
STATIC ANALYSIS
Static analysis examines the malware before execution and involves reading
outputs of software tools. If the sample is a Windows portable executable, this
could consist of using tools like PEExplore, PEview or PeStudio. Observations on
which resources it imports or whether the executable is packed so as to
obfuscate information are part of this consideration. Other static options include
disassemblers such as IDA, which summarize how an executable or DLL runs in
machine code, or multipurpose and decompilation tools like Ghidra.

DYNAMIC ANALYSIS
Dynamic analysis involves executing malware, which requires containerization
and knowledge of assembly code. Software from Windows Sysinternals such as
Process Monitor are used to observe actions taken such as registry entries, file
creations and network connections by the malware. Network analysis tools such
as Wireshark or Netstat monitor network activity in great detail. Debuggers such
as OllyDbg and WinDbg allow for modifying assembly code. With these tools put
together malware activity can be closely monitored or forced into execution.

OllyDbg is a disassembler/debugger designed for analysis of x86 Windows
executables (.exe), dynamic-link libraries (.dll), and other binary files that
supports both static and dynamic analysis, allowing for analysis of a program's
behavior in real-time. In this image, OllyDbg is being used on our third malware
sample to find assembly code that specifies a time that the malware will run.
The year it was set to run was 834 in hexadecimal, which translates to the year
2100. By changing this value to 7E7 were were able to run the malware in the
year 2023. Note also that the XOR operation is used to zero out the EDX register
before being moved into other time variables on the stack like day, month, and
minutes. The malware was set to detonate on January 1st at midnight.

Wireshark aids in visibility of network activity to include the protocol, remote host,
and possibly clear text communications between host and server.
In this image, Wireshark is being used on our third malware sample to identify an
HTTP GET request to www.practicalmalwareanalysis.com performed by the
malware. These GET requests were being sent really fast on an infinite loop: a
Denial of Service (DoS) attack.

PeStudio is a multipurpose tool that detects functionality signatures for different
types of malware and can detect abnormalities in imported files. Sometimes
import purposes must be researched.
In this image, PeStudio is being used on our second malware sample to observe
that that it is capable of making HTTP and FTP socket connections, likely to
contact a hacker’s server and send them private information about the host
computer that will enable them easy access in the future: a backdoor.

Malware Analysis Michael Banks Jennifer Bowers Steven Hunt Mark Kaiser
 crocshock911@comcast.net bowerjen@lifetime.oregonstate.edu huntste@oregonstate.edu kaisermar@oregonstate.edu

Malware Analysis Structural Diagram

IDA is popular and powerful disassembler/debugger software that provides users
with the capability to analyze and understand the low-level assembly code of
executable files, allowing for reverse-engineering and inspection of the inner
workings of malware.
In this image, IDA is being used on our second malware sample to observe its
assembly code, names of internal functions, and import functions. With this
information alone we were able to see that the malware installs and uninstalls
services and makes changes to the registry.

Sponsor: Bill Pfeil SPRING 2023

Ghidra is a multipurpose tool which can decompile a binary program and provide
insight into the code pages, source code, and code flow for a malware sample.
In this image, Ghidra is being used on our third malware sample to observe
creation of a mutex in the assembly code. The mutex allows the malware to know
if it already exists on the target system.

Process Monitor observes the files and registry entries as they are created,
changed, or removed, and observes persistence mechanisms of malware such as
service creation, scheduled tasks and auto runs.
In this image, Process Monitor is being used on our first malware sample to
observe queries to create and modify a log file called practicalmalwareanalysis.log,
which was evidence for the malware being a keylogger. We were able to seek out
and find the log file using its path and observed that while the malware runs each
key press by the current user was logged. In practice this file could contain
passwords and be automatically sent over a network connection to an adversary.

Malware analysis consists of two types of analysis–static and
dynamic–each presenting its own challenges. The team
constructed a specialized malware analysis lab environment using
the VMware hypervisor for virtualization and integrated the
Windows XP and REMnux operating systems to establish a secure
and versatile lab setting. For an added layer of security, we
engineered the environments around a host-only network
configuration, simulating network connections via INetSim and
FakeDNS. To build a comprehensive toolkit, we installed and
deployed sophisticated malware analysis software tools including
Windows Sysinternals Suite, IDA, PeStudio, Ghidra and OllyDbg.

We tackled the analyses by dividing the team into two pairs,
analyzing a set of malware samples sourced from the "Practical
Malware Analysis" textbook. Each pair performed comprehensive
investigations of three unique samples, systematically alternating
between static and dynamic analyses and collecting our findings
into documents to facilitate a broad understanding. The textbook,
combined with our individual experiences, provided crucial insight
into the correct usage, optimal setup, and appropriate application
of malware analysis tools. During our bi-weekly virtual meetings,
we engaged in thoughtful, detailed walkthroughs of malware
analysis tools and shared our documented findings to further
deepen our collective understanding.

ABOUT THE PROJECT

