
Low-Cost CAN Logger
Ryan Dillard, Maxim Feoktistov, Anton Liakhovitch, Ashley Reid

Table of Contents
Table of Contents 2

1.0 Overview 7
1.1 Executive Summary- 7
1.2 Team Communication Protocols and Standards 8
1.3 Gap Analysis 10
1.4 Project Timeline 11
1.5 References and File Links 13

1.5.1 References 13
1.5.2 File Links 13

1.6 Revision Table 14

2.0 Requirements, Impacts, and Risks 15
2.1 Requirements 15

2.1.1 Interface Bus 15
2.1.2 Interface Type 15
2.1.3 Device Storage 16
2.1.4 Firmware accessibility 16
2.1.5 Power Supply 16
2.1.6 Client Software 17
2.1.7 Invalid Data 17
2.1.8 Data Accuracy 18

2.2 Design Impact Statement 19
2.2.1 Introduction 19
2.2.2 Public Health, Safety, and Welfare Impacts 19
2.2.3 Cultural and Social Impacts 20
2.2.4 Environmental Impacts 21
2.2.5 Economic Impacts 21
2.2.6 Conclusion 22
2.2.7 References 22

2.3 Risks 25
2.4 References and File Links 26

2.4.1 References 26
2.4.2 File Links 26

2.5 Revision Table 27

3.0 Top-Level Architecture 28
3.1 Block Diagram 28
3.2 Block Descriptions 29

3.2.1 Buck Converter 29
3.2.2 MCU 29

3.2.3 MCU Firmware 29
3.2.4 CAN Controller/Transceiver 29
3.2.5 Storage 29
3.2.6 Bluetooth Module 29
3.2.7 Client Software 30
3.2.8 PCB 30
3.2.9 Enclosure 30

3.3 Interface Definitions 31
3.4 References and File Links 33

3.4.1 References 33
3.4.2 File Links 33

3.5 Revision Table 33

4.0 Block Validations 34
4.1 Buck Converter 34

4.1.1 Description 34
4.1.2 Design 34
4.1.3 General Validation 34
4.1.4 Interface Validation 35
4.1.5 Verification Process 38
4.1.6 References and File links 39

4.1.6.1 References 39
4.1.6.2 File Links 39

4.1.7 Revision Table 39
4.2 MCU 41

4.2.1 Description 41
4.2.2 Design 41
4.2.3 General Validation 44
4.2.4 Interface Validation 44
4.2.5 Verification Plan 48
All Logic Level Properties: 48
All Power Supply Properties: 48
Firmware: 48
All RS-232 or SPI Interfaces: 49
4.2.6 References 49
4.2.7 Revision Table 49

4.3 MCU Firmware 50
4.3.1 Description 50
4.3.2 Design 51
4.3.3 General Validation 53
4.3.4 Interface Validation 53

4.3.5 Verification Plan 54
4.3.6 References 55
4.3.7 Revision Table 55

4.4 CAN Controller/Transceiver 56
4.4.1 Description 56
4.4.2 Design 56
4.4.3 General Validation 57
4.4.4 Interface Validation 57
4.4.5 Verification Process 59
4.4.6 References and File links 60

4.4.6.1 References 60
4.4.6.2 File Links 60

4.4.7 Revision Table 60
4.5 Storage 61

4.5.1 Description 61
4.5.2 Design 61
4.5.3 General Validation 63
4.5.4 Interface Validation 63
4.5.5 Verification Process 65
4.5.6 References and File links 66

4.5.6.1 References 66
4.5.6.2 File Links 66

4.5.7 Revision Table 66
4.6 Bluetooth Module 67

4.6.1 Description 67
4.6.2 Design 67
4.6.3 General Validation 68
4.6.4 Interface Validation 69
4.6.5 Verification Process 71
4.6.6 References and File links 72

4.6.6.1 References 72
4.6.6.2 File Links 72

4.6.7 Revision Table 72
4.7 Client Software 73

4.7.1 Description 73
4.7.2 Design 73
4.7.3 General Validation 73
4.7.4 Interface Validation 73
4.7.5 Verification Process 75
4.7.6 References and File links 76

4.7.6.1 References 76

4.7.6.2 File Links 76
4.7.7 Revision Table 76

4.8 PCB 76
4.8.1 Description 77
4.8.2 Design 77
4.8.3 General Validation 83
4.8.4 Interface Validation 83
4.8.5 Verification Process 83
4.8.6 References and File links 83

4.8.6.1 References 83
4.8.6.2 File Links 84

4.8.7 Revision Table 84

5.0 System Verification Evidence 85
5.1 Universal Constraints 85

5.1.1 The system may not include a breadboard 85
5.1.2 The final system contains a student designed PCB, and custom application 85
5.1.3 If present, the enclosure ruggedly encloses the contents 87
5.1.4 All wire connections to the PCB must use connectors 90
5.1.5 All power supplies in the system must be 65% efficient 90
5.1.6 The system may be no more than 50% purchased modules 91

5.1 Interface Bus 91
5.1.1 Requirement 91
5.1.2 Testing Processes 91
5.1.3 Testing Evidence 91

5.2 Interface Type 91
5.2.1 Requirement 91
5.2.2 Testing Processes 92
5.2.3 Testing Evidence 92

5.3 Device Storage 92
5.3.1 Requirement 92
5.3.2 Testing Processes 92
5.3.3 Testing Evidence 92

5.4 Firmware Accessibility 93
5.4.1 Requirement 93
5.4.2 Testing Processes 93
5.4.3 Testing Evidence 93

5.5 Power Supply 94
5.5.1 Requirement 94
5.5.2 Testing processes 94
5.5.3 Testing Evidence 94

5.6 Client Software 95
5.6.1 Requirement 95
5.6.2 Testing Processes 95
5.6.3 Testing Evidence 96

5.7 Invalid Data 96
5.7.1 Requirement 96
5.7.2 Testing Processes 96
5.7.3 Testing Evidence 96

5.8 Data Accuracy 97
5.8.1 Requirement 97
5.8.2 Testing Processes 97
5.8.3 Testing Evidence 97

5.X References and File Links 98
5.X.1 References 98
5.X.2 File Links 99

5.5 Revision Table 99

6.0 Project Closure 100
6.1 Future Recommendation 100

6.1.1 Technical Recommendation 100
6.1.2 Global Impact Recommendation 100
6.1.3 Teamwork Recommendation 101

6.2 Project Artifact Summary with Links 101
6.3 Presentation Materials 102

1.0 Overview

1.1 Executive Summary-
The Low Cost Data Logger is a low cost automotive data collection device designed for
Hyster-Yale Materials Handling, inc. The data logger attaches to the diagnostics port of a vehicle
and records messages sent through the Controller Area Network (CAN) bus - the machine's
internal communication system [1]. The recorded data includes metrics like sensor
measurements, error codes, and machine state. Engineers can test vehicles while running the
data logger, then download and analyze the data to determine the causes of issues. Such a
device allows for rapid identification of vehicle design issues, improving product quality and
expediting the testing process.

Hyster-Yale already employs an existing third-party CAN logging solution. However, the current
solution is expensive - incurring both high initial fees for the hardware and high recurring fees
for software licenses. This project aims to provide an inexpensive alternative, minimizing costs
while striving to match the same standard of quality as the existing solution. The new solution is
fast, accurate, and reliable. Compared to the existing solution, this design improves on
repairability, maintainability, and extensibility.

1.2 Team Communication Protocols and Standards

Maxim Feoktistov feoktism@oregonstate.edu System integration & PCB design
Anton Liakhovitch liakhova@oregonstate.edu Firmware
Ashley Reid reidash@oregonstate.edu CAD and PCB soldering
Ryan Dillard dillardr@oregonstate.edu Code and Circuitry wiring

Table1: Team Protocols and Standards

Topic Protocol Standard

Task
Management

Team will use Trello for task
assignment and record of
completion.

During team meetings, the team will review
tasks to be completed and assign out cards
that represent these tasks in Trello. When a
task is complete, individuals responsible will
move it to the “completed” stack.

On-time
Deliverables

Each team member shall
complete their weekly tasks by
the deadline.

It is the responsibility of each team member
to ask for help if they are not on track and be
honest with the team about their progress.

Work Quality Each team member is
expected to produce
professional quality work.

If a task is completed in poor quality(does not
meet most requirements), the team must vote
if they should revise that task.

Communication Team will use Discord to
communicate. There will be
weekly in person meetings.

It is the responsibility of each team member
to attend every meeting and actively
participate in chat.If a team member cannot
attend a meeting, they should notify the team
before the start of the meeting

Team Integrity Teammates are honest with
their individual progress.

Everytime the team asks for updates, each
teammate will honestly discuss their progress
so far, whether or not they are behind. This is
to prevent any further miscommunication.

Work Load Each team member will be
assigned an equal workload

When dividing work, the team will estimate
how much time each member's portion will
take. The team will make sure that these time
estimates are comparable, with no more than
20% deviation.

Collaboration Team members help each
other in a productive manner,
without overstepping
boundaries.

When providing assistance on another team
member's task, team members will either
wait until asked for assistance or will politely
offer help. Help can be refused at any time.

mailto:liakhova@oregonstate.edu
mailto:reidash@oregonstate.edu

Communication Analysis

Project Partner Information and Project expectations:

➔ Project Partners' interest in the project and main role(s):
◆ Obtain a more efficient CAN logger to save time and money.

➔ Project Partners' profession/company:
◆ Electrical engineer in Hyster-Yale Materials Handling.

➔ Main types of information the Project Partners will want to know and why:
◆ Weekly updates about the project to make sure progress is being made.

➔ Project Partners' level of technical knowledge and terminology related to your project:
◆ New to the project but has experience with the product we want to replicate at a

lower cost.

➔ Preferred format and frequency for communication of various types of information:
◆ Have weekly meetings as needed, over Zoom. Communication preferred through

email.

1.3 Gap Analysis

CAN loggers are used by companies to record messages sent on the CAN bus of a vehicle or
lift truck. They are a common tool in industrial and design environments. Engineers often need
to analyze machine behavior after logging information from a lift truck with the logger attached
[1]. Hyster-Yale’s current solution costs more than $2500 per unit and requires expensive
licenses for software tools.

In conversations with the project partner, issues with Hyster-Yale’s current solution were
highlighted. The difficulty of retrieving data was a particularly pertinent problem. The project
partner highlighted the high cost to acquire the system, and continued costs to use it. Another
issue with the system was the limited ability to interact with and fix the device. These tools are
proprietary, making the system a black box to the user. This creates an opening for a low-cost
alternative that has similar functionality, while giving more freedom to the users and better fitting
their needs. The Low Cost Can Logger is estimated to cost under $100 per unit.

The primary end users are engineers and technicians at Hyster-Yale. This group of end users
determine the needs which influence the direction of the project. For instance, the project must
be able to reliably record data over extended periods of time. Engineers and technicians use
this data for testing and diagnostics, requiring the CAN logging solution to be reliable. To meet
reliability standards, it needs to work in rugged conditions around water and dirt, and handle a
fluctuating power supply. In addition, it is currently time consuming for Hyster-Yale technicians to
retrieve and access data from the existing CAN logging solution. The proposed solution thus
includes wireless data offload support. Since Hyster-Yale's requirements for a CAN logging
system are reasonable for any automotive manufacturer, the Low Cost Can Logger may also
attract other customers in the industry.

1.4 Project Timeline
The table below displays the data used to create the timeline. The highlighted bars in the table
display the critical path seen in the timeline visual show after. The deliverables in the
spreadsheet coordinate with a bar on the chart as well.

1.5 References and File Links

1.5.1 References
[1] Steve Corrigan, “Introduction to Controller Area Network (CAN),” Texas Instruments, Aug

2009. [Online]. Available:
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1635394468633&ref_url=https%253A%
252F%252Fwww.google.com%252F

1.5.2 File Links

https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1635394468633&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1635394468633&ref_url=https%253A%252F%252Fwww.google.com%252F

1.6 Revision Table

Date Name Section Revised What was revised?

10/20/21 Ryan D 1.3 &1.6 Added revision table and started Gap
Analysis

10/20/21 Maxim F 1.2 &1.6 Revised revision table and started section 1.2.
Section 1.2 requires Team revision.

10/21/21 Ashley R 1.4 &1.6 Added Initial Project Timeline

10/28/21 Maxim F 1.2 Revised section headers

11/8/21 Ryan D 1.3 Revised section using instructor, and peer
feedback.

11/11/21 Maxim F 1.2 & 1.5 Revised some wording on 1.2 and formatted
reference in section 1.5

11/9/21 Ashley R 1.4 Revised Timeline and added more description

11/19/21 Ashely R 1.4 Overhauled timeline layout

5/5/22 Anton L 1.1-1.6 Revised for tense, grammar

2.0 Requirements, Impacts, and Risks

2.1 Requirements
Verification prerequisite:
The verification procedures for several requirements shall depend on a "test bench" device. The
test bench shall consist of a microcontroller-based system, capable of sending test data over
two CAN channels. The test bench device shall support all protocols and speeds supported by
the CAN Logger, unless otherwise stated. The test bench shall be capable of sending any
specific, arbitrary set of CAN data.

The requirements are as follows:

2.1.1 Interface Bus
PPR: Interface with 2 or more CAN buses.

ER: The system will support at least two CAN channels.

Verification procedure:
1. Connect both CAN channels of the CAN Logger to the test bench.
2. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data

sequences on both channels simultaneously.
3. Run the test bench and record data with the CAN Logger.
4. Verify that the data received by the CAN Logger is the same data sent by the test bench.

Test pass condition: The received data must be identical to the sent data.

2.1.2 Interface Type
PPR: Interface with both J1939 and CANopen.

ER: The system will log both J1939 and CANopen.

Verification procedure:
1. Connect both channels of the CAN logger to the test bench.
2. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data

sequences on both channels simultaneously. The data sequences must use both
standard and extended identifiers as required by CANopen and J1939 respectively.

3. Run the test bench and record data with the CAN Logger.
4. Verify that the data received by the CAN Logger is the same data sent by the test bench.

Test pass condition: The received data must be identical to the sent data.

2.1.3 Device Storage
PPR: Store captured data on an SD card.

EP: The system will record data to two separate files.

Verification procedure:
1. Connect both CAN channels of the CAN Logger to the test bench.
2. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data

sequences on both channels simultaneously.
3. Run the test bench and record data with the CAN Logger.
4. Check the data of the SD card, there should be two files saved on the SD card.

Test pass condition: The SD card must contain two files of CAN data.

2.1.4 Firmware accessibility
PPR: The user should be able to update the firmware

EP: There will be a user guide that will provide information on how to update the system
firmware.

Verification procedure:
1. Share the user guide with the project partner.
2. Get feedback from the project partner.
3. Repeat steps 1 and 2 until the project partner approves the final edition.

Test pass condition: Project partner approves user guide.

2.1.5 Power Supply
PPR: The device should operate on a voltage range of 8-32v and draw a maximum of 0.375A

EP: The system will operate within the following power supply requirements:
Vmax: 35V
Vmin: 8V
Inominal: 55mA
Ipeak: 500mA

Voltage verification procedure:
1. Use a power supply to power the CAN logger.
2. Set the power supply to 8V and use the test bench to send data to the CAN logger to

check for proper operation (the definition of "proper operation" depends on the currently
loaded firmware).

3. Set the power supply to 32V and use the test bench to send data to the CAN logger to
check the power supply.

Test pass condition: The received data must be identical to the data sent by the test bench.

Current verification procedure:
1. Connect the CAN logger to a power supply.
2. Power the CAN logger from an 8V power supply. Assuming that the device draws a

relatively constant amount of power, it will draw the largest current when it is running at
the lowest rated voltage.

3. Set the test bench to continuously send random data on both CAN channels. This data
will not need to be verified.

4. Run the logger for 30 seconds, taking current draw measurements once every second.

Test pass condition: The average measured current does not exceed Ipeak, and does not
deviate from Inominal by more than 10mA for longer than five seconds for the entire test
duration.

2.1.6 Client Software
PPR: Wirelessly transfer collected data to a computer.

ER: The system will output a CSV file on the client computer.

Verification procedure:
1. Connect both CAN channels of the CAN Logger to the test bench.
2. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data

sequences on both channels simultaneously.
3. Run the test bench and record data with the CAN Logger.
4. Use the CAN Logger PC software solution to download the data from the device over

bluetooth. Use either a Windows or Linux system for this test.
5. Via inspection, verify that the data is in proper CSV format.
6. Verify that the received data is the same as the data sent by the test bench.

Test pass condition: The received data must be identical to the sent data when using both
Windows and Linux systems.

2.1.7 Invalid Data
PPR: The device should handle invalid packets without shutting down.

EP: The system will handle invalid packets and continue to operate normally.

Verification procedure:
1. Connect both CAN channels of the CAN Logger to the test bench.

2. Set the test bench to send a sequence containing at least one type of invalid data
packets. Invalid packets may include:

a. Packets that are too short.
b. Packets that are too long.
c. Packets sent at the wrong baud rate.

3. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data
sequences on both channels simultaneously.

4. Verify that the CAN logger has logged or ignored the invalid data, and continued to log
the subsequent valid data.

Test pass condition: The received data must be identical to the sent data, except for the
erroneous packets. Erroneous packets must be ignored or marked by an appropriate error
message in the CSV file.

2.1.8 Data Accuracy
PPR: The device should not miss packets.

ER: The system will process input data at a rate of at least 1 Mb/s.

Note: 1 Mb/s refers to the baud rate, not the data rate.

Verification procedure:
1. Connect both CAN channels of the CAN Logger to the test bench.
2. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data

sequences on both channels simultaneously. The data shall be sent at the maximum
possible rate, and shall be of the highest possible complexity. The sequence shall be at
least 1MB in size.

3. Run the test bench and record data with the CAN Logger.
4. Verify that the received data is the same as the data sent by the test bench.

Test pass condition: At least 99.9% of received data must be identical to the data sent by the
test bench.

2.2 Design Impact Statement

2.2.1 Introduction
This assessment serves to explore the different negative impacts that a CAN Logger

could possibly introduce or magnify. As the future electrical engineers, there is a responsibility to
consider these impacts as our future designs will have real world impacts. This school year, the
team's goal is to produce a lower cost CAN logger that still has the power to perform the same
amount of accurate data collection. The team collectively works with Hyster-Yale company to
produce their possible best version. The CAN Logger is a universal tool used in many
industries, but in Hyster-Yale's case, the CAN logger is used to monitor forklifts. Typically, the
actual CAN Logger has more passive actions, as it assists in machine maintenance and
provides insight to multiple systems running. The CAN logger is used as a tool for a company’s
actual products or large devices. However, exploring more into the uses and creation of the
CAN logger, the realization was set that it was a pathway for the CAN bus to take over many
industries. Researching into the CAN loggers, it's an incredibly diverse tool used into multiple
industries. It doesn’t stay constrained to just forklift companies. The original design impacts
multiple professional sectors. It also never has many insights into how its end of life uses are
done. After the initial exploration, the team learned that the CAN logger does have potential
negative impacts in the following sectors: public health, safety, and welfare impacts; cultural and
social impacts; and lastly, environmental impacts. The rest of the paper will follow this format
touching on all of these subjects respectively. The paper will also contain positive impacts that
deem important to mention.

2.2.2 Public Health, Safety, and Welfare Impacts
To make a product that is more affordable to produce and maintain, which is the team's

main goal, there can be potential sacrifices to it’s quality. For example, the team is working to
produce a CAN logger at the refraction of the price, including all research and development
costs. To cut down this price, it is not possible to pick the components with the absolute highest
safety rating. This comes at a price because, as people interact with it everyday to retrieve data,
there is a higher risk with more maintenance and everyday usage[8]. Some of these potential
risks include: unreliable voltage control, lower quality internal components, and potentially affect
other wireless connections. For instance, if there is an edge case that was not tested for a large
current pull, there will be a much higher risk of imploding the systems. A lot of internal
components,when made at a lower rate, introduce different varieties of problem, the biggest
being that it contains lead. Despite low level traces, there are studies that continue to prove the
high risks of using leaded components[3].

Moreover, wireless connections, when done improperly, pose a risk to those that require
internal technology. Indstrusty technology has shown long term side effects with public citizens
who have pacemakers or other internal medical equipment, as these can interfere with the
signals being produced by a couple beats. With minimal exposure, this can be a rare off beat
signal[9] However, if there user required daily interactions with a device like these, there have
been occasions where the internal equipments missed multiples beats during the day or there
was long term decrease in pulse accuracy, “especially if it was poorly constructed electrical
device” [4] One of the biggest conversations my group has had was on how the system was to
transmit data and how much in the budget can be allotted to a higher quality wireless module.

Lastly, when the data loggers are created with a lower cost, shorter time, and confined
testing time, there is no way to verify its accuracy over a long period of time. The unknown

potential for its reducing accuracy over time is something to consider. Most systems products
that require a CAN logger, are cumbersome, such as forklifts, sem trucks, autonomous vehicles.
If their lower cost CAN Logger was not accurate after a year and this was not caught by anyone
working with these large mechanisms, the safety repression could be disastrous[8]. Despite this
limited testing time during the school year, the team has planned to take the difference in
accuracy between test periods and to make these long term predictions as accurate as
possible. Even though it isn’t perfect, any attempt helps try to prevent these accidents. This is a
practice many companies attempt in order to create accurate safety readings and warnings.
When the project is officially finished by the team, this planned design will continue to be
mitigated by the suggestion of our team.

2.2.3 Cultural and Social Impacts
The biggest reason behind this senior design project is the price. The market CAN

loggers currently runs for 2500, and the licensed software that interacts with loggers costs at
least a thousand dollars more. While this tool is incredible for large companies and ensures the
viability of large machinery, it bottlenecks this product away from the rest of the public. The
team’s current design would reduce the cost of a CAN logger to 50 dollars. Taking into account
the company’s exact needs and programming non-licensed code. More affordable and
accessible options allows smaller companies to reach their goals and have the ability to create
and process larger systems for a company of their own size. However, the cheaper CAN loggers
would have less reliability, life span, and efficiency, which directly leads to project failure. There
was a study that found that collectly, employee’s mental health declines proportionally to the
success or failure of their work[10]. CAN Loggers have the responsibility of being a successful
tool to carry out, and work towards these goals. Despite this, CAN loggers being just a tool
compared to an actual product or invention, it directly impacts someone’s life. CAN Loggers and
their counterpart, can buses have now been so streamlined that they have impacted
communities by replacing maintenance jobs and replacing labor.

It could have great impacts as now this type of technology with open source code. If
there is a possibility that we can create our technology with open source code instead of
restricting it to our company due to the NDA, it could cut down exponentially on usage costs.
This would also add to the movement starting to be picked up that all software could be open
source, allowing humanity to move forward faster and encourage all of us to work towards the
same goal, the opportunity to create a better future. To have the ability to create from open
source, it drives down the cost to allow anyone who wants to learn or create. It breaks down
social barriers and blurs the lines between different economic status[2]. The team must sign
NDAs to develop this project in partnership with the project partner, however something we
have had multiple discussions over is the code to extract data from the system. Keeping this
open source would not reveal any trade secrets, yet would allow access to this material that
could drive down the cost of this tool. It would decrease the gap in who could use this product.
Taking it to a bigger scope, it could provide everyday users the tools to better their own lives and
the lives of those around them. It shifts the culture of giving these big companies the power,
creating more access and practicality. Despite this project having a smaller scope, this could be
part of normalizing open-source code, if the project partner agrees.

2.2.4 Environmental Impacts
Reflecting back to the usability of the CAN logger, let’s magnify on the lifespan and end

of life cycle of data logger products. It is good practice to keep in mind how long these products
should last relative to negative impacts these materials of the logger will have . According to a
study, this kind of technology should last at least 10 to 15 years[1]. If it was achievable within
budget and timeframe, the team could meet this goal. However in reality, when making a
cheaper product in a short amount of time, this is not always feasible. The products'
microcontroller will stop having updated support within 10 years. One of the team’s goals is to
be able to make a product that is modularized enough to be able to switch out components as
time goes on, and technology improves. It is difficult to prepare for that type of situation, so one
of the main goals will be to ensure the code is maintainable and written in a clear and concise
style that is easy to understand. So if a product needs to be switched out, only that component
piece needs to be thrown away, but the rest of the system can continue to run with a new
module.

Besides reducing the amount of waste by modularizing the code, another possible
solution would be to at least ensure that whenever the parts do need to be thrown away, the
materials it is made with, have a less negative impact on the environment. In the electronics
industry, it is extremely hard to create biodegradable waste. This currently can’t be a oal, but the
waste we do produce is even more harmful to our earth than average .Currently, even though
electronic waste only takes responsibility for 2-3% of our landfills[7]. It is responsible for up to
70% of the world’s hazardous waste. This is now not just an environmental issue but also a
safety issue. Reading the IEE vows, there is a responsibility, as engineers, to prevent as much
toxic waste as possible entering our landfills, and then minimizing how much actual waste is
created with what engineer’s invent. For the team’s project, specifically, it is difficult to mitigate
the specific materials, as there are current constraints to budget, timeline, and availability for
small orders. However, the enclosure for our design will have slimmer design, and be built
hopefully with wood so it is made with biodegradable material. On a larger scale, research
shows that there is no alternative to actual components, however, companies are practicing a
similar technique. Packaging and enclosures are trying to use less material, parking with
cardboard instead of plastic. It is the best situation right now in terms of mitigation.

2.2.5 Economic Impacts

These past two years have induced a lot of supply chain issues and cost of living around
the world. Reflecting on it, this could be an amazing opportunity to assist this issue. If the team
is able to make a successful low cost CAN logger, there would be ways that could allow people
using forklifts in warehouses, semi truck drivers, and the maintenance employees working on
them all day, to have a much bigger sense of relief and more time to actually get their work
done. This could create a positive domino effect.

Also wanting to point back to how a lower cost CAN logger can reduce the gap between
two people with much different socioeconomic backgrounds[5]. It allows more and more people
to buy these for potentially their own personal products, especially with the cost of living
rightnow going for goods. Even though it can be a little bit of a stretch as more things that
require CAN loggers are bigger systems done by company, people would have to spend through
but rather have a positive impact on the enocy by allowing individuals themselves to purchase it

rather than just a company. Going off of that, it has a positive impact on the supply chain issue
around the world by making people’s labor more efficient and easier.

One big potential downside to the lower cost CAN logger is that, if it makes people’s jobs
much easier, could it potentially replace the positions of the employees. There would be less
need for jobs for hands on tracking of the CAN busses if a CAN data logger can fulfill these
roles independently and transmit their data into a database to be handled by another algorithm.
There is potential for this to happen as we have seen it in years past. Looking at past solutions,
this has happened with big system tractors. Decades ago, there were thousands of people
working in the farming industry. Nowadays, technology in tractors has improved so much it has
only a fraction of the labor that there once was[4]. This is actually a product that CAN buses and
CAN data loggers have had a direct impact in, underlining the absolute possibility. It is
saddening but an accurate CAN Logger with a CAN bus being implemented everywhere on the
market could drive the forces of technology, especially in autonomous vehicles and autonomous
trucks, that the semi truck industry is actually looking to replace some of its labors as long as the
autonomous vehicles are accurate enough. It is still in the beginning stages but it could
definitely contribute to this fear. New technology is exciting but there is the risk that what if
people can find another job that meets their skills but instead take away practically a whole
sector of labor.

2.2.6 Conclusion
Reflecting on the possibilities, I think as engineering majors, there is the power to define

how much our inventions, breakthroughs, and new technology will impact the earth. Going over
our the possible negative design implications, the team should take into these design ideas
when building and investing into the low Cost CAN logger:

● Research components and ensure they are sourced properly
● Ensure that design is modularized so items can individually be replaced instead

of system
● Continue to ensure the cost to build the system is practical
● Look for ways to lower to hazard waster the system will produce, such as a

biodegradable enclosure
● Ensure that the code used for this system is open source
● Make sure that the product is user friendly for the every consumer

It is difficult to imagine something as relatively insignificant a tool could affect our day to
day lives, but looking at how tractors took over a whole industry, there are micro plastics
invading our oceans, chemical ingested from tainted water due to careless acts done back in
the 70’s, anything and everything can lead to either a better of world or a worse world. This tool
could have the greatest economic impact seen with the example of advanced transportation.
Discussing this with my team, it is agreed that this is something that matters, as we just want to
make the world a more efficient, better place to live in.

2.2.7 References

[1]A. Brent and C. Labuschagne, “Social Indicators for Sustainable Project and Technology Life
Cycle Management in the process industry (13 pp + 4),” The International Journal of Life Cycle
Assessment, vol. 11, no. 1, pp. 3–15, Jan. 2006. [Online] Available:
https://link.springer.com/article/10.1065/lca2006.01.233

https://link.springer.com/article/10.1065/lca2006.01.233

[2] B. Fitzgerald, “The transformation of Open source software,” MIS Quarterly, vol. 30, no. 3, p.
587, 2006. [Online] Available:https://www.jstor.org/stable/25148740

[3]C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “Properties of lead-free solder alloys with
Rare Earth element additions,” Materials Science and Engineering: R: Reports, vol. 44, no. 1,
pp. 1–44, 2004.[Online] Available:
https://www.sciencedirect.com/science/article/abs/pii/S0927796X04000105

[4]G. L. Smirnov, “Patterns of growth of the working class and change in its composition by trade
and Skill,” Soviet Sociology, vol. 6, no. 1-2, pp. 25–33, Dec. 2014. [Online] Available:
https://doi.org/10.1016/j.mser.2004.01.001

[5]M. Warschauer and T. Matuchniak, “New Technology and Digital Worlds: Analyzing Evidence
of equity in access, use, and outcomes,” Review of Research in Education, vol.34, no. 1, pp.
179–225, Mar. 2010.[Online] Available:
https://www.semanticscholar.org/paper/New-Technology-and-Digital-Worlds%3A-Analyzing-of-in
-Warschauer-Matuchniak/afcee00ca804a27e0abc4263fb526532c2b71c22

[6]P. Chowdhury, S. K. Paul, S. Kaisar, and M. A. Moktadir, “Covid-19 pandemic related supply
chain studies: A systematic review,” Transportation Research Part E: Logistics and
Transportation Review, vol. 148, p. 102271, Apr. 2021.[Online] Available:
https://pubmed.ncbi.nlm.nih.gov/33613082/

[7]S. Needhidasan, M. Samuel, and R. Chidambaram, “Electronic waste – an emerging. threat
to the environment of Urban India,” Journal of Environmental Health Science and Engineering,
vol. 12, no. 1, 2014.[Online] Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908467/

[8]T. Kern and L. Willcocks, “Exploring Information Technology Outsourcing Relationships:
Theory and practice,” The Journal of Strategic Information Systems, vol. 9, no. 4, pp. 321–350,
Dec. 2000.[Online] Available: https://doi.org/10.1016/S0963-8687(00)00048-2

[9]Ø. Michelsen, “Use of reliability technology in the process industry,” Reliability Engineering &
System Safety, vol. 60, no. 2, pp. 179–181, May 1998.[Online] Available:
https://www.researchgate.net/publication/341606900_Reliability_Analysis_in_Process_Industrie
s-An_Overview

[10]“Devices that may interfere with ICDS and pacemakers,” www.heart.org, 30-Sep-2016.
[Online].https://www.heart.org/en/health-topics/arrhythmia/prevention--treatment-of-arrhythmia.
Accessed: 06-Dec-2021. [Online] Available:
https://www.heart.org/en/health-topics/arrhythmia/prevention--treatment-of-arrhythmia/devices-t
hat-may-interfere-with-icds-and-pacemakers

[11]M. Russo, L. Guo, and Y. Baruch, “Work attitudes, career success and health: Evidence
from China,” Journal of Vocational Behavior, vol. 84, no. 3, pp. 248–258, 2014.[Online]
Available: https://doi.org/10.1016/j.jvb.2014.01.009Get

https://www.jstor.org/stable/25148740
https://www.sciencedirect.com/science/article/abs/pii/S0927796X04000105
https://doi.org/10.1016/j.mser.2004.01.001
https://www.semanticscholar.org/paper/New-Technology-and-Digital-Worlds%3A-Analyzing-of-in-Warschauer-Matuchniak/afcee00ca804a27e0abc4263fb526532c2b71c22
https://www.semanticscholar.org/paper/New-Technology-and-Digital-Worlds%3A-Analyzing-of-in-Warschauer-Matuchniak/afcee00ca804a27e0abc4263fb526532c2b71c22
https://pubmed.ncbi.nlm.nih.gov/33613082/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908467/
https://doi.org/10.1016/S0963-8687(00)00048-2
https://www.researchgate.net/publication/341606900_Reliability_Analysis_in_Process_Industries-An_Overview
https://www.researchgate.net/publication/341606900_Reliability_Analysis_in_Process_Industries-An_Overview
https://www.heart.org/en/health-topics/arrhythmia/prevention--treatment-of-arrhythmia/devices-that-may-interfere-with-icds-and-pacemakers
https://www.heart.org/en/health-topics/arrhythmia/prevention--treatment-of-arrhythmia/devices-that-may-interfere-with-icds-and-pacemakers
https://doi.org/10.1016/j.jvb.2014.01.009
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S0001879114000220&orderBeanReset=true

2.3 Risks
Table 2.1. Risk Assessment and Action Plans

Risk
ID

Risk Description Risk Category Risk
Probability

Risk
Impact

Performance
indicator

Responsible
party

Action Plan

R1 Part availability
[1]

Technical
Schedule

50% High Seller stock
levels

Anton
Liakhovitch

Retain a list of alternatives
part stockers

R2 Covid Public health
Schedule

30% Medium Infection rates Ryan Dillard Retain alternative meeting
plans.

R3 Project partner
availability

Organization
Political

10% High Decreased
contact

Ashley Reid Transfer responsibility.
Inform Instructors or get

alternate contact

R4 Project falling
behind schedule

Organizational
Scheduling

50% Medium Timelines are
starting to slip

Max
Feoktistov

Retain times for
emergency meetings.

R5 Teammate Fails Organizational
Scheduling

12.5% High Grades Ryan Dillard Transfer responsibilities

R6 Going Over
Budget

Organizational 10% Low Budget Max
Feoktistov

Retain an accurate Bill of
Materials

R7 Customer
Require-

ments Change

Organization
Scheduling

10% Medium Customer
Requirements

Ashley Reid Reduce changes to
engineering requirements

R8 Lack of access to
tools and

information

Technical
Political

10% Low Ability to test
and build
system

Anton
Liakhovitch

Avoid reliance on one
testing method. Retain

communication with
Project Partner and

Instructors

2.4 References and File Links

2.4.1 References
[1] M. Ludwikowshi, W. Sjoberg, “Semiconductor shortage and the U.S. auto industry.”

Reuters, para. 1, June 22, 2021. [Online]. Available:
https://www.reuters.com/legal/legalindustry/semiconductor-shortage-us-auto-industry-2021-
06-22/

2.4.2 File Links

https://www.reuters.com/legal/legalindustry/semiconductor-shortage-us-auto-industry-2021-06-22/
https://www.reuters.com/legal/legalindustry/semiconductor-shortage-us-auto-industry-2021-06-22/

2.5 Revision Table

Date Name Section Revised What was revised?

10/25/21 Ryan D 2.1-2.5 Formatted Section 2,created the revision
table, and risk table

10/28/21 Max F 2.1 Created Requirements section, defined
requirements.

10/28/21 Anton L 2.1 Edited and defined the requirements

10/28/21 Ryan D 2.3 Filled out the risks table

11/11/21 Ryan D 2.3 Revised and reformatted risks table

11/11/21 Ashley R 2.3 Revised and reformatted risks table

11/11/21 Maxim F 2.1 Revised and reformatted the requirements
section

11/18//21 Maxim F 2.1 Revised requirements based on feedback

11/18/21 Anton L 2.1 Revised requirements based on feedback

12/02/21 Anton L 2.1 Replaced "bluetooth" requirement with
"firmware updatability" requirement

10/29/21 Ashley Reid 2.2 Initial Draft

11/13/21 Ashley Reid 2.2 Added two additional resources

12/1/21 Ashley Reid 2.2 Revised on specific concerns from Rachel

12/4/21 Ashley Reid 2.2 Overall Document Revision

12/5/21 Ashley Reid 2.2 Final Format and Spellcheck

5/5/22 Ashley Reid 2.2 Extra Revisions after grading

*Please only include notable revisions to Section 2 and any tasks that need to be done to the
Section

3.0 Top-Level Architecture

3.1 Block Diagram

3.2 Block Descriptions

3.2.1 Buck Converter
The MCU and other modules in the project require a lower voltage than what the vehicle
supplies to the system. The Logger accepts an input voltage between 8-32V. The buck
converter regulates the voltage down to two voltages: 5V and 3.3V. This powers the MCU and
other modules. Ryan Dillard is in charge of developing this block.

3.2.2 MCU
The microcontroller is an STMicroelectronics STM32f411CEU6. In order to perform all
necessary functions in the CAN logger system, an MCU must meet a specific set of
requirements. It must have at least three SPI interfaces - one for the storage module and one
for each CAN transceiver. It must have a maximum clock speed of at least 4MHz, so that it can
process data at maximum speed from both CAN interfaces and send that data to storage in real
time. It must have a UART for interfacing with the Bluetooth module. Finally, the MCU must
accept an input voltage of either 5V or 3.3V. The STM32F411CEU6 meets all of these
requirements. Anton Liakhovitch is responsible for this block.

3.2.3 MCU Firmware
The MCU firmware consists of two parts. The first is a critical section which collects CAN data
from the CAN controller and records it on the storage medium. This section is optimized as
much as possible for stable real-time performance. The other part of the firmware handles data
upload via Bluetooth. This section runs while the critical section is stopped, and has no hard
performance requirements. Anton Liakhovitch is responsible for this block.

3.2.4 CAN Controller/Transceiver
The CAN Controller/Transceiver block is responsible for Receiving and Transmitting CAN
signals and communicating with the MCU. The MCP2515 CAN controller is being used to
interpret the CAN messages and send the packages to the MCU in a package that the MCU can
interpret. Maxim Feoktistov is responsible for the CAN Controller/Transceiver block.

3.2.5 Storage
Messages sent over the CAN bus must be stored to use in analysis later. The MCU transmits
data to the storage medium via SPI. The data is stored on an SD card at 25MHz with the SPI
connection. Data is stored as text in the csv file format. Ryan Dillard is in charge of developing
this block.

3.2.6 Bluetooth Module

The customer requires the capability to wirelessly transfer data from the CAN logger to a
computer. A bluetooth module allows a user to collect the data from a system without worrying
about security issues. This project uses the HC-06. Ashley Reid is in charge of developing this
block.

3.2.7 Client Software
Although the Bluetooth interface works standalone with standard serial terminal applications, a
graphical client program makes the Bluetooth interface easier to use. The client software allows
the user to download data from the CAN Logger and set various parameters. Ashley Reid is in
charge of this block.

3.2.8 PCB
The system contains a single PCB that integrates all the components. EAGLE is used to create
the schematic containing all the components of the system and design a PCB board.The PCB
design is then ordered at OSHPark.com. Maxim Feoktistov will be responsible for the PCB
block.

3.2.9 Enclosure

This system will be used in a rugged environment and building an enclosure ensures that it has
a form of protection. This can potentially increase the longevity of the system. Additionally, an
enclosure increases the professionalism of the project when presenting to our project partners.
It is manufactured with 3D-printed PLA. Ashley Reid is in charge of this block.

3.3 Interface Definitions

Interface Name Specifics

otsd_bck_cnvrtr_dcpwr ● Vin_max: 35V
● Vin_min: 8V
● I_peak: 500mA
● I_nominal: 375 mA
● Other: Barrel Jack

otsd_cn_cntrllrtrnscvr_comm ● Baud Rate= 250K/500K
● CAN Protocol [1]
● Logic Level High: 3.75 V
● Logic Level Low: 1.25 V

bck_cnvrtr_bltth_dcpwr ● Ipeak: 100mA
● I_nominal: 30mA
● Vmax: 3.5V
● Vmin: 3.0V

bck_cnvrtr_cn_cntrllrtrnscvr_dcpwr ● Ipeak: 100mA
● Inominal: 65mA
● Vmax: 3.5V
● Vmin: 3.0V

bck_cnvrtr_strg_dcpwr ● Ipeak: 100mA
● Inominal: 30mA
● Vmax: 3.5V
● Vmin: 3.0V

bck_cnvrtr_mc_dcpwr ● Ipeak: 100mA
● Inominal: 10mA
● Vmax: 3.5V
● Vmin: 3.0V[2]

frmwr_mc_data ● C Language
● Architecture: ARM Cortex M4 with DSP

extensions
● Code Size: 512kB max
● Configures: USART & SPI

otsd_frmwr_comm ● Serial Wire Debug interface
● Logic Level: 0V Low
● Logic Level: 3.3V High
● Maximum CLK: 50MHz

bltth_clnt_sftwr_data ● Communication with Bluetooth driver
● Virtual RS-232 interface
● Data: ASCII data in CSV format

● Command set: AT-style commands from client

bltth_mc_comm ● RS-232 serial protocol
● Baud rate = 9600
● Logic Level: 0V Low
● Logic Level: 3.3V High

cn_cntrllrtrnscvr_otsd_comm ● Baud Rate=250K/500K
● CAN Protocol [1]
● Logic Level High: 3.75 V
● Logic Level Low: 1.25 V

cn_cntrllrtrnscvr_mc_comm ● SPI
● Data is received by reading 8 byte registers
● 10Mb/s maximum speed
● Logic Level: 0V Low
● Logic Level: 3.3V High

strg_mc_data ● SD over SPI
● Logic Level: 0V low
● Logic Level: 3.3V High
● 10Mb/s maximum speed

clnt_sftwr_otsd_data ● Output: text file written to client filesystem
● Text file in CSV format
● LF line endings
● UTF-8 encoding
● File saved with RW permissions for current

user and group

mc_bltth_comm ● RS-232 serial protocol
● Baud rate = 9600
● Logic Level: 0V Low
● Logic Level: 3.3V High

mc_cn_cntrllrtrnscvr_comm ● SPI
● Logic Level: 0V Low
● Logic Level: 3.3 High
● 10Mb/s maximum speed
● Data is received by reading 8 byte registers

mc_strg_data ● SD over SPI
● Logic Level: 0V low
● Logic Level: 3.3V High
● 10Mb/s maximum speed

3.4 References and File Links

3.4.1 References
[1]Steve Corrigan, “Introduction to Controller Area Network (CAN),” Texas Instruments, Aug
2009. [Online]. Available:
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1635394468633&ref_url=https%253A%252
F%252Fwww.google.com%252F

[2] “STM32F411xC STM32F411xE,” ST life.augmented, Dec 2017. [Online]. Available:
https://www.st.com/resource/en/datasheet/stm32f411re.pdf

CAN controller transceiver datasheet
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-wit
h-SPI-20001801J.pdf

3.4.2 File Links

3.5 Revision Table

Date Name Section Revised What was revised?

11/15/21 Ryan D 3.1-3.5 Formatted Section 3,created the revision table

11/18/21 Max F 3.2-3.3 Created and Filled out Interface Table, added
block description

11/18/20 Ashley R 3.2 Added personal block description

11/18/21 Ryan D 3.3 Added interface properties

11/18/21 Anton
Liakhovitch

3.2-3.3 Added info on part descriptions, added
interface properties

12/2/21 Anton
Liakhovitch

3.1 & 3.3 Revised interface properties, changed block
diagram formatting

12/2/21 Ryan D 3.3 Revised interface properties

12/2/21 Max F 3.3 Revised interface properties

5/5/22 Anton L 3.1-3.5 Edited for tense and grammar

https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1635394468633&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1635394468633&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.st.com/resource/en/datasheet/stm32f411re.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf

4.0 Block Validations

4.1 Buck Converter

4.1.1 Description
The MCU and other modules in the project require a lower voltage than will be supplied

to the system. The Logger accepts a DC voltage between 8-32V from the vehicle. The buck
converter regulates the voltage down to 3.3V to power the MCU and other modules. Ryan
Dillard championed the development of this block.

4.1.2 Design

1. C1 needs to be an electrolytic capacitor able to handle up to 40V for the system to work.

4.1.3 General Validation
The design of this block is guided by the system power requirements. This block is the

power regulator for the system. It supplies 3.3V to all other components in the system.

Additionally it will be able to take an input voltage ranging from 8V up to 35V. This power supply
will be at least 65% efficient if you calculate the Watts Out vs the Watts into the system.

To achieve this, the design uses the LM2596 simple switcher step-down voltage
regulator. This meets the main system power requirement by supporting input voltage ranges
from 4.75V to 40V with up to 3A of load. Additionally, the 3.3V version handedly meets the
efficiency requirements with 73% efficiency if it's under a 3A load with an input voltage of 12V.

4.1.4 Interface Validation
Table 1: Interface Property Validation otsd_bck_cnvrtr_dcpwr

Interface
Property

Why the value was
used

Details that support this value

Inominal:
375mA

This current was
chosen using the
power limit of 3W for
the system. This
would be the current
highest regular
current.

For the LM2596 in the TO-263 package:
● Component is rated to 3A (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]
●

Ipeak: 500mA During peak usage if
the system becomes
a 4W load this would
be the highest
current it would need
to handle.

For the LM2596 in the TO-263 package:
● Component is rated to 3A (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]
●

Vmax: 35V This voltage was
chosen as being able
to run off 35V
maximum was a
system requirement.

For the LM2596 in the TO-263 package:
● Max voltage input is 40V (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]
●

Vmin: 8V This voltage was
chosen as being able
to run off 8V
minimum was a
system requirement.

For the LM2596 in the TO-263 package:
● Min voltage input is 4.75V (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]
●

Table 2: Interface Property Validation bck_cnvrtr_bltth_dcpwr

Interface
Property

Why the value was
used

Details that support this value

Inominal:
30mA

This value was
chosen based on the

For the HC-05:
● The operating current of the device is 30mA

bluetooth module
device operating
current.

Ipeak: 100mA This was chosen by
adding a safety
margin to the current
and then doubling
the current. We don’t
expect the bluetooth
module to ever need
this much current,
but we should have
the ability to supply
it.

For the HC-05:
● The operating current of the device is 30mA

Vmax: 3.5V This was chosen
based on the
potential variation of
the Buck Converter
plus 100mV.

For the LM2596 in the TO-263 package:
● Max output voltage is 3.432V (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]

Vmin: 3.0V This was chosen
based on the
potential variation of
the Buck Converter
minus 100mV.

For the LM2596 in the TO-263 package:
● Min output voltage is 3.168V (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]

Table 3: Interface Property Validation bck_cnvrtr_cn_cntrllrtrnscvr_dcpwr

Interface
Property

Why the value was
used

Details that support this value

Inominal:
60mA

This value was
chosen based on the
operating current of
the 2 CAN
controllers, 2 CAN
transceivers and a
voltage boost
regulator

For the MCP2515:
● The operating current is 10mA [2]

For the MCP2551:
● The operating current is 10mA [4]

Ipeak: 100mA This value was
chosen based on the
operating current of
the 2 CAN
controllers, 2 CAN
transceivers and a
voltage boost

For the MCP2515:
● The operating current is 10mA [2]

For the MCP2551:
● The operating current is 10mA [4]

regulator.We don’t
expect the module to
ever need this much
current, but the block
should have the
ability to supply it.

Vmax: 3.5V This was chosen
based on the
potential variation of
the Buck Converter
plus 100mV.

For the LM2596 in the TO-263 package:
● Max output voltage is 3.432V (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]

Vmin: 3.0V This was chosen
based on the
potential variation of
the Buck Converter
minus 100mV.

For the LM2596 in the TO-263 package:
● Min output voltage is 3.168V (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]

Table 4: Interface Property Validation bck_cnvrtr_strg_dcpwr

Interface
Property

Why the value was
used

Details that support this value

Inominal:
30mA

Based on 10Mb/s
write speed

From SD standard
● At Max write SD card would use 0.33W at

50Mb/s

Ipeak: 100mA Specified as max by
SD standard

For the STM32f411CEU6 in the LQFP64 package:
● Max clock speed supports 50Mb/s [1]

From SD standard
● At Max write SD card would use 0.33W at

50Mb/s

Vmax: 3.5V This was chosen
based on the
potential variation of
the Buck Converter
plus 100mV.

For the LM2596 in the TO-263 package:
● Max output voltage is 3.432V (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]

Vmin: 3.0V This was chosen
based on the
potential variation of
the Buck Converter
minus 100mV.

For the LM2596 in the TO-263 package:
● Min output voltage is 3.168V (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]

Table 5: Interface Property Validation bck_cnvrtr_mc_dcpwr

Interface
Property

Why the value was
used

Details that support this value

Inominal:
10mA

Based on the
expected current
needs of the MCU

For the LM2596 in the TO-263 package:
● Component is rated to 3A (Electrical

Characteristics – 3.3-V Version, pg. 6)[1]
For the STM32f411CEU6 in the LQFP64 package:

● Runs at 9.4mA at 50MHz [3]

Ipeak: 100mA Based on maximum
running power of
MCU with extra
features in used
multiplied by 2

For the LM2596 in the TO-263 package:
● Component is rated to 3A (Electrical

Characteristics – 3.3-V Version, pg. 6)[1]

Vmax: 3.5V This was chosen
based on the
potential variation of
the Buck Converter
plus 100mV.

For the STM32f411CEU6 in the LQFP64 package:
● The MCU can work on 1.7 to 3.6V (pg. 1)[3]

For the LM2596 in the TO-263 package:
● Max output voltage is 3.432V (Electrical

Characteristics – 3.3-V Version, pg. 6)[1]

Vmin: 3.1V This was chosen
based on the
potential variation of
the Buck Converter
minus 100mV.

For the STM32f411CEU6 in the LQFP64 package:
● The MCU can work on 1.7 to 3.6V (pg. 1)[3]

For the LM2596 in the TO-263 package:
● Min output voltage is 3.168V (Electrical

Characteristics – 3.3-V Version, pg. 6)[1]

4.1.5 Verification Process
For input interfaces:

1. Set up the circuit for the buck converter
2. Connect the circuit to a power supply, and to a variable load generator at 200mA load.
3. Apply a load to the voltage regulator, and sweep the voltage from the power supply from

8V to 35V.
4. Use a multimeter to measure the output voltage.
5. The otsd_bck_cnvrtr_dcpwr interface passes the output and stays within the 3.0V to

3.5V range, and the input current doesn’t exceed nominal.
6. Adjust the load so that the block will operate for extended periods with 375mA input

current, and 500mA peak input current.
For output interfaces:

1. Set up the circuit for the buck converter
2. Connect the circuit to a power supply, and to a variable load generator.
3. Adjust load to match the sum of nominal currents from bck_cnvrtr_mc_dcpwr,

bck_cnvrtr_strg_dcpwr, bck_cnvrtr_cn_cntrllrtrnscvr_dcpwr, and bck_cnvrtr_bltth_dcpwr
at 190mA.

4. Sweep the input voltage from 8V to 35V.
5. Measure the output voltage to see if it stays in the 3.0V to 3.5V range.

6. If the output voltage can stay in the 3.0V to 3.5V range and maintain nominal current
output the interfaces pass.

7. Adjust input voltage to 12V
8. Adjust the load to the sum of peak currents from bck_cnvrtr_mc_dcpwr,

bck_cnvrtr_strg_dcpwr, bck_cnvrtr_cn_cntrllrtrnscvr_dcpwr, and bck_cnvrtr_bltth_dcpwr
at 500mA.

9. Measure output voltage to see if it stays in the 3.0V to 3.5V range for 1 second.
7. If the output voltage can stay in the 3.0V to 3.5V range and maintain peak current output

the interfaces pass.

For power efficiency:
1. Set the circuit up for the buck converter.
2. Connect the circuit to a power supply and to a variable load generator.
3. Set input voltage to 8V
4. Set load to 200mA
5. Measure the input current and calculate the input power.
6. Measure the output voltage and calculate the output power.
7. Divide the input power by the output power to get a rough efficiency.
8. Repeat with input voltage at 35V
9. This passes the power constraint if efficiency is above 65% for both min and max

voltages.

4.1.6 References and File links

4.1.6.1 References
[1] “LM2596 Simple Switcher,” Texas Instruments, November 1999, [Online]. Available:
https://www.ti.com/lit/ds/symlink/lm2596.pdf?ts=1642779956402&ref_url=https%253A%252F%2
52Fwww.bing.com%252F
[2] “Stand-Alone CAN Controller with SPI Interface,” Microchip, [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-wit
h-SPI-20001801J.pdf
[3] “STM32F411xC,” STm, December 2017, [Online]. Available:
https://www.st.com/resource/en/datasheet/stm32f411re.pdf
[4] “High-Speed CAN Transceiver,” Microchip, [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/20001667G.pdf

4.1.6.2 File Links

4.1.7 Revision Table

Date Name Section Revision

https://www.ti.com/lit/ds/symlink/lm2596.pdf?ts=1642779956402&ref_url=https%253A%252F%252Fwww.bing.com%252F
https://www.ti.com/lit/ds/symlink/lm2596.pdf?ts=1642779956402&ref_url=https%253A%252F%252Fwww.bing.com%252F
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://www.st.com/resource/en/datasheet/stm32f411re.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/20001667G.pdf

1/7/2022 Ryan Dillard 4.1.1-4.1.
7

Created document and wrote rough content for each
section

1/19/2022 Ryan Dillard 4.1.1 Edited section to match current needs of the system,
and removed old information

1/20/2022 Ryan Dillard 4.1.6 Fixed references and file links to be in the correct
positions

1/21/2022 Ryan Dillard 4.1.4 Edited interface properties after communication with
the team about updating the needs.

1/21/2022 Ryan Dillard 4.1.5 Clarified methods to show that currents were being
verified with a variable load, and the system is
expecting all blocks to interfaces to be operating at
once.

4.2 MCU

4.2.1 Description

The MCU (microcontroller unit) processes incoming data, stores it, and communicates with
client computers. The part chosen for this design is an STMicroelectronics STM32f411CEU6. In
order to perform all necessary functions in the CAN logger system, an MCU must implement
several specific features. It must have at least three SPI interfaces - one for the storage module
and one for each CAN transceiver. It must have a maximum clock speed of at least 4MHz, so
that it can process data at maximum speed from both CAN interfaces and send that data to
storage in real time. It must have a UART for interfacing with the Bluetooth module. Finally, the
MCU must accept an input voltage of either 5V or 3.3V. The STM32F411CEU6 meets all of
these requirements. Anton Liakhovitch is responsible for this block.

4.2.2 Design

The MCU hardware block design is heavily based on a development board by WeAct Studio.
Unneeded parts, such as the analog voltage reference circuitry, are removed.

Schematic (next page):
Ground connections between all blocks are assumed.

Additionally, the following inter-block connections are made. Note that connections are labeled
by connecting block, not interface - this is because some connections (for instance, SCK) may
belong to multiple interfaces.

Connecting Block Connection MCU Pin Peripheral

Buck Converter VCC VCC

Bluetooth Module RX (MCU) PA3 UART 2

Bluetooth Module TX (MCU) PA2 UART 2

Can Controller 1 MISO PB14 SPI 2

Can Controller 1 MOSI PB15 SPI 2

Can Controller 1 SCK PB13 SPI 2

Can Controller 1 CS PB9 SPI 2

Can Controller 1 INT PB0

Can Controller 1 RX0BF PB6

Can Controller 2 MISO PB4 SPI 3

Can Controller 2 MOSI PB5 SPI 3

Can Controller 2 SCK PB3 SPI 3

Can Controller 2 CS PA15 SPI 3

Can Controller 2 INT PB1

Can Controller 2 RX1BF PB7

SD Card MISO PA6 SPI 1

SD Card MOSI PA7 SPI 1

SD Card SCK PA5 SPI 1

SD Card CS PA4 SPI 1

Firmware Prog SWDIO PA13 SWD

Firmware Prog SWCLK PA14 SWD

MCU Key (Active low) PA0

MCU LED (Active low) PC13

MCU GND BOOT0

4.2.3 General Validation

Microcontroller integration generally consists of two parts - designing microcontroller support
components, and choosing pins for inter-block interfaces. All decisions were made with interface
properties in mind.

The support component design is taken from an existing open-hardware development board,
developed by WeAct Studio. The schematic is stripped of parts which are unnecessary for this
block (USB, power supply, ADC voltage reference), but otherwise copied exactly. This allows for
prototyping and block verification procedures to use the existing development board, without
any risk of integration problems arising from a switch to a custom design late in the project.
Additionally, this simplifies the design process and removes opportunities for human error.

Pin assignments are somewhat arbitrary, as the chosen MCU has an overabundance of I/O for
the given task. However, consideration was given to ensure that the chosen pins did not
interfere with any peripherals which may be added in the future. For instance, UART1 and USB
peripherals might be used for debugging purposes later in the project.

4.2.4 Interface Validation

Interface
Property

Why is this interface this
value?

Why do you know that your design details
for this block

above meet or exceed each property?

bck_cnvrtr_mc_dcpwr : Input

Inominal: 10mA Determined by budgeting
power supply current output
among components.
Note: this property means
that the power supply must
be capable of supplying at
least 10mA of constant
current to the MCU, and the
MCU must draw no more
than 10mA on average.
Either side may exceed the
spec.

According to the MCU datasheet, the MCU
draws a nominal current of 9.4mA when
running at 50MHz with all peripherals
enabled. In practice, the MCU runs with
some peripherals disabled.

Ipeak: 100mA Determined by budgeting
power supply current output
among components.

According to the MCU datasheet, the MCU
draws a maximum of 10.1mA when running
at 50MHz with all peripherals enabled. In

practice, the MCU runs at a lower speed with
some peripherals disabled.

Vmax: 3.5V Determined from power
supply characteristics.

The MCU datasheet asserts that the device
will operate normally if the supply voltage
does not exceed 3.6V.

Vmin: 3.0V Determined from power
supply characteristics.

The MCU datasheet asserts that the device
will operate normally if the supply voltage is
at or above 1.8V.

frmwr_mc_data : Input

Messages: C
language

The C language was
chosen due to its efficiency
and high compatibility with
embedded systems.

ST Microelectronics provides a compiler
toolchain capable of compiling C for the
stm32f411.

Other:
Architecture:
ARM Cortex
M4 with DSP
extensions

Specified by MCU
datasheet.

ST Microelectronics provides a compiler
toolchain capable of compiling C for the
stm32f411.

Other: Code
size: 512kB
maximum

Specified by MCU
datasheet.

The datasheet asserts that the device will
operate normally as long as code does not
take up more than 512kB.

Protocol:
SWD

While it is possible to
program the
STM32F411CEU6 via
various interfaces through
bootloaders, SWD provides
the most reliable and easy
to use interface.

The datasheet asserts that the MCU supports
programming via SWD.

bltth_mc_comm : Input

Datarate: 9600
Baud

The baud rate was
arbitrarily chosen to be
9600 baud. This speed is
high enough for a
responsive user interface,
but low enough to ensure
reliability.

The USART peripheral supports a range of
baud rates, including 9600.

Other: Logic
Level Voltage:
3.3V

GPIO logic levels specified
by bluetooth module
datasheet.

MCU GPIO pins are capable of producing or
detecting the requisite logic levels, given a
3.3V supply voltage.

Protocol:
RS-232

Specified by bluetooth
module datasheet.

The MCU USART peripheral is capable of
RS-232 communication.

cn_cntrllrtrnscvr_mc_comm : Input

Other: SPI
Clock Speed at
least 8MHz

Specified by CAN controller
datasheet.

The MCU datasheet specifies that SPI
peripherals operate at up to 50MHz. As SPI
sends one bit per clock pulse, this equates to
a maximum data rate of 50Mb/s - exceeding
the specification.

Messages:
Data is
received by
reading 8 byte
registers.

Specified by CAN controller
datasheet.

Higher-level communication protocols on top
of SPI may be implemented in software on
the MCU.

Other: Logic
Level Voltage:
3.3V

Specified by CAN controller
datasheet.

MCU GPIO pins are capable of producing or
detecting the requisite logic levels, given a
3.3V supply voltage.

Protocol: SPI Specified by CAN controller
datasheet.

The MCU includes enough SPI peripherals
for both CAN controllers.

strg_mc_data : Input

Other: SPI
Clock Speed at
least 8MHz

The data input rate was
chosen arbitrarily, so as to
be fast enough to provide a
smooth user interface when
downloading data over
Bluetooth.

The MCU datasheet specifies a maximum
SPI speed of 50Mb/s

Other: Logic
Level Voltage:
3.3V

Specified by SD standard. MCU GPIO pins are capable of producing or
detecting the requisite logic levels, given a
3.3V supply voltage.

Protocol: SPI Specified by SD standard. The MCU includes SPI peripherals.

mc_bltth_comm : Output

Messages:
Baud Rate:
9600

The baud rate was
arbitrarily chosen to be
9600 baud. This speed is
high enough for a
responsive user interface,
but low enough to ensure
reliability.

The USART peripheral supports a range of
baud rates, including 9600.

Protocol:
RS-232 serial

Specified by bluetooth
module datasheet.

The MCU USART peripheral is capable of
RS-232 communication.

Other: Logic
Level Voltage:
3.3V

GPIO logic levels specified
by bluetooth module
datasheet.

MCU GPIO pins are capable of producing or
detecting the requisite logic levels, given a
3.3V supply voltage.

mc_cn_cntrllrtrnscvr_comm : Output

Other: SPI
Clock Speed at
least 4MHz

Specified by CAN controller
datasheet.

The MCU datasheet specifies that SPI
peripherals operate at up to 50MHz.

Messages:
Data is
received by
reading 8 byte
registers.

Specified by CAN controller
datasheet.

Higher-level communication protocols on top
of SPI may be implemented in software on
the MCU.

Other: Logic
Level Voltage:
3.3V

Specified by CAN controller
datasheet.

MCU GPIO pins are capable of producing or
detecting the requisite logic levels, given a
3.3V supply voltage.

Protocol: SPI Specified by CAN controller
datasheet.

The MCU includes enough SPI peripherals
for both CAN controllers.

mc_strg_data : Output

Other: SPI
Clock Speed at
least 4MHz

According to the MCP2515
CAN controller datasheet,
data can enter the system
at a maximum rate of
1Mb/s. As there are two
CAN controllers, the
maximum data rate
becomes 2Mb/s. Storing the
binary data as hexadecimal

The MCU datasheet specifies a maximum
SPI speed of 50Mb/s

numbers in ASCII doubles
the throughput requirement
to 4Mb/s. An extra 6Mb/s
are added to account for
extra metadata and for
inefficiencies in processing.

Other: Logic
Level Voltage:
3.3V

Specified by SD standard. MCU GPIO pins are capable of producing or
detecting the requisite logic levels, given a
3.3V supply voltage.

Protocol: SPI Specified by SD standard. The MCU includes SPI peripherals.

4.2.5 Verification Plan

All Logic Level Properties:

When performing each of the following tests, additionally perform the following procedure to test
logic levels:

1. Attach an oscilloscope to the data bus. Set the oscilloscope to one-shot mode, triggered
by either edge.

2. Perform the other test.

Pass condition: Oscilloscope shows logic high values of 3.3v and logic low values of 0v.

All Power Supply Properties:
During any of the following tests, additionally perform the following procedure to test power
supply properties:

1. Attach the DUT to a bench power supply. Attach a multimeter to measure current draw.
2. Power the DUT with Vmin volts.
3. Run the test.
4. Power the DUT with Vmax volts.
5. Run the test.

Pass condition: The device performs normally when powered from either voltage, and current
draw never exceeds Imax.

Inominal may be found in the STM33F411CEU6 datasheet.

Firmware:
The firmware loading interface is verified by loading the test program for any of the following
tests, and verifying that the device functions correctly.

All RS-232 or SPI Interfaces:
Construct a test rig, consisting of an STM32F411CEU6 evaluation board connected to the DUT
via the interface under test.

Write a "sender" program, which sends a set sequence of data over the interface under test.

Write a "receiver" program, which receives data over the interface under test. The receiver may
either output the data to a computer for analysis, or verify the data itself.

To test output interfaces:
1. Load the "sender" program onto the DUT.
2. Load the "receiver" program onto the test bench.
3. Connect a logic analyzer to the relevant data bus, and start capture.
4. Run the "sender", and record results from both devices.
5. Determine data clock speed with the logic analyzer.

Pass condition: Data received is identical to data sent. Measured data clock must be within 2%
of the specification.

4.2.6 References

[1] STM32F411CEU6 datasheet:
https://www.st.com/resource/en/datasheet/stm32f411re.pdf

[2] HC-05 Bluetooth module datasheet:
https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf

[3] MCP2515 CAN controller datasheet:
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-wit
h-SPI-20001801J.pdf

4.2.7 Revision Table

Date Name Section Revised What was revised?

01/06/22 Anton L All sections First draft created

01/21/22 Anton L All sections Incorporated instructor feedback

https://www.st.com/resource/en/datasheet/stm32f411re.pdf
https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf

4.3 MCU Firmware

4.3.1 Description
The MCU firmware block encompasses the data stored in program memory on the MCU.
Interfaces to the firmware block consist of the hardware interface for loading firmware onto the
MCU, as well as the software interface between the STM32's ARM Cortex M4 processor and
the firmware binary.
The MCU firmware consists of three parts. The first is a critical section which collects CAN data
from the CAN controller and records it in main memory. This section is interrupt-driven, and is
optimized as much as possible for stable real-time performance. The second part is the main
loop, which pulls CAN data from main memory and stores it on the SD card. A circular buffer
producer-consumer queue allows the CAN handler to safely pass packets to the main loop.
Another part of the firmware handles data upload via Bluetooth. This section runs while the
critical section is stopped, and has no hard performance requirements. Anton Liakhovitch is
responsible for this block.

4.3.2 Design

Note: This is not a traditional program flowchart. Blocks represent memory, memory-mapped
I/O, or code. Arrows represent the flow of data.

4.3.3 General Validation

The firmware interface properties exist to ensure that any firmware written for the CAN Logger
project successfully downloads and runs on the microcontroller. In order to ensure maximum
reliability in this regard, the project uses the official ST-link V2 hardware debugger and the
official STM32CubeMX software development kit. STMicroelectronics designed these resources
to be compatible with its microcontrollers, so there are no foreseeable reasons why the firmware
may not download to the MCU or run on the MCU.

Alternatively, it may be possible to use the Arduino toolchain. However, the Arduino environment
results in slow compilation and poor runtime performance, has no support for debugging, and
generally has poor support for STM32 microcontrollers. This should be used only as a last
resort.

The firmware itself is designed to maximize CAN data input speed at all costs, while also
prioritizing flushing of data to the SD card. This is achieved through extensive use of interrupt
service routines and the two DMA (Direct Memory Access) controllers on the MCU. Interrupts
ensure that the microcontroller spends resources on an SPI transaction as soon as it is needed,
and only when it is needed. This both improves SPI response time and maximizes CPU time
available to other tasks (such as writing to the SD card). The DMA controller allows the bulk of
every SPI transaction to happen in the background without any involvement from the CPU, once
again saving CPU time. Maximizing input speed is necessary to ensure that the Logger does
not miss any data sent in fast bursts over the CAN bus. This is done at the expense of buffer
size and total average throughput, which are less important as long as the CAN bus runs at less
than 100% utilization.

4.3.4 Interface Validation

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

otsd_frmwr_comm : Input

Other: Logic Level:
3.3V

Specified by MCU datasheet. MCU GPIO pins are capable of
producing or detecting the
requisite logic levels, given a
3.3V supply voltage.

Other: Clock Rate:
Automatically
negotiated

Specified by MCU datasheet. The ST-link V2 programmer is
capable of automatically
negotiating an interface clock
speed compatible with the

transmission medium.

Protocol: Serial Wire
Debug Interface

While it is possible to program
the STM32F411CEU6 via
various interfaces through
bootloaders, SWD provides the
most reliable and easy to use
interface.

The STM32F411CEU6 datasheet
asserts that the MCU supports
programming via SWD.

frmwr_mc_data : Output

Messages: C language The official STM32 SDK best
supports the C language. While
there are other SDKs and
languages available (Arduino,
Rust), the STM32 SDK provides
the best balance between
software support and runtime
performance.

The firmware is developed in
c99-compliant C.

Other: Architecture:
ARM Cortex M4 with
DSP extensions

Specified by the
STM32f411CEu6 datasheet.

The GCC compiler is configured
with the ARM Cortex M4 target.

Other: Code size:
512kB maximum

Specified by the
STM32f411CEu6 datasheet.

Early I/O test firmwares are
significantly under the size limit,
so it is highly unlikely that the
final binary will exceed the limit.

4.3.5 Verification Plan
All interface properties may be verified via a single test.

1. Write a test program in C (verifies "C language" property). This program can do anything
whatsoever as long as its behavior is verifiable. For example, it may blink an LED.

2. Connect an STLink V2 debugger to the computer and attach it to the SWD interface of
the microcontroller (verifies the "Protocol: Serial Wire Debug" property).

3. Attach an oscilloscope to the SWCLK and SWDIO lines of the SWD interface, set it to
one-shot mode, and set it to trigger on any edge.

4. Program the microcontroller via OpenOCD. Verify that the clock speed reported by
OpenOCD is under the 50MHz maximum (Verifies the Clock Rate: 50MHz Max
property). Verify that OpenOCD did not report a program size error (verifies the "Code
size" property).

5. Verify that the oscilloscope shows a 3.3V logic level (Verifies the Logic Level: 3.3V
property)

6. Verify that the test program behaves as it should when running on the microcontroller.
This verifies the architecture property, as a program binary compiled for the wrong
architecture will not run at all.

4.3.6 References

[1] STM32F411CEU6 datasheet:
https://www.st.com/resource/en/datasheet/stm32f411re.pdf

4.3.7 Revision Table

Date Name Section Revised What was revised?

02/04/22 Anton L All sections First draft created

02/18/22 Anton L All sections Revised for submission

5/5/22 Anton L All sections Revised for tense, grammar

4.4 CAN Controller/Transceiver

4.4.1 Description
The CAN Controller/Transceiver block is responsible for Receiving and Transmitting CAN
signals and communicating with the MCU. The MCP2515 CAN controller is being used to
interpret the CAN messages and send the packages to the MCU in a package that the MCU can
interpret. Maxim Feoktistov is responsible for the CAN Controller/Transceiver block.

4.4.2 Design

Figure 1: CAN Controller Block with Interfaces

Figure 2: CAN Controller Schematic

4.4.3 General Validation
The block is designed to communicate with a CAN bus and consists of a transceiver, converter,
and a controller. The design uses a db9 connector to connect the CAN bus to the design as per
customer request. The connector is widely used in the automotive industry and is abundant and
cheap. A CAN transceiver (TJA1050) is used to take in the CAN high and CAN low signals. The
general application of the transceiver was referenced when designing the block [1]. The CAN
controller (MCP2515) communicates with the CAN transceiver and can communicate with an
MCU, sending 8 byte registers through SPI protocol.The CAN controller datasheet also
contained the general application of the controller [2]. Since the block needs a 5V power supply
and the system operates at 3.3V, the CAN transceiver and controller will need a booster that
converts 3.3V to 5V. The CAT3200−5 DC-DC converter is a cheap and abundant chip that
outputs a fixed 5V supply. The DC-DC converter datasheet contained an example of how to use
the converter [3].

4.4.4 Interface Validation

Interface
Property

Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Input : otsd_comm_cn_cntrllrtrnscvr
Output: cn_cntrllrtrnscvr_otsd_comm

Baud Rate:
250K/500K

The two Baud Rates that the
CAN bus can be operating at.

TJA1050 datasheet, page 2:

High s to 1peed transceiver of up
Mbaud.

CAN Protocol The device must take in a
CAN bus signal

TJA1050 datasheet, page 2:

TJA1050 is the interface between
the CAN protocol controller and the
physical CAN bus.

DB9 Connector
to connect CAN
bus with CAN
controller/
transceiver Block

Standard CAN bus connection
is through a DB9 connector

CAN Protocol Standards [5]:

Industrial standard to use a DB9
connector for CAN bus with CAN
Low at pin 2 and CAN High at Pin 7.

Input: mc_comm_cn_cntrllrtrnscvr
Output: cn_cntrllrtrnscvr_mc_comm

SPI Protocol SPI provides high speed
communication between MCU
and CAN controller

MCP2515 Datasheet, page 1:

The MCP2515 interfaces with
MCUs via an industry standard SPI

Data is received
by reading 8 byte
registers

CAN bus messages consist of
up to 8 bytes of data.

MCP2515 Datasheet, page 9:

Figure 2-1: Specifies data field of up
to 8 bytes

SPI Clock Speed
at least 4MHz

The CAN controller must be
able to operate at speeds of at
least 4MHz for efficient
communication

MCP2515 Datasheet, page 77:

Peak Clock frequency at 10MHz

Logic Level
Voltage: 3.3V

The system will operate at
3.3V.

MCP2515 Datasheet, page 74:

Logic Level High range:

https://www.nxp.com/docs/en/data-sheet/TJA1050.pdf
https://www.nxp.com/docs/en/data-sheet/TJA1050.pdf
https://www.kvaser.com/about-can/the-can-protocol/can-connectors/
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf

2.31V - 4.3V.

bck_cnvrtr_cn_cntrllrtrnscvr_dcpwr

Ipeak:100mA Peak current allocated to this
block to prevent drawing too
much power.

MCP2515 Datasheet, page 74:
Peak current = 10mA

TJA1050 datasheet, page 6:
Peak current = 75mA

Total peak current is 85mA

Inominal: 60mA Current allocated to this block
to fulfill the limited power
dissipation requirement.

MCP2515 Datasheet, page 1:
Typical operating current = 5mA

TJA1050 datasheet, page 2:
Typical operating current = 50mA

Total operating current = 55mA

Vmax: 3.5V The power supply (at 3.3V) of
the system varies by about
200mV

MCP2515 Datasheet, page 74:
Max voltage = 5.5V

cat3200-5 Datasheet - page 3
Max voltage = 4.5V

Vmin: 3.0V The power supply (at 3.3V) of
the system varies by about
200mV

MCP2515 Datasheet, page 74:
Max voltage = 2.7V

cat3200-5 Datasheet - page 3
Max voltage = 2.7V

4.4.5 Verification Process
1. Put together all the components specified in the schematic (Figure 2) together.
2. Use a DC power supply to supply the system with 3.3V.
3. Connect the CAN bus to the system via a DB9 connector.
4. Connect a SPI compatible MCU to the CAN Controller SPI pins.

For the bck_cnvrtr_cn_cntrllrtrnscvr_dcpwr interface:
5. While the system is operating, change the voltage on the power supply to 3.5V

and 3.0V and inspect if the system is operating normally.

https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://www.nxp.com/docs/en/data-sheet/TJA1050.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://www.nxp.com/docs/en/data-sheet/TJA1050.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://www.onsemi.com/pdf/datasheet/cat3200-d.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://www.onsemi.com/pdf/datasheet/cat3200-d.pdf

6. While the system is operating, inspect the current draw on the power supply to
find the nominal current of the system.

7. Load the system by having the system operate at top speed and inspect the
current spike on the power supply to find the peak current.

For the cn_cntrllrtrnscvr_otsd_comm and otsd_comm_cn_cntrllrtrnscvr interfaces:
8. Ensure that the CAN bus is connected to the CAN transceiver via a DB9

connector and inspect if the MCU is receiving data from the CAN bus.
9. Change the baud rate of the CAN bus to 500K and 250K
10. Change the baud rate setting on the MCU and ensure that the system is able to

read the messages from the CAN bus on both baud rates.

For the cn_cntrllrtrnscvr_mc_comm and mc_comm_cn_cntrllrtrnscvr interfaces:
11. While the system is operating, measure the voltage of the CAN_TXD and

CAN_RXD, to find the logic level voltage of those pins
12. Inspect the CAN messages that are received by the MCU and determine the

number of bytes per message.
13. Use the MCU to determine the maximum speed of the system.

4.4.6 References and File links

4.4.6.1 References
[1] “TJA1050 High speed CAN transceiver,” Philips Semiconductors, May 2002, [Online].
Available:https://www.nxp.com/docs/en/data-sheet/TJA1050.pdf

[2] “MCP2515 Stand-Alone CAN Controller with SPI Interface Data Sheet,” Microchip, Jan 2019.
[Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-wit
h-SPI-20001801J.pdf

[3] “cat3200-d.pdf,”Onsemi, Apr 2014, [Online]. Available:
https://www.onsemi.com/pdf/datasheet/cat3200-d.pdf

[5] “CAN Bus Connectors”, KVASER, [Online]. Available:
https://www.kvaser.com/about-can/the-can-protocol/can-connectors/

4.4.6.2 File Links

4.4.7 Revision Table

Date Section Revised What was revised?

1/5/22 4.4.1-4.4.3 The Initial Creation of the Sections

https://www.nxp.com/docs/en/data-sheet/TJA1050.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://www.onsemi.com/pdf/datasheet/cat3200-d.pdf
https://www.kvaser.com/about-can/the-can-protocol/can-connectors/

1/7/22 4.4.4-4.4.7 The Initial Creation of the Sections

1/17/22 4.4.2,4.4.3,4.4.6,4.
4.7

Changed Schematic Layout and Revised
some of the wording. Changed References to

IEEE format and edited Revision Table

1/21/22 4.4.2-4.4.5 Updated Schematic, Revised wording of the
the validation paragraph, updated some

interface properties and revised the testing
process

4.5 Storage

4.5.1 Description

The CAN frames logged by the system from the CAN bus must be stored so it can be used for
analysis. The data will be stored on an SD card, connected to the PCB with an SD card socket.
It will use a SPI connection to communicate with the MCU. The SPI connection will operate with
a clock signal of at least 8MHz. The MCU will be reading, and storing data onto the SD card.
The CAN frames will be stored as text in a csv file format. Ryan Dillard will be in charge of
developing this block.

4.5.2 Design

Black Box diagram of the block

SD card pinouts

Socket for an SD card for a PCB

Pins Corresponding to Block Interfaces

mc_strg_data stg_mc_data bck_cnvtr_strg_dcpwr

CS CS 3V3

DI DI GND

SLK SLK

DO DO

4.5.3 General Validation

This block serves two functions for the system. The first is that it stores the configuration
files for the device. The second reason is to store a file of CAN frames logged from the CAN
bus. This block uses a SPI interface to communicate with the MCU and receive CAN data. The
SPI connection allows for a high data rate to meet the data rate needed for the system.
Additionally SD cards natively work at 3.3V which is the same as the MCU making the
connection process simpler.

The components of this device are simple: it is a SD card socket, pull up resistors, and a
SD card. Storage could’ve been handled by using a MCU with a large internal flash, or external
flash. We avoided using either of these solutions to maintain the ease of replacing the storage.
Using an SD card allows the users to upgrade the storage size if needed.

4.5.4 Interface Validation

Interface Property Why is this interface this value? Why do you know that your
design details for this block
above meet or exceed each

property?

bck_cnvrtr_strg_dcpwr : Input

Inominal: 30mA Based on 10Mb/s write speed From SD standard
● At Max write SD card
would use 0.33W at 50Mb/s

Ipeak: 200mA This value was chosen as a worst
case scenario. The storage block
should likely never reach this
current, but the Power supply
would be able to supply it. This
does vary by the card, but at
default the current shouldn’t

For the STM32f411CEU6 in the
LQFP64 package:

● Max clock speed supports
50Mb/s [1]

From SD standard
● At Max write SD card
would use 0.33W at 50Mb/s

exceed this.

Vmax: 3.5V This value was chosen to give a
little room on the SD card
operating voltage specifications.
Additionally it slightly exceeds the
potential variation of the power
supply.

Based on the operating voltage of
an SD card.
- A 3.3V SD card can
operate from 2.7V to 3.6V

Vmin: 3.0V This value was chosen to give a
little room on the SD card
operating voltage specifications.
Additionally it slightly exceeds the
potential variation of the power
supply.

Based on the operating voltage of
an SD card.
- A 3.3V SD card can
operate from 2.7V to 3.6V

strg_mc_data : Output

Other: SPI Clock
Speed at least
8MHz

This was chosen as to meet
system requirements this is the
minimum speed we will need for
the SD card

-The MCU datasheet specifies that
SPI peripherals operate at up to
50MHz. As SPI sends one bit per
clock pulse, this equates to a
maximum data rate of 50Mb/s -
exceeding the specification.[1]
-SD cards operate at two speed
modes. The default mode clock
speed is 25MHz, and a high speed
mode at 50MHz.[2]

Other: Logic Level
Voltage: 3.3V

Specified by SD card standard.
We are also using a MCU that
operates of 3.3V so we can
communicate at 3.3V

Based on the operating voltage of
an SD card.

- A 3.3V SD card can
operate from 2.7V to 3.6V

Protocol: SPI Specified by SD card standard There are two bus protocols for SD
cards.[3]

- Native SD mode which
uses a 4 bit bus

- SPI mode using a 1 bit bus

mc_strg_data : Input

Other: Logic Level
Voltage: 3.3V

Specified by SD card standard.
We are also using a MCU that
operates of 3.3V so we can

Based on the operating voltage of
an SD card.
- A 3.3V SD card can

communicate at 3.3V operate from 2.7V to 3.6V

Other: SPI Clock
Speed at least
8MHz

This was chosen as to meet
system requirements this is the
minimum speed we will need for
the SD card

-The MCU datasheet specifies that
SPI peripherals operate at up to
50MHz. As SPI sends one bit per
clock pulse, this equates to a
maximum data rate of 50Mb/s -
exceeding the specification.[1]
- SD cards operate at two speed
modes. The default mode clock
speed is 25MHz, and a high speed
mode at 50MHz.[3]

Protocol: SPI Specified by SD standard There are two bus protocols for SD
cards.[3]

- Native SD mode which
uses a 4 bit bus

- SPI mode using a 1 bit bus

4.5.5 Verification Process

Bck_cnvrtr_strg_dcpwr Verification:

1. Attach the storage device to a bench power supply.
2. Power the storage device with Vmin volts.
3. Send a message to the storage device over SPI
4. Check storage device contents for the message
5. Power the storage device with Vmax volts.
6. Send a message to the storage device over SPI
7. Check the storage device contents for the message

If the stored message matches the sent message in both sends and the device performs without
exceeding peak current it passes.

mc_strg_data, and stg_mc_data verification:

1. Send a message over SPI to the storage device.
2. Using an Oscope to capture message one-shot mode attached to the data bus.
3. Verify with the Oscope frame that the data is clocked at at least 8Mhz.
4. Verify with the Oscope frame that the data logic levels match.
5. Repeat this process but measure the frame from the transmit of the storage.

Pass condition: If the message is stored on the storage device accurately, and a new message
can be read from the storage device, additionally if the measurements from the Oscope match
the properties then mc_strg_data and strg_mc_data pass.

4.5.6 References and File links

4.5.6.1 References

[1] STM32F411CEU6 datasheet:
https://www.st.com/resource/en/datasheet/stm32f411re.pdf

[2] https://www.sdcard.org/developers/sd-standard-overview/

[3]
https://www.sdcard.org/downloads/pls/pdf/?p=Part1_Physical_Layer_Simplified_Specification_V
er8.00.jpg&f=Part1_Physical_Layer_Simplified_Specification_Ver8.00.pdf&e=EN_SS1_8

4.5.6.2 File Links

4.5.7 Revision Table

Date Name Section Revision

12/3/2022 Ryan Dillard 4.5.1-4.5
.7

Created document and wrote rough content for each
section

12/4/2022 Ryan Dillard 4.5.4 Added detail to interface properties, and to
verification plan.

12/17/2022 Ryan Dillard 4.5.1 Revised the design, and added additional detail to
clarify the purpose of this block, and what it is.

12/18/2022 Ryan Dillard 4.5.5 &
4.5.4

Added additional detail to the verification plan, and
filled out a few properties that weren’t completely
justified.

https://www.st.com/resource/en/datasheet/stm32f411re.pdf
https://www.sdcard.org/developers/sd-standard-overview/
https://www.sdcard.org/downloads/pls/pdf/?p=Part1_Physical_Layer_Simplified_Specification_Ver8.00.jpg&f=Part1_Physical_Layer_Simplified_Specification_Ver8.00.pdf&e=EN_SS1_8
https://www.sdcard.org/downloads/pls/pdf/?p=Part1_Physical_Layer_Simplified_Specification_Ver8.00.jpg&f=Part1_Physical_Layer_Simplified_Specification_Ver8.00.pdf&e=EN_SS1_8

4.6 Bluetooth Module

4.6.1 Description
One of the customer's requirements is to wirelessly transfer collected data to a computer. In
order to be able to output the files onto a CSV file onto a file, the team has opted to use a
bluetooth module to receive all the data collected by the CAN buses. This module can receive
values from both channels and update its output to the terminal in real time. This will allow the
user some flexibility and efficiency when using the CAN logger. Ashley Reid is the champion of
this block.

4.6.2 Design

Figure 1
Figure one displays the black box for the Bluetooth module. Outputs on the left and inputs on
the right.

Figure 2
The image above is a picture of the physical modeling to be used on the PCB. Interfaces that
are wired are labeled accordingly. TXD writes the texts to the MCU and RXD reads text from the
MCU.

Figure 3
Figure 3 has the wired interfaces labeled on the actual chip itself.

4.6.3 General Validation
The module picked out, the HC-06 was picked for our system design, as it provides a

simple integration with the main body of the system and any laptop. Because the system will
only be used within the Hyster-Yale site, as specified by the project partner, there is no need to
keep this connection exclusive to the site’s wifi. The HC-06 has a PCB board that already
interacts with the bluetooth chip and only needs specific wiring with simplified wiring outputs
which include the following: VCC, GND, RXD, and TXD. Here the RXD shows the receiving end,
the TXD is the transmitting data end.

Using this module assists the cost of parts, as if the team were to go to the Wifi router, it
was concluded that the system would need a whole router box because of the clearances it
would need. It was also decided, because the specified module that will be used, the HC-06, is
widely available on Amazon. It also has the standard use of 3.3 V as its logic level, allowing for
more consistency and ease for the rest of the system, as almost all parts of the system will be
operating at 3.3 V.

Using a whole module instead of designing another schematic eliminates the risks of
errors with the actual schematic and cuts down on ordering time.

4.6.4 Interface Validation
mc_bltth_comm : Input

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Messages: Baud Rate: 9600 This was chosen as a baud
rate essentially as it was a
happy medium for its high
responsiveness but also
reliability.

USART peripheral can
support a 9600 baud rate. It
is also specifically stated it is
supported on bluetooth data
sheets.

Protocol: RS-232 serial The Bluetooth Data sheet
indicated that this is the
communication type.

USART peripheral can
support the RS-232
communication .

Other: Logic Level Voltage:
3.3V

Logic Level specified by
bluetooth data sheet.
Specified by bluetooth data
sheet.

USART peripheral can
support the RS-232

bltth_mc_comm : Output

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Data rate: 9600 Baud This was chosen as a baud
rate essentially as it was a
happy medium for its high
responsiveness but also
reliability.

USART peripheral can
support a 9600 baud rate. It
is also specifically stated it is
supported on bluetooth data
sheets.[data sheet #1, page
1]

Other: Logic Level Voltage:
3.3V

Logic Level specified by
bluetooth data sheet.

Stated by bluetooth data
sheet. [data sheet #1, page 3]

Protocol: RS-232 The Bluetooth Data sheet USART peripheral can

https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf

indicated that this is the
communication type.

support the RS-232
communication

Clnt_sftwr_bltth_data : Input

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Data rate: 9600 Baud This was chosen as a baud
rate essentially as it was a
happy medium for its high
responsiveness but also
reliability.

USART peripheral can
support a 9600 baud rate. It
is also specifically stated it is
supported on bluetooth data
sheets. [data sheet #1, page
1]

Other: Logic Level Voltage:
3.3V

Logic Level specified by
bluetooth data sheet.

Stated by bluetooth data
sheet. [data sheet #1, page 3]

Protocol: RS-232 Logic Level specified by
bluetooth data sheet.
Specified by bluetooth data
sheet.

USART peripheral can
support the RS-232
communication

Bck_cnvrtr_bltth_dcpwr : Input

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Inominal 20 mA From the data sheets, it's the
baseline operating current
when not paired, so decide to
use this as the nominal value.

This value was found in the
this webpage dedicated to
the HC-05 module [1]

Ipeak: 100 mA From the bluetooth data
sheet, it can handle this
current, but as an absolute
peak

This value was found in the
data sheet for the HC-05

module. [1]

Vmax 3.5V According to the data sheet, it This value was found in the

https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf

can handle 3.6 V at most, but
and shorting the window to
avoid ruining the module.

data sheet for the HC-05
module. [data sheet #1, page

3]

Vmin : 3.1 V According to data, this is the
absolute lowest it device can
operate at.

This value was found in the
data sheet for the HC-05

module. [data sheet #1, page
3]

Bltth_clnt_sftwr_data : Output

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Messages: ASCII data in
CSV format

ASCII values are almost
universal. It also allows for a
range of values that was
shown necessary by sample
data.

Shown in user manual, the
bluetooth module is able to
handle ASCII values and

contain a delimiter

Other: Communication with
Bluetooth driver

It needs to be able to connect
to any laptop with a
bluetooth driver to transmit
messages

Specified by bluetooth data
sheet. [data sheet #1, page 3]

Protocol: Virtual RS-232
interface

This is the specified interface
from the manual.

Specified by bluetooth data
sheet. [data sheet #1, page 3]

4.6.5 Verification Process
1) Setup bluetooth module on breadboard and attach to power.
2) Use a serial port to connect the BluetoothModule to the laptop.
3) Use DC power power generator to test current and voltages at the nominal and peak

values.
4) Use Oscope to properly check the logic level threshold.
5) Connect BluetoothModule to computer wireless bluetooth connection.
6) Open one terminal and send a message via the serial port to bluetoothModule. Open

terminal with serial port connection and look for sent values.
7) Expecting it will be received, send this message back to the laptop via wireless bluetooth

connection
8) Check if it is in the correct ASCII format and if they match.

https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf

9) Change the original message on bluetooth on the first terminal and check if the second
terminal matches the message shortly after.

10) Change the message on the second terminal and check to see if it successfully changes
on the 1st terminal.

4.6.6 References and File links

4.6.6.1 References

[1] “HC-05 - Bluetooth module,” Components101, 16-Jul-2021. [Online]. Available:
https://components101.com/wireless/hc-05-bluetooth-module. [Accessed: 22-Jan-2022].

4.6.6.2 File Links
Main Data Sheet Reference
Physical Images of the Module and Further Description

4.6.7 Revision Table

Date Name Section Revision

1/31/2022 Ashley R 4.6.4 &
4.6.5

Modified Interfaces and verification plan to match the
updated version due to testing obstacles

1/21/2022 Ashley R 4.6.4 &
4.6.5

Changed Interface definitions and property
descriptions.Switched up whole verification plan so
MCU is no longer needed.

1/20/2022 Ashley R 4.6.2 &
4.6.6

Added labels to figures, edited links and references

1/7/2022 Ashley R 4.6.4-4.6.
7

Wrote a rough draft of each section.

5/5/22 Ashley R 4.6.1
&4.6.7

Adjusted wording to align with real world application

https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://www.gme.cz/data/attachments/dsh.772-148.1.pdf

4.7 Client Software

4.7.1 Description
One of the customer's requirements is to wirelessly transfer collected data to a computer. To
make this easier for the customer’s use, this client software has a command line and graphical
user interface. The features of this client software include: ability to download data from the
main system via bluetooth, stores the data as different CSV’s file respective to their can bus,
change the baud rate, and delete CAN data files. Ashley Reid is the champion of this block.

4.7.2 Design

Figure 1
Figure one displays the black box for the Client Software module. Outputs on the left and inputs
on the right.

4.7.3 General Validation
The goal of the client software is to prepare the data for interpretation by the company. It

allows for the company to successfully save the data without having to second guess where the
files need to be saved and formatted. The data sent over with this preserved and ignores any
bad packets that may have been sent over. The files are automatically created and formatted
correctly. This code also lets the user send commands back to the STM32 controller, like
request the data CAN files, and delete these files per request as well. The requests will be
performed and receive success messages back from the MCU.

The client software also has an optional GUI made for extra ease of use.

4.7.4 Interface Validation
Bltth_clnt_sftwr_data : input

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

ASCII data ASCII values are almost
universal. It also allows for a
range of values that was
shown necessary by sample
data.

Shown in user manual, the
bluetooth module is able to
handle ASCII values and
contain a delimiter

Communication with Bluetooth
driver

It needs to be able to connect
to the Bluetooth module in
the system in order interact
with its data

Specified by bluetooth data
sheet. [Bluetooth Data Sheet,
page 3]

Virtual RS-232 interface This is the universal serial
interface so this is just
ensuring that it works with the
bluetooth module even more

USART peripheral can
support the RS-232

Clnt_sftwr_otsd_data : Output

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

File saved with full RW
permissions for current user
and group

This ensures that the data
won’t be accidentally changed
but still be able to used and
imported

USART peripheral can
support a 9600 baud rate. It
is also specifically stated it is
supported on bluetooth data
sheets.[Bluetooth data sheet,
page 1]

UTF-8 encoding Because it's how we can
universally save these
values.

UTF_8 encoding is common
for saving and sending files in
linux and windows.

CSV text file saved to local
filesystem

CSV will allow the data
received to be manipulated
easily by the project partner.

The python package csv
converts text to csv if original
format is correct

LF line endings To indicate when the data has Terminal supports use of

https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://docs.python.org/3/library/csv.html

been fully received newline and so does windows
and linux

Clnt_sftwr_bltth_data : Output

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

ASCII data ASCII values are almost
universal. It also allows for a
range of values that was
shown necessary by sample
data.

Shown in user manual, the
bluetooth module is able to
handle ASCII values and
contain a delimiter

Communication with Bluetooth
driver

It needs to be able to connect
to the Bluetooth module in
the system in order interact
with its data

Specified by bluetooth data
sheet. [Bluetooth Data Sheet,
page 3]

Virtual RS-232 interface This is the universal serial
interface so this is just
ensuring that it works with the
bluetooth module even more

USART peripheral can
support the RS-232

4.7.5 Verification Process
1) Connect bluetooth module with laptop and power supply. Connect physical serial port to

laptop as a stand in for the STM32 microcontroller.
2) Open the serial port in Arduino IDE as this will send messages with Linefeed.
3) Open up Windows Powershell and navigate to python script and run python script
4) Check COM6 port for messages sent from Client Software. After integration, these will

be commands sent to the STM32 for different lines of data between the two transceivers
5) In place of sending data over, I will be sending data from the serial port over the

bluetooth module. To prove this is successful, the client software will print it to the
command line. The delimiter of these values will be interpreted with newline characters
during this action.

6) The client software then saves these values in a CSV. When finished, close the
powershell and open the CSV file. Show the messages sent over were successful and
you can write in the files as well.

https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf

4.7.6 References and File links

4.7.6.1 References

[1] “Tkinter - Python interface to TCL/TK¶,” tkinter - Python interface to Tcl/Tk -
Python 3.10.2 documentation. [Online]. Available:
https://docs.python.org/3/library/tkinter.html. [Accessed: 05-Feb-2022].

4.7.6.2 File Links
Bluetooth Data Sheet -
CSV Library Documentation

4.7.7 Revision Table

Date Name Section Revision

2/28/2022 Ashley R. 4.7.5 &
4.7.3

Due to testing, these two sections have been
overhauled to reflect the GUI is not part of the
verification plan

2/10/2022 Ashley R. 4.7.5 Added details to verification plan

2/10/2022 Ashley R 4.7.3 Added better justification

2/4/2022 Ashley R 4.7.1-4.7.
7

Initial rough draft of each section

5/5/2022 Ashley R 4.7.3 &
4.7.1

Updated description and validation better reflects the
clients software role after real world application

https://components101.com/sites/default/files/component_datasheet/HC-05%20Datasheet.pdf
https://docs.python.org/3/library/csv.html

4.8 PCB

4.8.1 Description
The system contains a single PCB that integrates all the components within the Buck Converter,
Storage, MCU, and CAN Controller/Transceiver blocks. EAGLE is being used to create the
schematic containing all the components of those blocks and is used to design a PCB board.
The PCB design is then ordered at OSHPark.com. Maxim Feoktistov is responsible for the PCB
block.

4.8.2 Design

Figure 1: PCB Block

Figure 2: CAN 1 Schematic

Figure 3: CAN 2 Schematic

Figure 4: Power Supply Schematic

Figure 5: MCU and SD Card Schematic

Figure 6: PCB Layout and Design

Figure 7: PCB Dimensions

4.8.3 General Validation
This block consisted of combining already existing schematics into one big schematics. The
design schematics used in the PCB block have been validated and verified to work properly and
meet the interface property requirements.

The thickness of the traces are 1 oz/ft^2 and the width of the traces vary based on voltage and
current. A trace width calculator was used to calculate the necessary width of the traces based
on current, voltage, temperature, and trace length. Specifically the Digikey calculator was used
[1]. The current and voltage levels are known from previous testing of the independent blocks
and the temperature variations are given the datasheets of the components. Heat Sinks are
used in areas where there is high current like within the power supply block.

The most popular footprints were picked when designing the PCB board. The site called
“Component Search Engine” was used to verify the risk level of choosing a component and the
footprint [2]. Low risk level footprints were used for components such as capacitors, resistors,
and oscillating crystals. The risk level is determined by multiple factors including part availability,
product lifecycle, and price.

The PCB is to be ordered through OSHPark.com. If for some reason OSHPark.com will not be
available, the alternative PCB manufacturer that will be used is called JLCPCB. JLCPCB
creates quality PCBs with a quick turnaround time but are located in China, so shipping times
might take longer compared to OSHPark which is located in the United States.

4.8.4 Interface Validation
*The block does not contain any Interfaces

4.8.5 Verification Process
1. Solder all the components specified in the schematics.
2. Connect the CAN bus to the system via a DB9 connector.
3. Upload necessary Code to the MCU to receive/transmit CAN messages.
4. While data is being transmitted by the CAN bus, record and store the data into

the SD card.
5. Verify that data has been saved into the SD card by pulling out the SD card from

the PCB and checking data on the SD card via a computer.

4.8.6 References and File links

4.8.6.1 References
[1] “PCB Trace Width Calculator,” Digikey Electronics, [Online].
Available:https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-pc
b-trace-width

https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-pcb-trace-width
https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-pcb-trace-width

[2] “Electronic Component Search Engine,” Component Search Engine, [Online].
Available:https://componentsearchengine.com/

4.8.6.2 File Links

4.8.7 Revision Table

Date Section Revised What was revised?

2/1/22 4.8.1 Created document

2/4/22 4.8.1-4.8.7 Created schematics and added information to
the document

2/15/22 4.8.2 Created PCB Design and Drawing

2/16/22 4.8.2 & 4.8.5 Revised Schematics and Testing process

2/18/22 4.8.2-4.8.6 Incorporated feedback and revised wording in
the sections.

5/6/22 4.8 Updated text and figures

https://componentsearchengine.com/

5.0 System Verification Evidence

5.1 Universal Constraints

5.1.1 The system may not include a breadboard
The system uses two PCBs for all components. One PCB is the bluetooth module. The

other PCB contains the Buck Converter, Storage, MCU, and CAN Controller/Transceiver Blocks.
With all electrical components on these two PCBs there is no need for a breadboard.

5.1.2 The final system contains a student designed PCB, and custom
application

One of the blocks in this system is the PCB, custom-built to hold the Buck Converter,
Storage, MCU, and CAN Controller/Transceiver Blocks. Additionally, the system includes Client
software which connects to the bluetooth module. This software handles the process of reading
data from the system and adjusting the system configuration.

5.1.3 If present, the enclosure ruggedly encloses the contents
This system has an enclosure mounting the PCB and bluetooth module. There are

openings for the DB-9 CAN connectors and the SDcard. Additionally, there are openings to
access the buttons and switches on the PCB.

5.1.4 All wire connections to the PCB must use connectors
The PCB has two types of connections available: standard header pins for system debug

purposes, and two DB-9 connectors for CAN input.

5.1.5 All power supplies in the system must be 65% efficient
The system uses a LM2596 3.3V simple switcher as the power supply. The

documentation for the version we used lists a typical efficiency of 73% at 12V input and 3A

load[1]. Tests of the power supply for use in our system resulted in a 70% efficiency at 8V input,
and 200mA load.

5.1.6 The system may be no more than 50% purchased modules
The system contains a custom PCB which includes 4 out of the 5 physical blocks that

the project contains. Therefore, the system consists of 20% of purchased modules.

5.1 Interface Bus

5.1.1 Requirement
PPR: Interface with 2 or more CAN buses.

ER: The system will support at least two CAN channels.

5.1.2 Testing Processes
Verification procedure:

1. Connect both CAN channels of the CAN Logger to the test bench.
2. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data

sequences on both channels simultaneously.
3. Run the test bench and record data with the CAN Logger.
4. Verify that the data received by the CAN Logger is the same data sent by the test bench.

Test pass condition: The received data must be identical to the sent data.

5.1.3 Testing Evidence

https://youtu.be/ApjvbllP6sc

This video shows us going through the process of connecting two CAN channels to the system.
Then we sent two different verifiable sets of CAN data to the system over the channels. It
compares the received data to the master data.

5.2 Interface Type

5.2.1 Requirement
PPR: Interface with both J1939 and CANopen.

ER: The system will log both J1939 and CANopen.

https://youtu.be/ApjvbllP6sc

5.2.2 Testing Processes
Verification procedure:

1. Connect both channels of the CAN logger to the test bench.
2. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data

sequences on both channels simultaneously. The data sequences must use both
standard and extended identifiers as required by CANopen and J1939 respectively.

3. Run the test bench and record data with the CAN Logger.
4. Verify that the data received by the CAN Logger is the same data sent by the test bench.

Test pass condition: The received data must be identical to the sent data.

5.2.3 Testing Evidence

https://youtu.be/ApjvbllP6sc
In this video we connect the CAN logger to the test bench. Both testers send distinct CAN
frames. One tester sends CAN data using the standard size frame used with CANopen, the
other uses the extended size frame for J1939. Looking at the data in the end you can see that
both types are received and logged correctly.

5.3 Device Storage

5.3.1 Requirement
PPR: Store captured data on an SD card.

EP: The system will record data to two separate files.

5.3.2 Testing Processes
Verification procedure:

1. Connect both CAN channels of the CAN Logger to the test bench.
2. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data

sequences on both channels simultaneously.
3. Run the test bench and record data with the CAN Logger.
4. Check the data of the SD card, there should be two files saved on the SD card.

Test pass condition: The SD card must contain two files of CAN data.

5.3.3 Testing Evidence

https://youtu.be/ApjvbllP6sc

https://youtu.be/ApjvbllP6sc
https://youtu.be/ApjvbllP6sc

This video shows both can loggers connected to the system. They send two distinct verifiable
data sequences on both channels. After running the test bench it shows the data stored on the
SD card. It contains two files with CAN data that matches the master data.

5.4 Firmware Accessibility

5.4.1 Requirement
PPR: The user should be able to update the firmware

EP: There will be a user guide that will provide information on how to update the system
firmware.

5.4.2 Testing Processes
Verification procedure:

1. Share the user guide with the project partner.
2. Get feedback from the project partner.
3. Repeat steps 1 and 2 until the project partner approves the final edition.

Test pass condition: Project partner approves user guide.

5.4.3 Testing Evidence
https://drive.google.com/file/d/1FIcX40qcXUKBXNWCmRV8rS2qejBXqxGv/view?usp=sharing

https://drive.google.com/file/d/1FIcX40qcXUKBXNWCmRV8rS2qejBXqxGv/view?usp=sharing

5.5 Power Supply

5.5.1 Requirement
PPR: The device should operate on a voltage range of 8-32v and draw a maximum of 0.375A

EP: The system will operate within the following power supply requirements:
Vmax: 35V
Vmin: 8V
Inominal: 55mA
Ipeak: 500mA

5.5.2 Testing processes
Voltage verification procedure:

1. Use a power supply to power the CAN logger.
2. Set the power supply to 8V and use the test bench to send data to the CAN logger to

check for proper operation (the definition of "proper operation" depends on the currently
loaded firmware).

3. Set the power supply to 32V and use the test bench to send data to the CAN logger to
check the power supply.

Test pass condition: The received data must be identical to the data sent by the test bench.

Current verification procedure:
1. Connect the CAN logger to a power supply.
2. Power the CAN logger from a 14V power supply. Assuming that the device draws a

relatively constant amount of power. This is the expected voltage on the vehicles.
3. Set the test bench to continuously send random data on both CAN channels. This data

will not need to be verified.
4. Run the logger for 30 seconds, taking current draw measurements once every second.

Test pass condition: The average measured current does not exceed Ipeak, and does not
deviate from Inominal by more than 10mA for longer than five seconds for the entire test
duration.

5.5.3 Testing Evidence

Interface
Property

Why the value was
used

Details that support this value

Inominal:
375mA

This current was chosen
using the power limit of
3W for the system. This

For the LM2596 in the TO-263 package:
● Component is rated to 3A (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]

would be the current
highest regular current.

Ipeak: 500mA During peak usage if the
system becomes a 4W
load this would be the
highest current it would
need to handle.

For the LM2596 in the TO-263 package:
● Component is rated to 3A (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]

Vmax: 35V This voltage was chosen
as being able to run off
35V maximum was a
system requirement.

For the LM2596 in the TO-263 package:
● Max voltage input is 40V (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]

Vmin: 8V This voltage was chosen
as being able to run off
8V minimum was a
system requirement.

For the LM2596 in the TO-263 package:
● Min voltage input is 4.75V (Electrical

Characteristics – 3.3-V Version, pg. 6) [1]

*Referenced Section 4.1.4

5.6 Client Software

5.6.1 Requirement
PPR: Wirelessly transfer collected data to a computer.

ER: The system will output a CSV file on the client computer.

5.6.2 Testing Processes
Verification procedure:

1. Connect both CAN channels of the CAN Logger to the test bench.
2. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data

sequences on both channels simultaneously.
3. Run the test bench and record data with the CAN Logger.
4. Use the CAN Logger PC software solution to download the data from the device over

bluetooth. Use either a Windows or Linux system for this test.
5. Via inspection, verify that the data is in proper CSV format.
6. Verify that the received data is the same as the data sent by the test bench.

Test pass condition: The received data must be identical to the sent data when using both
Windows and Linux systems.

5.6.3 Testing Evidence
https://youtu.be/ApjvbllP6sc
In this video we run the test bench sending data to the system. The Logger records and stores
the data. With the PC software we connect to the system over bluetooth. Here we download the
csv files, and compare them to the master files. They match so this requirement is met.

5.7 Invalid Data

5.7.1 Requirement
PPR: The device should handle invalid packets without shutting down.

EP: The system will handle invalid packets and continue to operate normally.

5.7.2 Testing Processes
Verification procedure:

5. Connect both CAN channels of the CAN Logger to the test bench.
6. Set the test bench to send a sequence containing at least one type of invalid data

packets. Invalid packets may include:
a. Packets that are too short.
b. Packets that are too long.
c. Packets sent at the wrong baud rate.

7. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data
sequences on both channels simultaneously.

8. Verify that the CAN logger has logged or ignored the invalid data, and continued to log
the subsequent valid data.

Test pass condition: The received data must be identical to the sent data, except for the
erroneous packets. Erroneous packets must be ignored or marked by an appropriate error
message in the CSV file.

5.7.3 Testing Evidence
https://youtu.be/sfDMEtvizoI
Setting the system to communicate at a different baud rate as the test benches. Send a test
sequence to the system. We checked that the system didn’t receive any packets. We then set
the system to the same baud rate as the test benches. We send a second test sequence to the
system. The system manages to store data after a barrage of invalid packets.

https://youtu.be/ApjvbllP6sc
https://youtu.be/sfDMEtvizoI

5.8 Data Accuracy

5.8.1 Requirement
PPR: The device should not miss packets.

ER: The system will process input data at a rate of at least 1 Mb/s.

5.8.2 Testing Processes
Note: 1 Mb/s refers to the baud rate, not the data rate.
Verification procedure:

1. Connect both CAN channels of the CAN Logger to the test bench.
2. Set the test bench to simultaneously send two distinct, arbitrary and verifiable data

sequences on both channels simultaneously. The data shall be sent at the maximum
possible baud rate (1 megabaud/s). Run the test bench and record data with the CAN
Logger.

3. Verify that the received data is the same as the data sent by the test bench.

Test pass condition: At least 99.9% of received data must be identical to the data sent by the
test bench.

5.8.3 Testing Evidence

5.X References and File Links

5.X.1 References
[1] “LM2596 Simple Switcher,” Texas Instruments, November 1999, [Online]. Available:
https://www.ti.com/lit/ds/symlink/lm2596.pdf?ts=1642779956402&ref_url=https%253A%252F%2
52Fwww.bing.com%252F

https://www.ti.com/lit/ds/symlink/lm2596.pdf?ts=1642779956402&ref_url=https%253A%252F%252Fwww.bing.com%252F
https://www.ti.com/lit/ds/symlink/lm2596.pdf?ts=1642779956402&ref_url=https%253A%252F%252Fwww.bing.com%252F

5.X.2 File Links

5.5 Revision Table

Date Name Section
Revised

What was revised?

3/5/2022 Ryan Dillard 5 Created section, Initial formatting, and
responses to Universal Constraints

3/5/2022 Maxim
Feoktistov

5.2-5.3 Created the Sections

3/5/2022 Anton
Liakhovitch

5.3 Added testing evidence

3/14/2022 Anton
Liakhovitch

5 Changed power testing procedure

4/21/2022 Ryan Dillard 5 Added Sections for all requirements, and
placed old processes

5/2/2022 Ryan Dillard 5 Added Test Evidence to Requirements

5/2/2022 Ashley Reid 5.7 Revised wording

5/5/22 Anton
Liakhovitch

5.1 Edited for clarity

6.0 Project Closure

6.1 Future Recommendation

6.1.1 Technical Recommendation
1. Minor PCB issues:

a. Flip the TX/RX pins for the Bluetooth module on Project PCB.
b. Add more ground pins to PCB for testing purposes
c. Separate 5V line between CAN channels so that each CAN channel can be

individually powered and controlled by a (on/off) switch
2. Current design does not implement any security to the PCB in case of power loss which

can negatively affect the SD card. This issue can be fixed by adding an uninterrupted
power supply so that the system can safely unmount the SD card on power loss.

3. The SD card pins are directly connected to the MCU and contain floating values during
power on. MCU pull up resistors are not set up until the MCU initializes them. This is
long after the SD card powers on and as a result becomes unresponsive. It is
recommended to add pull-up resistors to the SD card inputs to eliminate any floating
nodes.

4. Implement time stamps and RTC (realtime clock). The system should periodically
include timestamps with the data, so that engineers can determine when a particular
CAN message was sent. While it is impractical to include a timestamp with every
message, it is possible to add a timestamp every couple of seconds. The system already
includes the necessary RTC hardware, so the feature can be implemented via a
firmware update.

6.1.2 Global Impact Recommendation
1. Make PCB smaller to decrease e-waste.

1.1. The current PCB design is focused around development and system debug, with
extra pinouts, and switches. This has resulted in a much larger PCB than
necessary. As a result the system generates much more e-waste than needed.
The system design could be optimized and the PCB could easily be half the size.
To do so we recommend using both sides of the PCB in addition to the removal
of most header pins on the PCB.

2. Use unleaded solder.
2.1. Lead is known to have long-lasting negative effects on the human body. Using

unleaded solder to assemble the system can drastically reduce the negative
impact the system will have on the environment at the end of its life cycle.

3. Bluetooth Security.
3.1. The current solution uses a bluetooth connection that anyone can connect to,

and uses limited access to the system, and area around the system as the main

method of security. If this device is to be used in an open access location it would
allow malicious actors to take advantage of the system. If this occurs the best
case scenario would give the malicious actors access to proprietary information,
or the ability to prevent the tool from logging. If sending remote frames is set up
on the system it would be used to damage equipment in the worst case. This
would be solved by implementing authentication on connection to the device.

6.1.3 Teamwork Recommendation
1. Have a project manager to enforce usage of correct tools.

1.1. When starting to work together the team setup several tools to help organize
works, tasks, and communicate. Trello quickly was thrown to the side and GitHub
wasn’t enforced until late into the project. Without Trello many tasks were solved
last minute, and responsibilities weren’t clear at times.

2. Set up everyone's GitHub during the same meeting.
2.1. During this project, each team member had different pieces of code to write for

the system. Teams that members of different programming backgrounds can
have varying levels of Git experience. Due to version control being extremely
important with these long term projects, setting up the Git Repo with everyone in
a real time meeting decreases the amount of confusion and more effective
collaboration. It will also decrease the amount of time spent on block integration.

3. Weekly team meetings discussing current progress
3.1. Sometimes during the project, the team didn't have weekly meetings to discuss

current progress of the project and how everyone in the team is doing. As a
result, there were times where the team members were not aware of what
progress the team was making and if the team was meeting deadlines.
Therefore, it is recommended to have weekly meetings where each team
member can talk about their progress and any questions or concerns they may
have.

4. The team should review the designed PCB in detail before ordering the PCB.
4.1. The initial version of the PCB has had some bugs and issues that could have

been prevented with more research and team collaboration. It is recommended to
go over each component as a team to prevent having issues with the Project
PCB.

6.2 Project Artifact Summary with Links
Artifacts Availables in GitHub Repo Include:

● PCB Schematic and Design
● Enclosure Design

● Firmware

Github Repository - https://github.com/liakhovitch/canlogger
- Currently unavailable pending an operational security review by Hyster-Yale.

6.3 Presentation Materials
Expo Poster:
https://docs.google.com/presentation/d/e/2PACX-1vSz-24G3YwC5kZ3OaclfZyMUAA1-Ca7dknD
KNdYjyoMdBoFacnaVEY-ay7nTlVYJw/pub?start=false&loop=false&delayms=3000

Presentation:
https://docs.google.com/presentation/d/e/2PACX-1vQDI0ajRa5YeW5vHCVNoMRtvEUJESIgYY
AtoO8_ll0t7wnIarvxjMIH9nnjCi8__476ojC_0D0DCrK5/pub?start=false&loop=false&delayms=30
00

Revision Table

Date Name Section Revised What was revised?

05/02/2022 Max 6 Created Section

05/04/2022 Max 6.1 Added more detailed
explanations

5/5/2022 Ryan 6.1 Explained some
recommendations

05/05/2022 Max, Anton,
Ashley, Ryan

6.1 Added more detailed
explanations

​

https://github.com/liakhovitch/canlogger
https://docs.google.com/presentation/d/e/2PACX-1vSz-24G3YwC5kZ3OaclfZyMUAA1-Ca7dknDKNdYjyoMdBoFacnaVEY-ay7nTlVYJw/pub?start=false&loop=false&delayms=3000
https://docs.google.com/presentation/d/e/2PACX-1vSz-24G3YwC5kZ3OaclfZyMUAA1-Ca7dknDKNdYjyoMdBoFacnaVEY-ay7nTlVYJw/pub?start=false&loop=false&delayms=3000
https://docs.google.com/presentation/d/e/2PACX-1vQDI0ajRa5YeW5vHCVNoMRtvEUJESIgYYAtoO8_ll0t7wnIarvxjMIH9nnjCi8__476ojC_0D0DCrK5/pub?start=false&loop=false&delayms=3000
https://docs.google.com/presentation/d/e/2PACX-1vQDI0ajRa5YeW5vHCVNoMRtvEUJESIgYYAtoO8_ll0t7wnIarvxjMIH9nnjCi8__476ojC_0D0DCrK5/pub?start=false&loop=false&delayms=3000
https://docs.google.com/presentation/d/e/2PACX-1vQDI0ajRa5YeW5vHCVNoMRtvEUJESIgYYAtoO8_ll0t7wnIarvxjMIH9nnjCi8__476ojC_0D0DCrK5/pub?start=false&loop=false&delayms=3000

