import subprocess

SPDX-FileCopyrightText: 2017 Tony DiCola for Adafruit Industries
SPDX-FileCopyrightText: 2017 James DeVito for Adafruit Industries
SPDX-License-Identifier: MIT
from board import SCL, SDA
import busio
from PIL import Image, ImageDraw, ImageFont
import adafruit_ssd1306

Create i2c interface
i2c = busio.I2C(SCL, SDA)

Create the SSD1306 OLED class.
The first two parameters are the pixel width and
pixel height. Change these
to the right size for your display!

21

disp = adafruit_ssd1306.SSD1306_I2C(128, 32, i2c)

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp.width
height = disp.height
image = Image.new("1", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)
font = ImageFont.truetype("DejaVuSans.ttf", 12)

Initilize the display
def InitDisp():

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

Draw some shapes.
First define some constants to
allow easy resizing of shapes.
padding = -2
top = padding
bottom = height - padding

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Clear the display
def clearDisp():

disp.fill(0)
disp.show()
draw.rectangle((0, 0, width, height), outline=0, fill=0)

Display the current temperature and if a fever was detected
def TempDisp(curTemp):

draw.text((0, 0), " Temperature: \n" + str(curTemp),
font=font, fill=255, align = "center")
disp.image(image)
disp.show()
time.sleep(3)
clearDisp()
if curTemp >= 100.4:

draw.text((0, 20), "You have a fever!! \n",
font=font, fill=255, align = "center")

disp.image(image)
disp.show()

Display the current user number
def UserDisp(UserNum):

draw.text((0, 0), " User Number: \n " + str(UserNum),
font=font, fill=255, align = "center")
disp.image(image)
disp.show()

Display when ready to take temp
def ReadyDisp():

draw.text((0, 0), " Ready \n " +"to take temp " ,
font=font, fill=255, align = "center")
disp.image(image)

22

disp.show()

5. mlxfirmware.py

"""
The following people helped create the code below
Caspian Hedlund, Jimmy Parra, Jordan Hendricks, Tyrone Stagner
File modified on 5/27/2021

Reading the data sheet and looking at some code from adafruit
that is programmed in C for an arduino and looking at the
code from a user on github I was able to get this to work
finally. The git hub web page is
"https://github.com/CRImier/python-MLX90614/blob/master/mlx90614.py"

The data sheet says we are able to acces diffrent registers
by diffrent hex values to get the data from the MLX 60914.
We are only going to need to use the hex values 0x07 which
points to the correct address for getting the tempature.
We are also able to use the Hex value 0x06 which will display
the tempature of the sensor or ambiant tempature.
"""
#we need to import SMBUS to get it to work on the pi
import smbus
#We are going to import time and sleep so we are able to
#use them int he code when needed.
import time

#We need to create a class so that we can import it inot
#the main progrma for the project.
class MLXSERIES():

#We are creating varibles to have them equal the hex values
#that we are accessing in the sensor.

MLX90614_AMBTEMP=0x06
MLX90614_TEMP=0x07

comattempts = 5
#have to make the connection to the smbus and define the
#address we are goning to be reading data from
has to be __init__ becuase it will throw a constructor error.

def __init__(self, address=0x5a, busport=1):
self.busport = busport
self.address = address
self.bus = smbus.SMBus(bus=busport)

#This is going to go through and try and make a connection to the
#register in the device if it can not detet it will throw in error

def read_reg(self, reg_addr):
err = None
for i in range(self.comattempts):

try:
return self.bus.read_word_data(self.address, reg_addr)

except IOError as e:
err = e
#"Rate limiting" - sleeping to prevent problems with sensor
#when requesting data too quickly
sleep(0.1)

23

#By this time, we made a couple requests and the sensor didn't respond
#(judging by the fact we haven't returned from this function yet)
#So let's just re-raise the last IOError we got
raise err

#we need to define the data that we are getting and perform
#the calculation to get the temp. The 0.02 comes from the
#data sheet telling us to do this to calculate the correct temp.

def data_to_temp(self, data):
temp = (((data*0.02) - 273.15)*(9/5)) + 35
temp = round(temp,1)
return temp

#we need to get the data for the AMBTEMP register and then pass it
#into the data_to_temp to calculate the tempature

def get_AMBTEMP(self):
data = self.read_reg(self.MLX90614_AMBTEMP)
return self.data_to_temp(data)

#we need to get the data for the TEMP register and then pass it into
#the data_to_temp to calculate the tempature

def get_TEMP(self):
data = self.read_reg(self.MLX90614_TEMP)
return self.data_to_temp(data)

this just helps us print the tempature of AMBTEMP and TEMP, we will have to use
these fuctions in our main program to get the tempatures for them.
if __name__ == "__main__":

sensor = MLXSERIES()
print(sensor.get_AMBTEMP())
print(sensor.get_TEMP())

24

	Block Diagram and Interface Definitions
	Electrical Schematic and PCB Trace
	Mechanical Drawings
	Time Report
	Bill of Materials
	Python Code

