
1

Robotic Arm 004-3
Date: 3/15/2023

Team Members: David Jepsen, Logan Nesting, Nishant Sane

System Design 2
Testing plan 3

Customer Requirement: The system should be fast. 3
Customer Requirement: The system must be accurate. 3
Customer Requirement: The system needs to be inexpensive and manageable to
manufacture. 3
Customer Requirement: The system must have a commonly known interface. 4
Customer Requirement: The system must use different types of writing tools. 4
Customer Requirement: The system must be able to handle multi-point inputs. 4
Customer Requirement: The system must have a variable speed. 4

System Requirements 5
Additional Engineering Requirements 5

System Artifacts 7
Math 7
Code 8
Obstacles and Testcode 20
Arm design 23
Grabber 26
Enclosure 29
PCB 31
Datasheet Links 33
Bill of Materials 33
Time Report 34

2

System Design

The robotic arm is designed to write on 8.5xll inch piece of paper. The system is designed to be
inexpensive and controlled via a commonly known programming language. The system is designed in a 2-axis
SCARA design. The system is controlled via user inputs through a python user interface that utilizes G-code to
guide the system's movements. The system is designed to be accurate and fast with a variable speed. Additionally,
the system is designed to mount many tools, including a pen, crayon, and pencil. Additionally, the system is
designed to handle multipoint inputs and then return to its starting location.

Interface Name Interface Type Specifics

Power supply DC Power - L293D chip takes 5V
DC for internal logic
translation

- Arm motors (NEMA 17
stepper motors) take
12V DC

User Input G-Code - The user will send in
G-codes that will
correspond with specific
arm motions and
functionality, according
to the engineering
requirements

- Arm motion will have
the option to specify the
speed the tool will move

3

Arm motion Movement X motion
Y motion

Testing plan

Customer Requirement: The system should be fast.
Objective: The serial should display a speed greater than 4 in/sec.

1) Input a speed into the slider window
2) Check that the robot will output this speed in the Python terminal.

Customer Requirement: The system must be accurate.
Objective: The system should be able to draw an approximate 10 in line with +- 0.25 inch

variation maximum.
1) Input coordinates (7,7) which is 9.89 inches.
2) The robot will output degrees
3) Manually show through forward kinematics that this is actually (7,7).

Customer Requirement: The system needs to be inexpensive and
manageable to manufacture.

Objective: Prove the robot has a SCARA topology.

1. Observe the robot and the number of joints
2. Check if the joints articulate
3. Check if the robot is similar to the reference photo.

4

Customer Requirement: The system must have a commonly
known interface.
Objective: Show that the Python PyQT GUI translates user inputs to Gcode commands and
sends them to Arduino via serial.

1. Plug in Arduino to the computer via USB and wire the motors to PCB, PCB to
Arduino

2. Verify/upload the Arduino script, then run the Python program
3. Follow the prompts given by the Python program to enter coordinate input,

change the units, drawing mode, utensil, or end the program.

Customer Requirement: The system must use different types of
writing tools.

Objective: Show that the robot can hold a pen, pencil, or crayon and is mounted in under
15 seconds.

1. Select the tool change option in GUI
2. Open up the tool holder by hand
3. Remove the tool and insert a new tool
4. Check the amount of time elapsed

Customer Requirement: The system must be able to handle
multi-point inputs.

Objective: Input up to 3 points in the GUI without breaking out of program execution.
1. Open the Python GUI
2. Select to add points
3. Select the number of points to add (1, 2, or 3)
4. Tune the coordinate sliders to the desired locations and close the slider

window to send coordinates to serial
5. Repeat step 4 until the desired number of coordinates is entered
6. Enter other commands if desired

Customer Requirement: The system must have a variable speed.
Objective: vary the speed of the program.

1. Open the python GUI
2. Tune the speed slider present on the GUI
3. Then close the slider window, and the signal will be sent
4. The speed will be displayed in the python terminal to be verified

5

System Requirements
1. Customer Requirement: The system should be fast.

Engineering Requirement: The system must draw faster than 4 inches per
second.

● Verification:https://youtu.be/fM_iYZbGJhc

2. Customer Requirement: The system must be accurate.
Engineering Requirement: The system must draw a 10 inch straight line +/- .25
inch. This includes both the overall length of the line and ensuring the line does
not vary more than .25 inches of being perfectly straight.

● Verification: https://youtu.be/F0tB6ZRYiP8

3. Customer Requirement: The system needs to be inexpensive and
manageable to manufacture.
Engineering Requirement: The robotic arm will use a SCARA topology, with two
rotating joints to control arm actuation.

● Verification:https://www.youtube.com/shorts/lHMDzx-CvMY

4. Customer Requirement: The system must have a commonly known
interface.
Engineering Requirement: Controlling commands will be input as G-code
commands. These commands must be made available within the Python or
MATLAB GUI. G0, G1, G90, G91, G20, G21, M2, M6, M72.

● Verification: https://youtu.be/V1HdTCXGmgk

5. Customer Requirement: The system must use different types of writing
tools.
Engineering Requirement: Upon receiving an M6 command, the machine
operator must mount a crayon, pen, or pencil within 15 seconds.

● Verification:https://youtube.com/shorts/25zxZr2BN1A?feature=share

Additional Engineering Requirements

6. Customer Requirement: The system must be able to handle multi-point
inputs.
Engineering Requirement: The system on a specific command within the GUI will
display the option to move to 3 user-selected points. The system will respond to

https://youtu.be/fM_iYZbGJhc
https://youtu.be/F0tB6ZRYiP8
https://www.youtube.com/shorts/lHMDzx-CvMY
https://youtu.be/V1HdTCXGmgk
https://youtube.com/shorts/25zxZr2BN1A?feature=share

6

user-selected points to show the full range of motion. Upon reaching the final
location, the system will return to its original starting point.

● Verification:https://youtu.be/sQrXkDogHbM

7. Customer Requirement: The system must have a variable speed.
Engineering Requirement: The system will allow users to choose a drawing
speed between 1 inch per second and 5 inches per second. The system will
respond to this input, drawing at the given speed. This drawing speed can be
tested by timing how long the system takes to draw the 10-inch line.

● Verification:https://youtu.be/sQrXkDogHbM
(same video as Engineering requirement 6)

https://youtu.be/sQrXkDogHbM
https://youtu.be/sQrXkDogHbM

7

System Artifacts

Math
Length of arms

(inches)𝑙
1
 = 9. 78

(inches)𝑙
2

= 9. 78

Absolute mode cos calculation:

𝑐𝑜𝑠(θ
2
) =

(𝑥
𝑡𝑎𝑟𝑔𝑒𝑡

−𝑥
𝑐𝑢𝑟𝑟𝑒𝑛𝑡

)2+(𝑦
𝑡𝑎𝑟𝑔𝑒𝑡

−𝑦
𝑐𝑢𝑟𝑟𝑒𝑛𝑡

)2−𝑙
1

2−𝑙
2

2

2𝑙
1
𝑙

2

Relative mode cos calculation:

𝑐𝑜𝑠(θ
2
) =

𝑥
𝑡𝑎𝑟𝑔𝑒𝑡

2+𝑦
𝑡𝑎𝑟𝑔𝑒𝑡

2−𝑙
1

2−𝑙
2

2

2𝑙
1
𝑙

2

We use the respective cos calculation for whichever mode we are in.

𝑠𝑖𝑛(θ
2
) = 1 − 𝑐𝑜𝑠2(θ

2
)

θ
2

= 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑠𝑖𝑛(θ
2
), 𝑐𝑜𝑠(θ

2
))

𝑘
1

= 𝑙
1

+ 𝑙
2
𝑐𝑜𝑠(θ

2
)

𝑘
2

= 𝑙
2
𝑠𝑖𝑛(θ

2
)

γ = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑘
2
, 𝑘

1
)

θ
1

= 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦
𝑡𝑎𝑟𝑔𝑒𝑡

, 𝑥
𝑡𝑎𝑟𝑔𝑒𝑡

) − γ

8

Code
The arm operates on user-specified input for various G Code parameters which are obtained via
a Python script. When the Python code is running, the user is asked to specify whether the arm
should operate in “Absolute” (G90) or “Relative” (G91) mode. The script also plots between 1
and 3 coordinates (G0, G1), and whether the distances should be measured in inches (G20) or
millimeters (G21). A slider (via the PyQT library) obtains the desired coordinates and drawing
speed. The user is prompted to select if they will change the drawing tool (M6) and if they are to
end the program (M2). After going through G20, and G21 commands, the coordinates are run
through inverse kinematic calculations, and the resulting angle calculations are then sent to
Arduino (via serial). The byte string sent to Arduino is formatted: ‘angle1 angle2 draw_speed x y
‘. When the user chooses to operate in G90 or G91, a byte string of ‘absolute’ or ‘relative’ is
written to Arduino.

Once serial communications are opened in the Arduino IDE, the Uno reads in any incoming byte
strings and converts them to a C-string. Once in a C-string, the IDE saves each character into
temporary arrays if they are numerical, ‘a’ to ‘z’, a negative sign, or a decimal point. For input
strings into the Arduino that have multiple parameters, the parameters are saved to different
variables by looping through the string and counting the number of spaces. The number of
spaces counted in the loop determines which parameter is which. Once the parameters are
assigned to their respective variables, they are plugged into the AccelStepper library to drive the
arm’s motors.

Arduino Code:

#include <Arduino.h>
#include <AccelStepper.h>
#include <MultiStepper.h>
#include "SerialTransfer.h"
#include <math.h>

const float Pi = 3.14159;
float x_target = 0; // target x-position
float y_target = 0; // target y-position
float x_current = 0;
float y_current = 0;
const long l1 = 9.78; // length of first section of arm
const long l2 = 9.78; // length of second section of arm
long positions[2];
long lin_pos[2];
bool relativeMode = false;

9

float speed = 4;
float speed1 = 0;
float speed2 = 0;
bool close = false;
bool commandGiven = false;
float sec = 0;
bool inchMode = true;
bool absoluteMode = true;

// Number of steps per output rotation
const int stepsPerRevolution = 200;

// Create Instance of Stepper library for each motor
AccelStepper M1(AccelStepper::FULL4WIRE, 12, 11, 10, 9);
AccelStepper M2(AccelStepper::FULL4WIRE, 8, 7, 6, 5);

MultiStepper ARM;

void setup()
{
// initialize the serial port:
Serial.begin(9600);

// initialize the max speed at 60 rpm:
M1.setMaxSpeed(60);
M2.setMaxSpeed(60);

M1.setCurrentPosition(0);
M2.setCurrentPosition(0);

M1.setAcceleration(40);
M2.setAcceleration(40);

ARM.addStepper(M1);
ARM.addStepper(M2);

}

double angle2(double x, double y){

double a2_rad = acos((x*x + y*y - l1*l1 - l2*l2)/(2*l1*l2));
double a2_deg = a2_rad*180/Pi;
return a2_deg;

}

10

double angle1(double x, double y, double a2){

float k1 = l1 + l2*cos(angle2(x, y));
float k2 = l2*sin(angle2(x, y));
float gamma = atan2(k2, k1);
double a1_rad = atan2(y, x) - gamma;
double a1_deg = a1_rad*180/Pi;
return a1_deg;

}

void drive(float x_c, float x_t, float y_c, float y_t, bool mode, float spd){
if(relativeMode){
Serial.println("Drives in relative");
positions[0] = angle1(x_t-x_c, y_t-y_c, angle2(x_t-x_c, y_t-y_c))*stepsPerRevolution/360;
positions[1] = angle2(x_t-x_c, y_t-y_c)*stepsPerRevolution/360;
sec = sqrt(sq(x_target - x_current)+sq(y_target - y_current))/speed;

}
else if(!relativeMode){
Serial.println("Drives in absolute");
positions[0] = angle1(x_t, y_t, angle2(x_t, y_t))*stepsPerRevolution/360;
positions[1] = angle2(x_t, y_t)*stepsPerRevolution/360;

sec = sqrt(sq(x_target)+sq(y_target))/speed;
}
ARM.moveTo(positions);

Serial.print("Positions[0] (steps): ");
Serial.println(positions[0]);

Serial.print("Positions[1] (steps): ");
Serial.println(positions[1]);

M1.setSpeed(spd);
M2.setSpeed(spd);
Serial.print("Speed1: ");
Serial.println(speed1);
Serial.print("Speed2: ");
Serial.println(speed2);
Serial.print("Expected time spent moving: ");
Serial.println(sec);
long t1 = millis();

ARM.runSpeedToPosition();

11

long t2 = millis();
Serial.print("Actual time spent moving: ");
Serial.println(t2 - t1);

}

void loop()
{
String ser_data;
int idx = 0;
char temp_xy[2];
char byteIn;
String in_str;
String byte_data[45];

while(Serial.available()){
in_str = Serial.readString(); // read in byte from buffer (once read, byte removed from buffer)
in_str.trim();
ser_data = in_str;
idx++;
commandGiven = true;

}

if(commandGiven){
Serial.print("ser_data is: ");
Serial.println(ser_data);
char cmd[ser_data.length()];
int cmd_idx = 0;
for(int i = 0; i < ser_data.length() - 1; i++){ // read command and store it to a c-string
cmd[cmd_idx] = ' ';
if(ser_data[i] == 'G' || ser_data[i] == 'M' || ser_data[i] == 'X' || ser_data[i] == 'Y' || ser_data[i]

== 'S' || ser_data[i] == ' ' || (ser_data[i] >= '0' && ser_data[i] <= '9')){
cmd[cmd_idx] = ser_data[i];
cmd_idx++;

}
}
Serial.print("G/M command: ");
Serial.println(cmd);
Serial.println(cmd[0]);
Serial.println(cmd[1]);
Serial.println(cmd[2]);
if(cmd[0] == 'G' && cmd[1] == '0' && cmd[2] == '1'){ // G01 command
for(int j = 0; j < cmd_idx; j++){
if(cmd[j] == 'X'){

12

temp_xy[0] = cmd[j+1];
temp_xy[1] = cmd[j+2];
x_target = atoi(temp_xy);
Serial.print("x_target: ");
Serial.println(x_target);

}
if(cmd[j] == 'Y'){
temp_xy[0] = cmd[j+1];
temp_xy[1] = cmd[j+2];
y_target = atoi(temp_xy);
Serial.print("y_target: ");
Serial.println(y_target);

}
if(cmd[j] == 'S'){
temp_xy[0] = cmd[j+1];
temp_xy[1] = ' ';
speed = atoi(temp_xy);
Serial.print("s_target: ");
Serial.println(speed);

}
}
drive(x_current, x_target, y_current, y_target, relativeMode, speed);

}
if(cmd[0] == 'G' && cmd[1] == '2'){
if(cmd[2] == '0' && !inchMode){ // G20 command (inches)
Serial.println("Receives G20 Command");
x_current = x_current*25.4;
Serial.print("x_current: ");
Serial.println(x_current);
x_target = x_target*25.4;
Serial.print("x_target: ");
Serial.println(x_target);

y_current = y_current*25.4;
Serial.print("y_current: ");
Serial.println(y_current);
y_target = y_target*25.4;
Serial.print("y_target: ");
Serial.println(y_target);

speed = speed*25.4;
inchMode = true;

}
if(cmd[2] == '1' && inchMode){ // G21 command (mm)

13

Serial.println("Receives G21 Command");
x_current = x_current/25.4;
Serial.print("x_current: ");
Serial.println(x_current);
x_target = x_target/25.4;
Serial.print("x_target: ");
Serial.println(x_target);

y_current = y_current/25.4;
Serial.print("y_current: ");
Serial.println(y_current);
y_target = y_target/25.4;
Serial.print("y_target: ");
Serial.println(y_target);

speed = speed/25.4;
inchMode = false;

}
}
if(cmd[0] == 'G' && cmd[1] == '9'){
if(cmd[2] == '0' && !absoluteMode){ // G90 command (Absolute mode)
Serial.println("Receives G90 Command");
relativeMode = false;
x_current = x_target;
Serial.print("x_current: ");
Serial.println(x_current);

y_current = y_target;
Serial.print("y_current: ");
Serial.println(y_current);

absoluteMode = true;
}
if(cmd[2] == '1' && absoluteMode){ // G91 command (Relative mode)
Serial.println("Receives G91 Command");
relativeMode = true;
x_current = x_current + x_target;
Serial.print("x_current: ");
Serial.println(x_current);

y_current = y_current + y_target;
Serial.print("y_current: ");
Serial.println(y_current);

14

absoluteMode = false;
}

}
if(cmd[0] == 'M' && cmd[1] == '0'){
if(cmd[2] == '2'){ // M02 command (Exit Program)
Serial.println("End Program");
delay(500);
exit(0);

}
else if(cmd[2] == '6'){ // M06 command (Change Tool)
Serial.println("Changing Tool");
delay(15000);

}
}

}

commandGiven = false;
delay(500);
idx = 0; // Reset serial.read index for next buffer input

}

Python Code:

import struct

from PyQt6.QtWidgets import (QApplication, QLabel,
QVBoxLayout, QWidget, QSlider, QDockWidget)

from PyQt6.QtCore import Qt
import sys
import time
import serial
import math

def getSpeed(): # Accessor for the speed slider value
return window.speed_slider.value()

def getX(): # Accessor for the X coordinate
return window.x_slider.value()

def getY(): # Accessor for the Y coordinate
return window.y_slider.value()

15

def set_default(): # Default measure and operation settings
default = serial.Serial('/dev/cu.usbserial-14410', baudrate=9600, timeout=1,

writeTimeout=1) # Open serial connection to port at 9600 baud rate
print("Default Settings: Inches (G20) and Absolute mode (G90) \n")
default.write(bytes('G90', encoding='utf-8'))
time.sleep(2)
default.close()

def g01(): # Draws straight lines
num_coord = input("How many coordinates would you like to plot (Enter '1',

'2' or '3')?: ").strip()
while 1:

if num_coord == '1' or num_coord == '2' or num_coord == '3':
for _ in range(int(num_coord)):

app.exec() # runs the app that displays the slider window
window.show() # displays the slider window
x_coord = getX() # Gets X Coordinate
y_coord = getY() # Gets Y Coordinate
speed = getSpeed() # Gets Speed
param_list = [x_coord, y_coord, speed, 0] # Place user input

parameters in list to send to Arduino
len1 = 9.78 # Joint 1 length = 9.78 inches
len2 = 9.78 # Joint 2 length = 9.78 inches
angle2 = math.acos((x_coord * x_coord + y_coord * y_coord - len1

* len1 - len2 * len2) / (2 * len1 * len2)) # IK calcs for Joint 2 angle
angle1 = math.atan(y_coord / x_coord) - math.atan((len2 *

math.sin(angle2)) / (len1 + len2 * math.cos(angle2))) # IK calcs for Joint 1
angle

angle1 = math.degrees(angle1) # Change angles from radians to
degrees and show angles

angle2 = math.degrees(angle2)
print("Angle 1: ", angle1)
print("Angle 2: ", angle2)
print("Coordinate #", _ + 1, "Input Parameters Chosen: ")
print("Speed: ", param_list[2]) # Displays the user-chosen

speed in the terminal
print("X: ", param_list[0]) # Displays the user-chosen X

coordinate in the terminal
print("Y: ", param_list[1]) # Displays the user-chosen Y

coordinate in the terminal
G01_str = "G01 " + "X" + str(x_coord) + " Y" + str(y_coord) + "

S" + str(speed)
link = serial.Serial('/dev/cu.usbserial-14410', baudrate=9600,

timeout=1, writeTimeout=1) # Open serial connection to port at 9600 baud rate
time.sleep(2)
link.write(bytes(G01_str, encoding='utf-8'))

16

print("Buffer contents: ", G01_str.encode(encoding='ascii',
errors='strict'))

print("Wait for the motors to reach your desired location \n")
time.sleep(math.sqrt(x_coord*x_coord + y_coord*y_coord)/speed)
link.close() # closes the usbserial port
time.sleep(0.5)

break

def g20_21(units): # Changes units from in to mm or vice versa
link = serial.Serial('/dev/cu.usbserial-14410', baudrate=9600, timeout=1,

writeTimeout=1) # Open serial connection to port at 9600 baud rate
if units == 'in': # Change units to inches

link.write(bytes('G20', encoding='utf-8'))
print("Buffer contents: ", 'G20'.encode(encoding='ascii',

errors='strict'))
elif units == 'mm': # Change units to mm

link.write(bytes('G21', encoding='utf-8'))
print("Buffer contents: ", 'G21'.encode(encoding='ascii',

errors='strict'))
time.sleep(1)
link.close() # closes the usbserial port

def g90_91(rel_abs_mode): # Operates in Absolute or Relative mode
link = serial.Serial('/dev/cu.usbserial-14410', baudrate=9600, timeout=1,

writeTimeout=1) # Open serial connection to port at 9600 baud rate
if rel_abs_mode == 'relative': # Change to rel

link.write(bytes('G91', encoding='utf-8'))
print("Buffer contents: ", 'G91'.encode(encoding='ascii',

errors='strict'))
elif rel_abs_mode == 'absolute': # Change to abs

link.write(bytes('G90', encoding='utf-8'))
print("Buffer contents: ", 'G90'.encode(encoding='ascii',

errors='strict'))
time.sleep(1)
link.close() # closes the usbserial port

def m2(): # Sends command to end program
link = serial.Serial('/dev/cu.usbserial-14410', baudrate=9600, timeout=1,

writeTimeout=1) # Open serial connection to port at 9600 baud rate
time.sleep(2)
link.write(bytes('M02', encoding='utf-8'))
print("Buffer contents: ", 'M02'.encode(encoding='ascii', errors='strict'))
time.sleep(1)
link.close()
print("Program Ended")

17

def m6(): # Sends command to change tool
link = serial.Serial('/dev/cu.usbserial-14410', baudrate=9600, timeout=1,

writeTimeout=1) # Open serial connection to port at 9600 baud rate
link.write(bytes('M06', encoding='utf-8'))
print("Buffer contents: ", 'M06'.encode(encoding='ascii', errors='strict'))
print("Changing drawing tool - wait 15 seconds...")
time.sleep(15)
link.close()

class Window(QWidget): # Defines class for a window of widgets
def __init__(self):

super().__init__()

Resize, and label the main window
self.resize(1000, 1000)
self.setWindowTitle("User Input")
self.setGeometry(300, 300, 800, 600)
self.label = QLabel(self)
self.label.move(340, 50)
self.label.alignment()

Create a dock so the 3 input sliders can be on the same widget
dock = QDockWidget(self)
dock.setWindowTitle("Drawing Speed and Coordinates")
dock.setGeometry(100, 100, 600, 300)
widget = QWidget(self)
layout = QVBoxLayout(self)

Speed slider window initialization
self.speed_slider = QSlider(Qt.Orientation.Horizontal, self)
self.speed_slider.setGeometry(300, 300, 200, 200)
self.speed_slider.setMinimum(0)
self.speed_slider.setMaximum(5)
self.speed_slider.setValue(1) # Default value after initialization
self.speed_slider.setTickPosition(QSlider.TickPosition.TicksBelow)
self.speed_slider.setTickInterval(1)
self.speed_slider.valueChanged.connect(self.changedValue) # Updates

variable when the slider is on it
self.speed_slider.valueChanged.connect(self.speedLabel)

X coordinate slider window initialization
self.x_slider = QSlider(Qt.Orientation.Horizontal, self)
self.x_slider.setGeometry(300, 300, 200, 200)
self.x_slider.setMinimum(4)
self.x_slider.setMaximum(12)
self.x_slider.setValue(4) # Default value after initialization

18

self.x_slider.setTickPosition(QSlider.TickPosition.TicksBelow)
self.x_slider.setTickInterval(1)
self.x_slider.valueChanged.connect(self.changedValue) # Updates

variable when the slider is on it
self.x_slider.valueChanged.connect(self.xLabel)

Y coordinate slider window initialization
self.y_slider = QSlider(Qt.Orientation.Horizontal, self)
self.y_slider.setGeometry(300, 300, 200, 200)
self.y_slider.setMinimum(4)
self.y_slider.setMaximum(15)
self.y_slider.setValue(4) # Default value after initialization
self.y_slider.setTickPosition(QSlider.TickPosition.TicksBelow)
self.y_slider.setTickInterval(1)
self.y_slider.valueChanged.connect(self.changedValue) # Updates

variable when the slider is on it
self.y_slider.valueChanged.connect(self.yLabel)

Creates/assigns/places labels for X, Y, and Speed sliders
self.xlabel = QLabel("X coordinate", self)
self.xlabel.move(100, 275)
self.ylabel = QLabel("Y coordinate", self)
self.ylabel.move(100, 350)
self.slabel = QLabel("Drawing Speed", self)
self.slabel.move(100, 200)
self.xlabel.setBuddy(self.x_slider)
self.ylabel.setBuddy(self.y_slider)
self.slabel.setBuddy(self.speed_slider)

Adds the sliders to the widget layout and adds the layout to the dock
layout.addWidget(self.speed_slider)
layout.addWidget(self.x_slider)
layout.addWidget(self.y_slider)
widget.setLayout(layout)
dock.setWidget(widget)

def changedValue(self): # Updates the variable based on slider position
size = self.speed_slider.value()
self.label.setText(str(size))

def xLabel(self): # Label so the user knows what X value they are selecting
self.label.setText("X coordinate: " + str(self.sender().value()))
self.label.adjustSize() # Expands label size as numbers get larger

def yLabel(self): # Label so the user knows what Y value they are selecting
self.label.setText("Y Coordinate: " + str(self.sender().value()))
self.label.adjustSize() # Expands label size as numbers get larger

19

def speedLabel(self): # Label so the user knows what Speed value they are
selecting

print(self.sender().value())
self.label.setText("Speed (inches/second): " +

str(self.sender().value()))
self.label.adjustSize() # Expands label size as numbers get larger

app = QApplication(sys.argv)

window = Window() # Default constructor for the window for initialization
window.show() # Makes the window appear on the screen

set_default() # Set default measurements and drawing mode

while 1:
plot = input("Add more points (Enter 'yes' or 'no')?: ").strip()
if plot == 'yes': # If user wants to choose speed/coordinates

g01()
tool_change = input("Change the drawing tool (Enter 'yes' or 'no')?:

").strip() # M6 Command
if tool_change == 'yes': # Drawing tool changed

m6()
change_units = input("Should the units be changed (Enter 'yes' or 'no')?

Measured in inches by default: ")
if change_units == 'yes':

in_mm = input("Should the units be measured in inches or millimeters
(Enter 'in' or 'mm')?: ")

if in_mm == 'in':
g20_21('in')

elif in_mm == 'mm':
g20_21('mm')

mode = input("Should we change the plotting mode (Enter 'yes' or 'no')?
Plotting mode is absolute by default: ")

if mode == 'yes':
rel_abs = input("Change to 'relative' or 'absolute'?: ")
if rel_abs == 'absolute':

g90_91('absolute')
elif rel_abs == 'relative':

g90_91('relative')
done = input("End the Program (Enter 'yes' or 'no')?: ") # M2 Command (End

Program)
if done == 'yes':

m2()
break

sys.exit() # ends program

20

Obstacles and Testcode
The main obstacle we have encountered in this project is that the robot arm is not moving
properly when trying to drive it using the MultiStepper library. First, we would like to demonstrate
some initial tests:
We have eliminated the possibility of a PCB/wiring issue since we have tested regular Stepper
code on one motor at a time:
// Include the Arduino Stepper Library
#include <Stepper.h>

// Number of steps per output rotation
const int stepsPerRevolution = 200;

// Create Instance of Stepper library
Stepper myStepper(stepsPerRevolution, 12, 11, 10, 9);

void setup()
{

// set the speed at 20 rpm:
myStepper.setSpeed(20);
// initialize the serial port:
Serial.begin(9600);

}

void loop()
{

// step one revolution in one direction:
Serial.println("clockwise");
myStepper.step(stepsPerRevolution);
delay(500);

// step one revolution in the other direction:
Serial.println("counterclockwise");
myStepper.step(-stepsPerRevolution);
delay(500);

}

When tested on one motor at a time, it works perfectly. Another follow-up test was done to drive
2 motors at 1 step alternating in a loop:
// Include the Arduino Stepper Library

#include <Stepper.h>

// Number of steps per output rotation

const int stepsPerRevolution = 200;

// Create Instance of Stepper library

21

Stepper myStepper(stepsPerRevolution, 12, 11, 10, 9);

Stepper secStep(stepsPerRevolution, 8, 7, 6 ,5)

void setup()

{

// set the speed at 20 rpm:

myStepper.setSpeed(20);

// initialize the serial port:

Serial.begin(9600);

}

void loop()

{

// step one revolution in one direction:

for (int i=0; i<200; i++) {

myStepper.step(1);

secStep.step(-1);

}

}

However, this test did not work, and the motors made some noises but did not make the proper
movement. We estimate that this is because the motors need time to ramp up the torque
necessary to accurately move, but since we issue such a small step command, the motor does
not have time to do this and ends up failing to perform the movement sequence. This essentially
eliminates the possibility of driving the motors pseudo-simultaneously using the regular Stepper
library and implementing a double loop with proper step and speed calculations.
We also wrote a much simpler Multistepper test code in order to test the runSpeedToPosition
function.
#include <AccelStepper.h>

#include <MultiStepper.h>

// define steppers (Note: NEMA 17 12V bipolar stepper motors have 200

steps per revolution)

AccelStepper M1(AccelStepper::FULL4WIRE, 12, 11, 10, 9);

AccelStepper M2(AccelStepper::FULL4WIRE, 8, 7, 6, 5);

// define multistepper object

MultiStepper ARM;

unsigned long t1;

22

unsigned long t2;

long positions[2];

void setup() {

// put your setup code here, to run once:

Serial.begin(9600);

// set max speed of motors at 200 steps per second

M1.setMaxSpeed(200);

M2.setMaxSpeed(200);

// set current positions of motors to 0 initially

M1.setCurrentPosition(0);

M2.setCurrentPosition(0);

// set both motors to run at 50 steps per second

M1.setSpeed(50);

M2.setSpeed(50);

// add steppers to ARM

ARM.addStepper(M1);

ARM.addStepper(M2);

}

void loop() {

// put your main code here, to run repeatedly:

// M1 should run 180 degrees clockwise, M2 should run 180 degrees

counterclockwise

positions[0] = 100;

positions[1] = -100;

ARM.moveTo(positions);

// execute motor operation, output time operation takes

t1 = millis();

ARM.runSpeedToPosition();

t2 = millis();

Serial.println(t2-t1);

exit(0);

23

}

In both this testcode and the actual code for this robot, the robot arm fails to drive. We estimate
this to be an issue either with the limitations of our L293D IC and/or the MultiStepper function
runSpeedToPosition(). What we observe through the Serial monitor is an irregular time of
operation taken by the runSpeedToPosition function, combined with the robot arm moving a tiny
bit before stopping and generating a strange noise from the motors, along with a nearly 1A of
current being drawn from the DC power supply. We suspect that since the L293D ICs have a
maximum output current of ±600mA, they are forcibly shutting off due to an unexpectedly high
current being drawn. We also suspect that the runSpeedToPosition function is not working
properly, since the time the function takes to run is always much shorter than the calculated time
of operation. In the end, we resorted to the trial and error approach to completely eliminate the
possibility of a PCB/wiring issue by testing all 24 permutations of the Arduino pin ordering within
the AccelStepper motor definitions, and all of them were a failure in the test code, returning a 50
ms value inside the Serial monitor, while the actual operation should take 2 seconds. A similar
effect is observed within the actual code used.

Arm design

The arm is designed in two parts, the first and second joints. The first arm is 290 mm in length,
with the joints spaced out 248.412mm, as seen in figure 2 and figure 3. The first joint comprises
the first arm unit, 8 mm bar, bar mount, 20 teeth gear, 40 teeth gear, a timing belt, ball bearing,
stepper motor, and stepper motor mount. The first arm is connected directly to the enclosure,
from which the first stepper motor drives it via a belt and gear system marked in blue in figure 1.
From the enclosure, the 8 mm bar is attached and held by a ball bearing mounted to the
enclosure. On this 8mm bar is a 40 teeth gear driven by the first Nema 17 motor attached via a
timing belt. The 8 mm bar then extends up and is mounted to the arm via an 8mm rail guide
support attached to a stepper motor L bracket. The Bracket is attached to the bottom of the
component via screws. Due to space, the Nema 17 motor will be mounted above the arm via
bolts and nuts to allow ample room for mounting and adjustment, as seen in red in figure 1. On
the Nema 17 motor shaft, a 20-teeth gear is attached to drive the second arm via a timing belt.

24

Figure 1: first arm set up

Figure 2: first arm measurements

Figure 3: first armhole distance

The second arm is similarly composed of an arm unit that is 210 mm long and 55 mm wide as
seen in figure 5. The additional parts consist of an 8 mm bar, bar mount, 40 teeth gear, a timing
belt, and ball bearing. The second arm is connected directly to the first arm via an 8 mm bar with
a ball bearing, a 40 teeth gear, an 8 mm shaft collar, and a piece of wood. The ball bearing
allows for the free and separate motion of the second arm from the first arm. The gear will be
attached to a belt that is driven by the Nema 17 motor attached to the first joint. The 8 mm shaft
collar and 8mm rail guide support are physically attached to the 8mm bar and will act as the
point of connection to the second arm. The arm will have bolts driven through it such that they
connect with the rail support and guide the rail. The end of the arm will serve as a mount for the
gripper. The base design of the component can be seen in figure 4.

25

Figure 4: second arm design

Figure 5: second arm measurements

26

Grabber

Figure 7: Grabber part 1

27

Figure 2: Grabber part 2

Figure 3: Grabber part 3

28

The grabber is a 3d-printed, completely mechanical design with zero electronic components.
There are a total of three parts in the grabber. The first part is the main rotating grabber part,
which is mounted on a bearing in the second arm. The slots are designed for rubber bands to
go through them to attach to the third grabber part. The second part is a spacer that was
pressed into the hole inside the main rotating grabber part to reduce friction and give it a bit of
height. The third part is a tensioner and wall, which is designed to create optimal points of
contact to hold the tool, and it has pegs to hook the rubber bands mentioned previously, to
maintain tension and grip the tool properly. It is designed to easily release and hold a tool by
moving the back part of the main tool right (when looking forward from the perspective of the
second arm) and releasing it to secure the new tool.

29

Enclosure

The enclosure is shaped as a square box with a height of 70 mm see figure 6. This height is
selected such that the enclosure can mount the Microcontroller and the PCB, as seen in figure
7. The Microcontroller has a length of 53.34 mm and a width of 68.58mm. At the same time,
PCB is a rectangle with a length of 48mm and a width of 27mm. The width and length of the
enclosure are 140 mm see figure 5. The more extensive base prevents tipping and allows
ample room to enclose the motor and an arm mount. However, a bottom panel will not be added
to allow easy access to the contents within the enclosure. The enclosure is made out of 5 mm
thick plywood. The microcontroller and PCB are mounted on the outside to allow for easy
movement of wires and wiring of motors.

Figure 6: Top-down view including dimensions

30

Figure 7: Front-facing view showing height in millimeters.

Figure 8: Full enclosure

31

PCB

Figure 9: PCB Schematic
Note:
Both RR1 pins connects to NEMA 17 pin 3 of respective motors
Both MR1 pins connects to NEMA 17 pin 4 of respective motors
Both ML1 pins connects to NEMA 17 pin 2 of respective motors
Both LL1 pins connects to NEMA 17 pin 1 of respective motors
For NEMA 17 pin descriptions, see the datasheet links in this document

32

Figure 10: PCB Routing Diagram

Figure 11: PCB 3D view

The PCB was ordered from OSHPark. It is 48.26 x 27.94 mm. It has 2 L293D ICs on it; the left
one (U2) controls motor 2, and the right one (U1) controls motor 1. It has 5 rows of vias; the first
row is the top row, and the last row is the bottom row. Standard male pin headers were soldered
into the vias for easy and convenient jumper wire implementation. The first row consists of 4
holes, the outputs going to the second motor. The second row consists of 4 holes, the outputs
going to the first motor. The third row consists of 3 holes: the 12V power input, the 5V power
input, and GND. The fourth row consists of 4 holes, the control inputs for motor 1. The fifth row
consists of 4 holes, the control inputs for motor 2.

33

Datasheet Links
NEMA 17: E:\小狄\(1)CAD图纸\MybotOnline\17HS15-1704S Model (1)
L293D: L293x Quadruple Half-H Drivers datasheet (Rev. D) (ti.com)

Bill of Materials

Distributor Price Purchaser Total:

Arduino Uno copy Resis-store $6.00 David $168.86

USB - A cable Resis-store $2.00 David

NEMA-17 Tekbots $10.00 David

L293DNE Tekbots $4.00 David

NEMA-17 Tekbots $10.00 David

L293DNE Tekbots $4.00 Nishant

Plywood Homedepot $10.98 David

2xelbow brackets Homedepot $10.94 David

5xmachine screw bags $1.38 per bag Homedepot $6.90 David

3xPCB Homedepot $20.90 Nishant

acyrilic arm 1 Tekbots $0.00 David Voucher used

acyrilic arm 2 Tekbots $0.00 David Voucher used

5x 5 mm 20 tooth gear Amazon $6.99 David

2x Stepper motor L brackets Amazon $8.99 David

2x 8 mm diameter, 100 mm long steel rod Amazon $7.99 David

2x 8mm rail clamp support Amazon $4.58 David

5m GT2 timing belt 6mm width Amazon $8.99 David

5x 8mm shaft collar Amazon $6.49 David

2x 8mm 40 tooth gear Amazon $7.99 David

10 x 8mm steel ball bearing Amazon $7.50 David

Super glue Homedepot $4.67 David

Jumper cables female to female/ male to
male Tekbots $12.00 Nishant

M8 bolt Homedepot $4.75 David

Mini spring clamp Homedepot $0.60 David

8 oz mason jar Costal $1.60 David

2x 3d print Tekbots $0.00 Nishant Voucher used

https://www.mybotonline.com/download/17HS15-1704S.pdf
https://www.ti.com/lit/ds/symlink/l293.pdf

34

Time Report
Group Time:

Weekly meetings: 18 hours
Lab time: 18 hours
Paperwork: 3 hours
Last minute sprint: 20 hours

David Jepsen: Total time spent on the project (including group time): 44 hours
Hours spent on Enclosure design: 4
hours spent on Enclosure construction: 6
hours spent on Arm design: 7 hours
Hours spent on Arm construction: 5 hours
Hours spent on paperwork: 4 hours

Logan Kesting: Total time spent (including group time): 98 Hours
Learning Python/Constructing GUI: 10 hours
Learning/implementing Inverse Kinematics in Python: 4 Hours
Implementing Arduino/Python Serial Communication: 20 Hours
Implementing AccelStepper.h (Arduino motor driving code): 5 Hours

Nishant Sane: Total time spent (including group time) : 103 Hours
Learning how to calculate inverse kinematics and speed: 6 hours
Learning how to use MultiStepper.h to simultaneously control motors: 20 hours
Implementing variable-controlled procedural Arduino script: 8 hours
Designing PCB: 10 hours

