
Vehicle Mileage Tracker

Project Document

by
MingChu Chiu
James Ewing
Caeleb Lacey

12 October, 2022
|

9 June, 2023

Table of Contents

Vehicle Mileage Tracker 1
Project Document 1
1 Overview 2

1.1 Executive Summary 2
1.2 Team Contacts and Protocols 3
1.3 Gap Analysis 3
1.4 Timeline/Proposed Timeline 4
1.5 References and File Links 4
1.6 Revision Table 4

2 Impact and Risks 4
2.1 Design Impact Statement 4
2.2 Risks 7
2.3 References and File Links 7

2.3.1 References 7
2.3.2 File Links 9

2.4 Revision Table 9

3 Top-Level Architecture 9
3.1 Block Diagram 9
3.2 Block Descriptions 9
3.3 Interface Definitions 14
3.4 References and File Links 15

3.4.1 References 15
3.4.2 File Links 15

3.5 Revision Table 15

4 Block Validations 15
4.1 Bluetooth Module 15

4.1.1 Description 15
4.1.2 Design 16
4.1.3 General Validation 16
4.1.4 Interface Validation 17
4.1.5 Verification Process 21
4.1.6 References and File Links 21
4.1.7 Revision Table 21

4.2 Bluetooth Handshake 21
4.2.1 Description 21

4.2.2 Design 21
4.2.3 General Validation 22
4.2.4 Interface Validation 22
4.2.5 Verification Process 24
4.2.6 References and File Links 24
4.2.7 Revision Table 24

4.3 Mobile App 24
4.3.1 Description 24
4.3.2 Design 25
4.3.3 General Validation 26
4.3.4 Interface Validation 27
4.3.5 Verification Process 31
4.3.6 References and File Links 32
4.3.7 Revision Table 32

4.4 File Management 33
4.4.1 Description 33
4.4.2 Design 33
4.4.3 General Validation 33
4.4.4 Interface Validation 33
4.4.5 Verification Process 33
4.4.6 References and File Links 33
4.4.7 Revision Table 33

4.5 External Storage Hub 33
4.5.1 Description 33
4.5.2 Design 33
4.5.3 General Validation 33
4.5.4 Interface Validation 33
4.5.5 Verification Process 33
4.5.6 References and File Links 33
4.5.7 Revision Table 33

4.6 Microcontroller 33
4.6.1 Description 33
4.6.2 Design 33
4.6.3 General Validation 34
4.6.4 Interface Validation 34
4.6.5 Verification Process 34
4.6.6 References and File Links 34
4.6.7 Revision Table 34

4.7 Distance Processing 34
4.7.1 Description 34
4.7.2 Design 34

4.7.3 General Validation 34
4.7.4 Interface Validation 36
4.7.5 Verification Process 39
4.7.6 References and File Links 42
4.7.7 Revision Table 42

4.8 Enclosure 42
4.8.1 Description 42
4.8.2 Design 43
4.8.3 General Validation 44
4.8.4 Interface Validation 46
4.8.5 Verification Process 47
4.8.6 References and File Links 47
4.8.7 Revision Table 47

4.9 HMI 47
4.9.1 Description 47
4.9.2 Design 48
4.9.3 General Validation 49
4.9.4 Interface Validation 51
4.9.5 Verification Process 53
4.9.6 References and File Links 53
4.9.7 Revision Table 53

4.10 GPS Module 53
4.10.1 Description 53
4.10.2 Design 54
4.10.3 General Validation 55
4.10.4 Interface Validation 57
4.10.5 Verification Process 59

2. Turn the device on. 59
3. Using Business Mode of the device, record a trip that accords to the created route.
59
4. Compare the recorded GPS distance with the mileage shown on Google Maps. 59

4.10.6 References and File Links 59
4.10.7 Revision Table 59

4.11 Power Stepper 59
4.11.1 Description 59
4.11.2 Design 59
4.11.3 General Validation 61
4.11.4 Interface Validation 64
4.11.5 Verification Process 66
4.11.6 References and File Links 69
4.11.7 Revision Table 70

4.12 Trip ID 70
4.12.1 Description 70
4.12.2 Design 70
4.12.3 General Validation 70
4.12.4 Interface Validation 70
4.12.5 Verification Process 70
4.12.6 References and File Links 70
4.12.7 Revision Table 70

4.13 Main Code 70
4.13.1 Description 70
4.13.2 Design 70
4.13.3 General Validation 70
4.13.4 Interface Validation 70
4.13.5 Verification Process 70
4.13.6 References and File Links 70
4.13.7 Revision Table 70

5 System Verification Evidence 70
5.1 Universal Constraints 70

5.1.1 The system may not include a breadboard 70
5.1.2 The final system must contain a student designed PCB with greater than 30 pads.
70
5.1.3 All connections to PCBs must use connectors. 70
5.1.4 All power supplies in the system must be at least 65% efficient. 70
5.1.5 The system may be no more than 50% built from purchased 'modules.' 71

5.2 Project Requirements 71
5.2.1. Bluetooth Configurable 71

5.2.1.1. Project Partner Requirement: 71
5.2.1.2. Engineering Requirement: 71
5.2.1.3. Testing Method: 71
5.2.1.4. Verification Process: 71
5.2.1.5. Pass Condition: 71
5.2.1.6. Testing Evidence: 71

5.2.2. Compact Packaging 71
5.2.2.1 Project Partner Requirement: 71
5.2.2.2 Engineering Requirement: 72
5.2.2.3 Testing Method: 72
5.2.2.4 Verification Process: 72
5.2.2.5 Pass Condition: 72
5.2.2.6 Testing Evidence: 72

5.2.3. Driver Safety 74

5.2.3.1 Project Partner Requirement: 74
5.2.3.2 Engineering Requirement: 74
5.2.3.3 Testing Method: 75
5.2.3.4 Verification Process: 75
5.2.3.5 Pass Condition: 77
5.2.3.6 Testing Evidence: 77

5.2.4. End User Documentation 77
5.2.4.1 Project Partner Requirement: 77
5.2.4.2 Engineering Requirement: 77
5.2.4.3 Testing Method: 77
5.2.4.4 Verification Process: 77
5.2.4.5 Pass Condition: 79
5.2.4.6 Testing Evidence: 79

5.2.5. Neatly Presented Data 79
5.2.5.1 Project Partner Requirement: 79
5.2.5.2 Engineering Requirement: 79
5.2.5.3 Testing Method: 79
5.2.5.4 Verification Process: 79
5.2.5.5 Pass Condition: 79
5.2.5.6 Testing Evidence: 80

5.2.6. Tracking Vehicle Mileage 80
5.2.6.1 Project Partner Requirement: 80
5.2.6.2 Engineering Requirement: 80
5.2.6.3 Testing Method: 80
5.2.6.4 Verification Process: 80
5.2.6.5 Pass Condition: 80
5.2.6.6 Testing Evidence: 81

5.2.7. Trip Identification 82
5.2.7.1 Project Partner Requirement: 82
5.2.7.2 Engineering Requirement: 82
5.2.7.3 Testing Method: 82
5.2.7.4 Verification Process: 82
5.2.7.5 Pass Condition: 82
5.2.7.6 Testing Evidence: 82

5.2.8. Vehicle Powered 83
5.2.8.1 Project Partner Requirement: 83
5.2.8.2 Engineering Requirement: 83
5.2.8.3 Testing Method: 83
5.2.8.4 Verification Process: 83
5.2.8.5 Pass Condition: 83
5.2.8.6 Testing Evidence: 84

6 Project Closing 84
6.1 Future Recommendations 84

6.1.1 Technical Recommendations 84
6.1.2 Global Impact Recommendations 85
6.1.3 Teamwork Recommendations 86

6.2 Project Artifact Summary with Links 86
6.3 Presentation Materials 87
6.4 References and File Links 87
6.5 Revision Table 88

1 Overview
1.1 Executive Summary

The purpose of the vehicle mileage tracker is to present trip information neatly to
taxpayers in a way they can easily transfer the information to their tax form. The current
solutions in the market require users to pay additional subscription fees for collected
data. The goal of this device is to provide users with a one-time charge solution. This
device will generate a list of business mileage and destinations, with necessary
summary information. It will be a small unit capable of recording location information,
such as start and end GPS coordinates, and documenting mileage of vehicle trips. The
additional functionality of this device includes the ability to identify when a trip starts or
stops, collect and store vehicle trip information in local storage, and to identify trips as
business or other via mobile app. While this project is still in a conceptual phase, the
intent is to begin system testing in January and finalize a prototype by the end of April.

1.2 Team Contacts and Protocols

TABLE I
TEAM CONTACTS

Name Role Contact Info

Caeleb Lacey Hardware & Software laceyca@oregonstate.edu

Ming Chu Chiu Software chiumi@oregonstate.edu

James Ewing Hardware ewingj@oregonstate.edu

TABLE II
TEAM PROTOCOLS

Topics Expectation

Meeting time Weekly: Monday 2:30 pm
Back up time: Thursday 9 am

Documentation Shared on Google Drive

Discord Etiquette ● Pin important links

● At least check it once a day

Communication ● Bring ideas forward, other members take the time to
listen

● Update roadblocks to team

Responsibility ● Nail down feature specs

● Have individual block responsibility

Coding Make clear comments for functions and confusing lines

1.3 Gap Analysis
Small business owners and contractors can report their business-related mileage to the IRS and
receive partial reimbursements on the mile. The intent of this product is to fulfill the need for an
inexpensive mileage tracker system which does not require a subscription service to utilize.
Most competitive trackers on the market require a subscription service to access the data, on
top of a sometimes expensive hardware purchase [1]. This product grants the user free access
to their tracked mileage information via a one-time, inexpensive hardware purchase.

This product can provide small business owners and contractors greater freedom and flexibility
within their operations and lessen stress on tax processing.

1.4 Timeline/Proposed Timeline
TABLE III

PROJECT TIMELINE

1.5 References and File Links
[1] E. G. Ruiz, “5 best mileage tracker apps for small businesses in 2022,” Fit Small Business,
03-Oct-2022. [Online]. Available: https://fitsmallbusiness.com/best-mileage-tracker-app/.

1.6 Revision Table

10/12/2022 Chiu, Ewing, Lacey - Initial Document Creation

11/4/2022 Added IEEE compliant table labeling, added gap analysis
reference

11/14/2022 Made edits to executive summary; added Gantt timeline chart

2 Impact and Risks
2.1 Design Impact Statement
In this section, we will explore potential harms that the Vehicle Mileage Tracker may bring and
come up with preventative solutions and mitigating actions.

Public Health, Safety, and Welfare Impacts: Driver Safety
A critical concern that our project posts is potentially being a distraction to the driver. In the
research paper “Do in-car devices affect experienced users' driving performance?” [1], the
provided data shows that drivers on average glance off the road for around 0.5 seconds during
regular driving. On the other hand, drivers tend to glance off the road for 0.962 seconds when
they are texting during their drive. And when drivers enter their destination in the navigation
system, they tend to glance off the road for 1.337 seconds.increases. Therefore our goal for our
design is to not engage our end users for any time longer than 0.5 seconds during the drive.

Cultural and Social Impacts: Factory Conditions
Our design will be utilizing components that are cut and manufactured in semiconductor
factories. We must take the potential negative working conditions of these factories into
consideration when choosing our components. In China, for example, water fabrication workers
often work 12 hour days in near isolation while being paid well below the average pay for
workers of similar skill levels in other factories [2]. Due to the high expectations of production,
the stress and penalties of failure cause these factories to have high turnover rates, with one
worker quoted as saying “three are recruited, and three leave.” As such, our design will focus on
using components that are manufactured in countries with a much higher priority on maintaining
ethical labor regulations and supporting workers’ rights, with an emphasis toward U.S. based
companies.

Environmental Impacts: PCB Manufacturing
Our design will include a PCB. Traditional PCB manufacturing relies on “energy intensive and
high-emission processes that involve copper, epoxy resin, glass fiber, and water.” [3]
Furthermore, after a product life cycle ends, PCBs become a waste product. They pile up and
become an environmental issue. Handling abandoned PCBs properly could help mitigate this
issue. One way to properly handle abandoned PCBs is to recycle it. To make a PCB recyclable,
we want to make our device easy to fix. If we design the PCB with reusability in mind, we can
allow issues to be detected easily and components to be replaced without too much effort.

Economic Impacts: Influence to Market
The second impact is on currently established companies that produce competitor products to
our vehicle mileage tracker. Our design will undercut the profits of those companies because
our solution is much more economical for the average small business owner. [4]

2.2 Risks
Table IV

Risk Assessment and Action Plans

Risk
ID

Risk
Description

Risk
category

Risk
prob-
ability

Risk
impact

Performance
indicator

Action Plan

R1 Incompatible
interface

Technical H H Interface
Properties
are being met
for a block

Adjust
Interface
Properties
along the way

R2 Vendor delay Timeline H M Parts do not
arrive at
expected
time

Work extra
hours to meet
project
deadline

R3 Go beyond
budget

Cost L L Price change Consider low
cost options
from the
beginning

R4 Unavailable
Parts

Timeline M H Unable to
order parts

Prepare a
backup parts
list

R5 Erasing
Collected
Data by
accident

Technical M H Corrupted
files on SD
Card

Store backup
files on user’s
mobile device
via app

R6 Unix Clock
unsupported
in system
peripherals
after 2038 [5]

Technical L H Error in
Timestamp

Get time
stamp from
user’s mobile
device via
Bluetooth

2.3 References and File Links

2.3.1 References

[1] A. S. Knapper, M. P. Hagenzieker, and K. A. Brookhuis, IATSS Research, tech., 2015.
[Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0386111214000338

https://www.sciencedirect.com/science/article/pii/S0386111214000338

[2] China Labour, “China's pristine chip processing plants disguise harsh reality of the
work,” China Labour Bulletin, 30-Mar-2021. [Online]. Available:
https://clb.org.hk/content/china%E2%80%99s-pristine-chip-processing-plants-disgu
ise-harsh-reality-work.

[3] “Eco-Friendly Printed Circuit Boards: Present and Future Manufacturability,”
resources.pcb.cadence.com. [Online]. Available:
https://resources.pcb.cadence.com/blog/2020-eco-friendly-printed-circuit-boards-pr
esent-and-future-manufacturability

[4] Driversnote, “IRS & Employer Mileage Log Requirements: See What Records You
Need,” Driversnote, 04-Oct-2022. [Online]. Available:
https://www.driversnote.com/irs-mileage-guide/mileage-log-requirements
[Accessed: 04-Nov-2022].

[5] S. Gibbs, “Is the year 2038 problem the new Y2K Bug?,” The Guardian,
17-Dec-2014. [Online]. Available:
https://www.theguardian.com/technology/2014/dec/17/is-the-year-2038-problem-the-new
-y2k-bug. [Accessed: 16-Nov-2022].

2.3.2 File Links

2.4 Revision Table

11/4/2022 Chiu, Ewing, Lacey - Initial Risk Table Creation

11/16/2022 Added needed Unix Clock reference

04/25/2023 Compiled the Design Impact Statement from Design Impact
Assessment assignment.

https://clb.org.hk/content/china%E2%80%99s-pristine-chip-processing-plants-disguise-harsh-reality-work
https://clb.org.hk/content/china%E2%80%99s-pristine-chip-processing-plants-disguise-harsh-reality-work
https://resources.pcb.cadence.com/blog/2020-eco-friendly-printed-circuit-boards-present-and-future-manufacturability
https://resources.pcb.cadence.com/blog/2020-eco-friendly-printed-circuit-boards-present-and-future-manufacturability
https://www.driversnote.com/irs-mileage-guide/mileage-log-requirements
https://www.theguardian.com/technology/2014/dec/17/is-the-year-2038-problem-the-new-y2k-bug
https://www.theguardian.com/technology/2014/dec/17/is-the-year-2038-problem-the-new-y2k-bug

3 Top-Level Architecture
3.1 Block Diagram
Below are the top-level diagrams of the system which demonstrate the inputs and outputs
involved. The first in Fig. 1 is a black box diagram which strictly shows the inputs that the
system takes in, as well as the outputs that it provides. In Fig. 2 the more detailed block diagram
is displayed, demonstrating the internal blocks and how they interact with one another.

Fig. 1 Black Box Diagram

Fig. 2 System Block Diagram

3.2 Block Descriptions
Below is a list of the system blocks, along with a short detailed description of each block and its
overall function within the system, as well as the team member who is championing the
production of that block.

Name Description

Bluetooth
Module
Champion:
Caeleb Lacey

The Bluetooth module handles the physical processing of Bluetooth
signals which facilitates the connection between our device and a mobile
device running our mobile app. It will communicate with the mobile app
through an approximately 2.4 GHz signal, and communicate with the
microcontroller via some digital signal medium(I2C, USART, etc.).

Bluetooth
Handshake
Champion:
Caeleb Lacey

The Bluetooth handshake is a necessary step in establishing and
maintaining Bluetooth connections. This process will sync the device up
with a mobile device via our mobile application and maintain a secure
connection.

Mobile App
Champion:
Caeleb Lacey

The Mobile App block is the primary user interface for the mileage tracker
system. It is a visual medium that allows users to easily interact with their
data, as well as configure settings for the tracker device. The application
includes several features that make use of this system simple for end
users, and plays an integral role into several of the engineering
requirements for the system: • Bluetooth Configurable: The mobile
application allows smooth transfer of data for read/write purposes over a
paired Bluetooth connection between the user’s mobile device and the
mileage tracker device. • Driver Safety: The application locks itself during
a trip to prevent the user from being distracted by the application while
actively driving. • End User Documentation: The application includes a
guided walkthrough for the user upon setting up the device, with the
option for the user to always return to the walkthrough at any point to
refresh their knowledge. This documentation will provide the user with a
full use guide for the system and allow modification of system settings. •
Neatly Presented Data: The application will neatly present tracked data to
the user through well-organized and easy to read tables.

File
Management
Champion:
MingChu Chiu

The File Management block of our code will handle the creation, deletion,
and filling of data for the CSV files meant to store trip data. It will handle
the creation of a new folder on the first trip of a new year, creation of a file
on the first trip of a new month, and will fill the necessary trip data at the
beginning and end of each trip. As well, this code block will handle any
edits made by the user via the mobile app as the signal are
communicated to the microcontroller via Bluetooth.

External
Storage Hub
Champion:
MingChu Chiu

The block is the physical local storage block. It is where an SD card would
be inserted, and it is where the main code will store data to. When trip
data is accessed through the mobile app, the main code will read the
stored data from the SD card. Another way to access the stored data is to
physically pull out the SD card and read it on a PC.

Microcontroller
Champion:
MingChu Chiu

The Microcontroller block is our central processing unit. Hardware
modules are accessed through the I/O pins of the microcontroller. It will
process data and output it to the local storage to save. It will also provide
the output pins for user interface such as an LED. It will host our main
code that interacts with the mobile app as well.

Distance
Processing
Champion:
MingChu Chiu

This code block calculates the distance from collected GPS data. And
then it will pass it back to the main code on the microcontroller to go
through the process for storage.

Enclosure
Champion:
James Ewing

This block takes care of the outside mechanical enclosure that packages
all of the electronics.

HMI
Champion:
James Ewing

Push button with status LED (indicating whether there is an error, the trip
is being recorded, or the trip is not being recorded. The push button/LED
combo will be mounted on the dash for ease of interaction.

GPS Module
Champion:
James Ewing

GPS chip that will provide the location of the device to the microcontroller
for purposes of tracking the mileage accumulated on a specified trip along
with providing the route that was taken during the trip.

Power Stepper
Champion:
James Ewing

Power conversion circuitry to supply our logic circuits with the appropriate
voltage. This block steps a 5V DC input down to DC 3.3V. The 5V DC
input is from a USB car charger as typically seen plugged into a car's
cigarette lighter. The specific logic circuits being supplied by the 3.3V DC
output of the power stepper are the SD card, GPS module, and Bluetooth
module. The purpose of this block is specifically to supply enough current
for the three logic circuits. The daughtered microcontroller used for our
system is capable of supplying 3.3V at 100mA peak. This is short of the
350mA peak current draw calculated for our system which created the
need for a specific power conversion circuit.

Trip ID
Champion:
James Ewing

Code to identify whether the trip is a business trip or a non-business trip. It
will poll the HMI push button for trip identity changes.

Main Code
Champion:
Caeleb Lacey

This block contains the code that will interact with the user as well as the
microcontroller of our system.

3.3 Interface Definitions
Below are the interfaces which define the interactions between blocks. Detailed are the
properties for each interface to satisfy sufficient operation.

Name Properties

otsd_extrnl_strg_hb_comm
● Other: Size: 16GB
● Other: File System: FAT32
● Other: Type: Micro SD

otsd_mcrcntrllr_dcpwr
● Inominal: 100 mA
● Ipeak: 300 mA
● Vnominal: 3.3 V

otsd_enclsr_envin
● Other: USB Connector
● Other: Main PCB
● Other: HMI Switch

otsd_hm_usrin
● Other:When the button is actuated, it triggers

only once (debouncing check).
● Other: Button can be actuated 10 times and 9 of

the 10 times the signal has to be received. .
● Timing: GPIO logic pin on microcontroller

changed on button release.

otsd_mbl_pp_usrin
● Timing: Odometer entries and document access

will take less than 10 seconds in either direction.
● Type: Interaction with mobile touch screen.
● Usability: 9 out of 10 users find app intuitive and

simple to navigate.

otsd_gps_mdl_rf
● Other: Receive Positional data
● Other: Operating frequency of 1575MHz on the

L1 band.
● Protocol: GPS Network Operation

otsd_pwr_stppr_dcpwr
● Inominal: 115mA
● Ipeak: 400mA
● Vmax: 5.5V
● Vmin: 2.7V

bltth_mdl_mcrcntrllr_dsig
● Logic-Level: Active High
● Vnominal: 3.3V

bltth_mdl_mbl_pp_rf
● Messages: Odometer Entries: Integer value
● Messages: Mileage Documents: CSV files
● Other: Bidirectional Connection
● Protocol: Bluetooth

bltth_hndshk_mn_cd_data
● Messages: Bluetooth Key Pairing
● Other: Bidirectional Connection
● Protocol: Bluetooth - Server

extrnl_strg_hb_otsd_usrout
● Type: IRS relevant data fields: Date, Odometer

Readings (beginning and ending), Trip Mileage,
with optional data fields such as Destination,
Business Purpose

● Type: Chronological Organization for Trip
Records

● Type: CSV data

mcrcntrllr_bltth_mdl_dsig
● Logic-Level: Active High
● Vnominal: 3.3V

mcrcntrllr_fl_mngmnt_data
● Other:Write to a file
● Other: Create a file in directory
● Other: Read from a file
● Other: This is a bidirectional interface

mcrcntrllr_extrnl_strg_hb_comm
● Datarate: Baud Rate: 40M
● Other: Bidirectional Interface
● Protocol: SPI

mcrcntrllr_dstnc_prcssng_data
● Messages: a newly collected GPS ping
● Messages: ISR_2sec(): the timer overflow

Interrupt Service Routine
● Other: Frequency: every 2 seconds (0.5 Hz)

mcrcntrllr_hm_asig
● Other: Red LED - Error Report
● Other: Blue LED - Personal Mode
● Other: Green LED - Business Mode
● Vmax: 3.3 V

dstnc_prcssng_mcrcntrllr_data
● Messages: Calculated distance between 2 Pings
● Other: calcTrip(): Accepts a list of distances and

retuns a total distance traveled
● Other: Update estimated odometer reading after

trip ended
● Other: This interface is bidirectional
● Other: Add a trip record into CSV

enclsr_otsd_envout
● Other:Width less than 80mm
● Other: Height less than 40mm
● Other: Length less than 108mm

hm_otsd_usrout
● Other: Blue LED is visible from for Personal Trip
● Other: Green LED is visible for Business Trip
● Other: Light is visible from 3 feet away.

hm_mcrcntrllr_asig
● Other: Push button connected to the internal

pull-up resistor of Rpi (active low signal)
● Vmax: 3.3

mbl_pp_otsd_usrout
● Type: Numerical data recorded by the tracker

device.
● Type: Table of recorded information on document

accessed.
● Usability: 9 out of 10 users find information

well-organized and easy to read.

mbl_pp_bltth_hndshk_data
● Messages: Bluetooth Key Pairing
● Other: Bidirectional Connection
● Protocol: Bluetooth - Client

gps_mdl_mcrcntrllr_comm
● Datarate: 19200
● Protocol: UART
● Protocol: SPI

pwr_stppr_bltth_mdl_dcpwr
● Inominal: 50mA
● Ipeak: 100mA
● Vnominal: 3.3V

pwr_stppr_fl_mngmnt_dcpwr
● Inominal: 15mA
● Ipeak: 170mA
● Vnominal: 3.3V

pwr_stppr_gps_mdl_dcpwr
● Inominal: 50mA
● Ipeak: 100mA
● Vnominal: 3.3V

trp_d_mcrcntrllr_data
● Other: The current mode of operation recorded in

the microcontroller should match user input
● Other: Bi-directional Interface

3.4 References and File Links

3.4.1 References

3.4.2 File Links

3.5 Revision Table

3/12/2023 Imported Our Content from Capstone Student Portal -Chiu

4/25/2023 Filled in interface properties for some GPS interfaces -Team

4 Block Validations
4.1 Bluetooth Module

4.1.1 Description

The Bluetooth module handles the physical processing of Bluetooth signals which
facilitates the connection between our device and a mobile device running our mobile
app. It will communicate with the mobile app through an approximately 2.4 GHz signal,
and communicate with the microcontroller via a UART serial connection. The Bluetooth
Module block is integral to the first of our engineering requirements:

● Bluetooth Configurable: The Bluetooth Module block handles the processing of
the data that is passed between the main device and the mobile application.

Below, further information can be found in regards to the design of the block, a deeper
dive into the features of the application, the interfaces with which the block interacts with
the overall system, and the steps for verifying the function of the block as intended.

4.1.2 Design

The design of the Bluetooth Module block consists of physical components. The block is
interfaced with the power stepper as an input of power, the mobile app along the
bidirectional Bluetooth connection, and the microcontroller via a bidirectional UART
serial connection. Below, the black box diagram of the block and the circuit level design
of the block can be found.

Figure 4.1.2.1: Bluetooth Module Block Black Box

4.1.3 General Validation

The Bluetooth Module block handles the communication between the main device and
the mobile application. The system includes a Microchip BM78 Bluetooth module which

can be configured by the microcontroller via AT commands on the UART communication
line.

The device’s name, UUID, baud rate, and other settings are all set in a one-time setup
loop enacted by the microcontroller. Once the settings are established, then the device is
set to broadcast as a Bluetooth Low-Energy (BLE) peripheral. Upon a connection
request from the mobile device, the connection is established and the module begins
listening.

Upon receiving information from the microcontroller, the device will communicate to the
mobile application that data is coming, and then will send the data upon receiving the
acknowledgement from the app.

When the mobile application is attempting to send data to the main device, the bluetooth
module will communicate an acknowledgement and then wait for the data. Upon data
being received, it will be communicated to the microcontroller along the UART line for
further processing.

4.1.4 Interface Validation

The Bluetooth Module block is connected to the Power Stepper block as its source of
power, the Microcontroller block over UART for processing of data, and the Mobile App
block over Bluetooth Low-Energy for communication of data. Below is a table of the
interfaces and their properties, the purpose of these properties, and how the operation of
the Bluetooth module meets these properties.

Interface Property Why is this interface
this value?

Why do you know that
your design details for

this block
above meet or exceed

each property?

bltth_mdl_mbl_pp_rf : Output

Messages: Odometer
Entries: Integer value

The user needs to be able
to communicate odometer
values to the tracker
device from the mobile app
for data recording.

Bluetooth connections can
easily carry a value as
small as an integer in a
single swift message.

Messages: Mileage
Documents: CSV files

The user needs to be able
to access the recorded
documents stored on the
tracker device through the

Bluetooth can be utilized to
transmit large scale files
such as HD videos, any
CSV file that is only

mobile app and submit
changes to the documents
back to the device.

recording data for a year
will never be able to come
close to that kind of file
size, and therefore the
connection will do more
than well enough to quickly
move documents between
the tracker device and
mobile device.

Other: Bidirectional
Connection

Bluetooth connection by its
nature is a bidirectional
connection. The module
needs to be able to both
send information to and
receive information from
the mobile app.

Information Only

Protocol: Bluetooth The tracker device needs
to be able to communicate
with the mobile app.

We chose Bluetooth over
Wifi as a quick
communication method
with a mobile device as a
Wifi connection can
overcome any internet
connection on some
devices. Bluetooth allows
for a user to have multiple
devices connected and still
maintain a vital connection
to the internet for other
purposes such as
navigation.

mcrcntrllr_bltth_mdl_comm : Input

Datarate: Baud Rate:
115,200

The baud rate needs to be
in a band which allows the
Bluetooth module to clear
out its cache as quickly as
possible so as to not cause
data flow backups.

The BM78 module can be
configured for any baud
rate up to 2 Mbps. 115,200
is a commonly used baud
rate and allows the device
to quickly clear its onboard
cache in either direction of
communication.

Messages: Mileage
Documents: CSV files

The user needs to be able
to access the recorded

The BM78 model we are
utilizing has 320 KB of

documents stored on the
tracker device on the
mobile app and submit
changes to the documents
back to the device.

onboard ROM which acts
as a data buffer[1].
Considering the size of a
single character value is 1
byte (B), and our output
format averages around 50
characters per line. This
would take a CSV file that
is over 6,500 trips long to
overload at a transfer rate
of just 1 byte per second.
As we are transmitting data
both through the UART
and over Bluetooth at far
faster rates than that, then
our choice for this module
fits well within our needed
parameters.

Messages: Odometer
Entries: Integer value

The user needs to be able
to communicate odometer
values to the tracker
device from the mobile app
for data recording.

Similar to the CSV file
explanation above, Integer
values are only 8 bytes
long, which transfers
incredibly fast over the
Bluetooth and UART
connections.

Other: Bidirectional
Connection

UART by nature is a
bidirectional connection,
with a transmitter (TX) and
receiver (RX) line on either
end of the connection. The
TX line of one device
connects to the RX line of
the other, and vice versa.

Information Only

Protocol: UART Serial The Bluetooth module
requires some avenue of
communicating data
directly with the
microcontroller.

The BM78 Bluetooth
module utilizes UART to
communicate with a
microcontroller. This is a
pretty standard route for
serial communication with
Bluetooth modules across
the industry.

pwr_stppr_bltth_mdl_dcpwr : Input

Inominal: 50mA This nominal current was
chosen based on the
expected current needs of
the system overall.

For the BM78 bluetooth
module:

● 43mA for
continuous TX
condition, rounded
up to 50mA. [1]

Ipeak: 100mA In this example, we don't
expect the current draw of
the whole system to ever
spike above this number.
The value was selected by
adding up the maximum
current of all parts and
multiplying by 2

For the BM78 bluetooth
module:

● Peak current draw
100mA from on
board LDO. [1]

Vnominal: 3.3V In this example, this
property was chosen
based on the design we
plan to use in the power
supply block.

For the BM78 bluetooth
module:

● Nominal operating
voltage listed as
3.3V. [1]

4.1.5 Verification Process

Below is the verification plan for confirming the proper operation of the Bluetooth Module
block.

1. Apply power to the tracking device. The onboard LED connected to the Bluetooth
device should confirm that it is operational and awaiting a connection.

2. If device connection has not yet been established, connect the tracker device to
the mobile application via the verification steps under the Bluetooth Handshake
block (Section 4.2.5 below).

3. Test the communication by initiating a trip on the mobile application using your
vehicle’s odometer readings, and then go on a short trip.

4. Upon ending the trip, access the tracking device’s onboard storage via the mobile
application and confirm the successful recording of your trip.

5. If the trip file is able to be opened on the mobile device, then this confirms the
successful communication of a CSV file over the Bluetooth connection.

6. If the most recent trip correctly includes the odometer values you utilized on the
test trip, then this confirms the correct communication of integer values over the
Bluetooth connection.

That concludes the operation verification of the Bluetooth Module block.

4.1.6 References and File Links

[1] Microchip technology,
https://ww1.microchip.com/downloads/en/DeviceDoc/BM78-Data-Sheet-DS60001380D.p
df (accessed May 15, 2023).

4.1.7 Revision Table

Date Revision

5/14/23 Caeleb Lacey: Initial Block Validation
Submitted

4.2 Bluetooth Handshake

4.2.1 Description

The Bluetooth Handshake block is a necessary step in establishing and maintaining
Bluetooth connections. This process will sync the device up with a mobile device via our
mobile application and maintain a secure connection.

4.2.2 Design

The Bluetooth Handshake block is a slightly automated code process which acts as a
“hello, my name is” protocol between the tracker device and the mobile application.
Handled over Bluetooth Low-Energy, the process is quite standardized according to the
protocols of BLE. Below is a simple diagram illustrating the interfaces with other code
blocks.

Figure 4.2.2.1: Bluetooth Handshake Block Black Box

4.2.3 General Validation

The Bluetooth Handshake block is a simple, but necessary portion of our code that
allows the connection between the tracker device and a mobile device through our
mobile app to be established.

Through its own code, the mobile application broadcasts the mobile device as a BLE
central device, having it act as the command initiating device. The Bluetooth module on
the tracker device broadcasts itself instead as a peripheral device. This allows the
mobile app to seek out and “see” the tracker device, and then initiate the connection.

The handshake code is setup in such a way that when the mobile app specifically
initiates a connection request, the tracker device will accept the pairing and share its
pairing key. This then allows for a “remembered” connection, which should minimize the
number of times a user potentially has to engage the connection again.

4.2.4 Interface Validation

The Bluetooth Handshake block is a portion of the main code on the microcontroller as
well as the code on the mobile application. Below is a table of the two primary interfaces
and their properties, the purpose of these properties, and how the operation of the
Bluetooth handshake protocol meets these properties.

Interface Property Why is this interface
this value?

Why do you know that
your design details for

this block
above meet or exceed

each property?

bltth_hndshk_mn_cd_data : Output

Messages: Bluetooth Key
Pairing

Bluetooth, be it Classic or
Low-Energy, requires an
agreed upon sharing of
access keys by both
devices involved.

Upon receiving a
connection request from
the mobile app, the
Bluetooth handshake code
shares the tracking
device’s key with the
mobile device, prompting
the mobile device to share
its back and establish the
connection.

Other: Bidirectional
Connection

Bluetooth connection by its
nature is a bidirectional
connection. The module
needs to be able to both
send information to and

Information Only

receive information from
the mobile app.

Protocol: Bluetooth -
Peripheral

The tracking device needs
to advertise as a
peripheral. This is due to
not having a GUI on the
tracker device itself,
meaning there would be no
way to initiate a connection
to a specific mobile device
from it if it were acting as
central.

Our code establishes the
tracking device as the
peripheral device, which
allows it to be “seen” by
the mobile app where a
user can initiate the
connection protocol
manually.

mbl_pp_bltth_hndshk_data : Input

Messages: Bluetooth Key
Pairing

Bluetooth, be it Classic or
Low-Energy, requires an
agreed upon sharing of
access keys by both
devices involved.

Upon receiving a
connection request from
the mobile app, the
Bluetooth handshake code
shares the tracking
device’s key with the
mobile device, prompting
the mobile device to share
its back and establish the
connection.

Other: Bidirectional
Connection

Bluetooth connection by its
nature is a bidirectional
connection. The module
needs to be able to both
send information to and
receive information from
the mobile app.

Information Only

Protocol: Bluetooth -
Central

The mobile application
needs to be set as a
central manager. This
allows us to provide the
user with an interface that
allows them to select a
peripheral device, in this
case our tracking device,
to connect with.

Our code utilizes the
mobile device as a central
device through Apple’s
CoreBluetooth protocols,
and allows the user to
“see” advertising peripheral
devices and select our
tracking device to establish
a connection with.

4.2.5 Verification Process

The Bluetooth Handshake block has a fairly simple verification process which is outlined
below.

1. Power on the mileage tracker device and open the mobile mileage tracker
application.

2. Within the application, confirm that the mileage tracker device has been
successfully connected to automatically. If this has not occurred, initiate a search
by pressing the button that indicates so on the main menu.

3. The device should automatically connect to the application, and at this point the
handshake has commenced and been acknowledged, and therefore the process
is complete.

This concludes the verification process for the Bluetooth Handshake block.

4.2.6 References and File Links

4.2.7 Revision Table

Date Revision

5/14/23 Caeleb Lacey: Initial Block Validation
Submitted

4.3 Mobile App

4.3.1 Description

The Mobile App block is the primary user interface for the mileage tracker system. It is a
visual medium that allows users to easily interact with their data, as well as configure
settings for the tracker device. The application includes several features that make use
of this system simple for end users, and plays an integral role into several of the
engineering requirements for the system:

● Bluetooth Configurable: The mobile application allows smooth transfer of data for
read/write purposes over a paired Bluetooth connection between the user’s
mobile device and the mileage tracker device.

● Driver Safety: The application locks itself during a trip to prevent the user from
being distracted by the application while actively driving.

● End User Documentation: The application includes a guided walkthrough for the
user upon setting up the device, with the option for the user to always return to
the walkthrough at any point to refresh their knowledge. This documentation will
provide the user with a full use guide for the system and allow modification of
system settings.

● Neatly Presented Data: The application will neatly present tracked data to the
user through well-organized and easy to read tables.

Below, further information can be found in regards to the design of the block, a deeper
dive into the features of the application, the interfaces with which the block interacts with
the overall system, and the steps for verifying the function of the block as intended.

4.3.2 Design

The design of the Mobile App block is primarily code-based. The block is interfaced by
both user input and output, as well as a hardware Bluetooth connection which supports
the software transfer of data. Below, the black box diagram of the block and the
operation workflow of the application’s code can be found.

Figure 4.3.2.1: Mobile App Block Black Box

Figure 4.3.2.1 above is a black box diagram of the Mobile App block and its connected
interfaces.

Figure 4.3.2.2: Mobile App Operation Flowchart

Figure 4.3.2.2 above is a demonstration of the workflow of the application as the user
interacts with its features.

4.3.3 General Validation

The Mobile App block represents the main code through which the user will interact with
the system. Upon initialization of the application, a paired Bluetooth connection is
sought. If the tracker device has already been paired with the mobile device utilizing the
application, then the application proceeds to the main menu. If no device is paired, then
a setup guide is instead initiated.

In the setup guide, the user is walked through establishing the Bluetooth pairing,
deciding upon settings for operation of the system, and guided on a walkthrough of how
to utilize the system and its features. Upon completing this setup, the Bluetooth pairing
between the tracker device and the mobile device has been established and the user
may proceed to utilizing the system.

On the main menu, the user is provided with three options: start a trip, document access,
and settings. Under the settings, the user may reconfigure any settings they had decided
upon in the initial setup, or review the guided walkthrough for how to properly use the
system.

If the user chooses to start a trip, then they are prompted to input the current odometer
reading. The user is then prompted to lock their phone to prevent distracted driving. If
the tracker device is found to be in motion, the application will lock itself and prevent the
user from interacting with it while driving. Upon completion of a trip and coming to a
complete stop, the application will open up once more and allow the user to end the trip.
Upon ending the trip, the user is once more prompted to enter the current odometer
readout, and both the starting and final value are sent to the tracker device for storage
and the user is returned to the application’s main menu.

If the user chooses to access documents, then the application communicates with the
tracker device for file information, presenting the user with the file system. The user will
first be presented with file directories by year, and within each directory, CSV files will be
arranged by month. When the user selects a month, the CSV file is then transferred to
the mobile application and parsed into an easily readable table. At this table, the user
can choose to simply view the information to find the values they are looking for, or they
can choose to edit entries if they find there to be information that needs to be corrected.
If an edit is performed, the file is saved and then sent back to the tracker device in order
to update the record when the user is done, and the user is returned to the main menu.

Ultimately, the application is designed in this way to grant the user ease of access to
their data and fulfill the desires of our project partner to have the data easily accessed,
read, and modified. An alternate design to this access was considered, and it is also
being implemented into the system. The alternate design is in case that the user does
not have a compatible mobile device, they can simply remove the SD storage card
connected to the device and access the information on any computer that can read it.

4.3.4 Interface Validation

The Mobile App block communicates primarily with the Bluetooth Module block on a
hardware scale, and through the Bluetooth Handshake block as a communication
go-between with the main code of the tracker device. Below is a table of the interfaces
and their properties, the purpose of these properties, and how the operation of the
application meets these properties.

Interface Property Why is this
interface this value?

Why do you know that your
design details for this

block
above meet or exceed each

property?

otsd_mbl_pp_usrin : Input

Timing: Odometer entries
and document access will
take less than 10 seconds
in either direction.

Data needs to be accessed
or communicated between
the mobile device and the
tracker device swiftly for
the sake of ease of use.

This property on average
will be met purely by the
transfer rate of Bluetooth,
which averages around 1
Mbps[1]. Seeing as the
only data we will be
transferring back and forth
from the mobile device to
the tracker device are
integer values and CSV
files, the messages will be
transferred nearly in an
instant.

Type: Interaction with
mobile touch screen.

The user needs to
interface with the
application through their
mobile device’s touch
screen.

The application is being
developed for iOS, the
operating system of
iPhones. iPhones utilize a
touch screen for interaction
with applications.

Usability: 9 out of 10 users
find app intuitive and
simple to navigate.

Our users need to find the
system, as a whole, simple
and easy to use.

The guided setup portion
of the application walks the
user through how to
properly use both the
tracker device and the
mobile application itself.

bltth_mdl_mbl_pp_rf : Input

Messages: Odometer
Entries: Integer value

The user needs to be able
to communicate odometer
values to the tracker
device for data recording.

At the start of a trip, the
user will be prompted to
input the starting odometer
reading. At the end of a
trip, the user will once
more be prompted to input
the ending odometer
reading for the trip. Upon
entering the final reading,
both values will be sent to
the tracker device for
recording.

Messages: Mileage
Documents: CSV files

The user needs to be able
to access the recorded
documents stored on the
tracker device.

The user will be able to
access documents stored
on the tracking device via
the Bluetooth connection.
Upon selecting a specific
file, the entire CSV will be
sent to the application for
further navigation.

Other: Bidirectional
Connection

Bluetooth connection by its
nature is a bidirectional
connection. The
application needs to be
able to both send
information to and receive
information from the
tracker device.

Information Only

Protocol: Bluetooth The mobile application
needs to be able to
communicate with the
tracker device.

Bluetooth offers a simple
connection between our
two-device system.

mbl_pp_otsd_usrout : Output

Type: Table of recorded
information on document
accessed.

Information stored in the
CSV file needs to be
presented to the user in an
understandable fashion.

CSV files by their design
offer an easy method of
aligning data into a table.

Type: Numerical data
recorded by the tracker
device.

The data populating the
CSV needs to be accurate
and representative of the
recorded data needed for

The numerical values
stored in the CSV file will
be presented to the user in
an easy to read fashion

IRS reporting. which makes the numbers
clear as to their value and
purpose.

Usability: 9 out of 10 users
find information
well-organized and easy to
read.

Our users need to find the
system, as a whole, simple
and easy to use.

The table will be arranged
in a simple to understand
format. The first column
will denote the date and
time of the start of the trip,
with entries descending in
chronological order.
Columns at the top of the
table will remain at the top
of the screen so that even
if a user has to scroll far for
the information they’re
seeking, they’ll still be able
to quickly reference what
each column’s data
means.

mbl_pp_bltth_hndshk_data : Output

Messages: Bluetooth Key
Pairing

The application needs to
establish a connection with
the tracker device for quick
and easy communication
of data.

If the mobile device is not
paired with the tracker
device already, the initial
setup portion of the
application will guide the
user through establishing
the connection. If the
mobile device is already
paired with the tracker
device, then opening the
application will simply
include a quick handshake
to confirm that the two are
connected and ready to
communicate.

Other: Bidirectional
Connection

Bluetooth connection by its
nature is a bidirectional
connection. The
application needs to be
able to both send
information to and receive
information from the
tracker device.

Information Only

Protocol: Bluetooth The mobile application
needs to be able to
communicate with the
tracker device.

Bluetooth offers a simple
connection between our
two-device system.

4.3.5 Verification Process

Below is the verification plan for confirming proper operation of the Mobile App block.
This process is laid out in a manner that will allow any end user to confirm that the
mobile application is functioning as designed.

1. The user will open the application (otsd_mbl_pp_usrin) on their mobile device
while the tracker device is on. If the mobile device and tracker have already been
paired, then skip to step 4. If the two are not paired yet, proceed to step 2.

2. The user will be prompted with the initial setup process of the mobile application.
First, the setup will guide the user through establishing the Bluetooth connection
(mbl_pp_bltth_hndshk_data, bltth_mdl_mbl_pp_rf). Once the connection is
established, they will set the device settings and those settings will be
communicated with the tracker device.

3. The user will move through the guided walkthrough on use of the system, one
page at a time. Upon completion of the walkthrough guide, the user will be asked
if they understand how to utilize the system, and if confirmed, will proceed to step
4.

4. Upon landing on the main menu, the user will initiate a trip. The application will
prompt the user to enter the odometer reading.

5. The user will then end the trip, and will once more be prompted to input the final
odometer reading. Upon entering these values, both values will be
communicated with the tracker device for storage in a new trip entry.

6. The user will now proceed to document access. Upon accessing the file system,
the user will access one of the CSV files and confirm that all information is
present and clear to understand (mbl_pp_otsd_usrout).

7. The user will select a cell in the table to modify, and upon successful editing of
the block, confirm and save the file. Upon saving the file, the file will be sent back
to the tracker device for the most up to date recording. The user will then be
returned to the main menu.

8. The user will once more select the file to confirm that the edit was properly
saved.

9. Finally, the user will return to the main menu and access the settings. They will
confirm that their settings for the tracker device can be modified and that the user
guide can be accessed.

That concludes the operation verification for the Mobile App block.

4.3.6 References and File Links

[1] “Bluetooth technology overview,” Bluetooth® Technology Website, 2022. [Online].
Available: https://www.bluetooth.com/learn-about-bluetooth/techoverview/. [Accessed:
20-Jan-2023].

4.3.7 Revision Table

Date Revision

1/20/23 Caeleb Lacey: Initial Block Validation Draft
Submitted

2/11/23 Caeleb Lacey: Revisions applied to every
section, updated and clarified information in
regards to design and details of operation.

4.4 File Management

4.4.1 Description

4.4.2 Design

4.4.3 General Validation

4.4.4 Interface Validation

4.4.5 Verification Process

4.4.6 References and File Links

4.4.7 Revision Table

4.5 External Storage Hub

4.5.1 Description

4.5.2 Design

4.5.3 General Validation

4.5.4 Interface Validation

4.5.5 Verification Process

4.5.6 References and File Links

4.5.7 Revision Table

4.6 Microcontroller

4.6.1 Description

The Microcontroller block is our central processing unit. Hardware modules are accessed
through the I/O pins of the microcontroller. It will process data and output it to the local storage
to save. It will also provide the output pins for user interface such as an LED. It will host our
main code that interacts with the mobile app as well.

4.6.2 Design

Figure 1: Black Box Diagram of Microcontroller Block

To achieve the engineering requirements, the main code that runs on the microcontroller should:
● Constantly read in GPS messages once powered on (such as a 2-second timer interrupt

service routine)
● Constantly check on HMI (push button, as well as mobile app trip_start request) input
● Constantly determine which state the microcontroller should be in, depending on the

values above.

Since there are three main things that the microcontroller should constantly check on, I used
three different timer interrupts on the Raspberry Pi Pico to accomplish these checks.

Figure 2: Design of State Machine on Microcontroller
Notes: [name in blackbox]⇔ [name in state machine diagram]
otsd_mcrcntrllr_dcpwr⇔ PWR, dstnc_prcssng_mcrcntrllr_data⇔ Calc_trip(),
Hm_mcrcntrllr_asig⇔ mode, gps_mdl_mcrcntrllr_comm⇔ GPSread(),
trp_d_mcrcntrllr_data⇔moving

4.6.3 General Validation

I used 3 different timer interrupts on the Raspberry Pi Pico, of different frequencies. For
checking the GPS messages, I used a 2-second period timer interrupt. This is because

4.6.4 Interface Validation

4.6.5 Verification Process

4.6.6 References and File Links

4.6.7 Revision Table

4.7 Distance Processing

4.7.1 Description

This code block calculates the distance between 2 GPS pings. The main code on the
microcontroller will pass a new GPS ping every 2 seconds to this distance processing code
block, using a Timer Overflow Interrupt. The calculated distance will then be passed back to the
main code on the microcontroller and then stored as Comma Separated Values (CSV) on the
external storage hub. When the trip is determined to be at the end, this block will sum up all the
calculated distances in this trip, and append this totalled amount of mileage to the current
odometer reading. That way, we will get an estimated value of the odometer reading when a trip
ends. The ending odometer reading is a relevant information to attach in the report to the
Internal Revenue Service (IRS) regarding business trips. Therefore we will save the odometer
reading at the beginning and the end of a trip into a separate CSV file for the purpose of
creating a presentable set of data.

4.7.2 Design

Figure 1: Black Box Diagram of Distance Processing Block

Figure 2: Distance Processing Flow Chart

Notes:
GPS Ping is the input of this block, mcrcntrllr_dstnc_prcssng_data.
Calculated distance, totalled distance, and estimated odometer reading are the output of this
block, dstnc_prcssng_mcrcntrllr_data.

Figure 3: Distance Calculation Formula for GPS pings

4.7.3 General Validation

This is the Distance Processing code block for the Vehicle Mileage Tracking system to process
the received GPS pings and turn them into mileages. The idea is to sum up all distances
calculated from the pings of the same trip to get our trip mileage.

I chose to sample GPS pings every 2 seconds because that seems to be a reasonable logging
distance considering when a vehicle is traveling at 65 mph. 65 𝑚𝑝ℎ (1609 𝑚

1 𝑚𝑖𝑙𝑒)(1 ℎ𝑟
3600 𝑠) = 29. 05 𝑚

𝑠

which makes 2 seconds cover a distance of . With 60 meters being under29. 05 𝑚
𝑠 (2 𝑠) ≈ 60 𝑚

100 meters, the short distance in my mind, I find it appropriate to log the GPS pings with a
2-second interval. And I chose to use interrupt on the microcontroller because logging GPS
coordinates is a time critical event.

The circular flow in the flowchart came from waiting for a second GPS ping to arrive before
attempting distance calculation. Notice that there are two exits in this flowchart, with the exit on

the left happening every two seconds, and the exit on the right happening on the exit of the
entire trip.

Figure 3 includes the calculation formula that I would apply to the GPS coordinates to obtain the
distance. I chose this formula because it seems implementable on a Raspberry Pi Pico.

4.7.4 Interface Validation

Interface Property Why is this interface of this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

mcrcntrllr_dstnc_prcssng_data : Input

Messages: Read
GPS Ping every 2
seconds

I chose to pull in GPS pings
every 2 seconds because during
that time interval the distance
covered matches my definition of
short distance, of it being 100
meters.

I plan to use a timer overflow
interrupt every 2 seconds which
would pause any procedures at
hand and execute the interrupt
routine of getting the current GPS
coordinate.

dstnc_prcssng_mcrcntrllr_data : Output

Messages:
Calculated distance
between 2 Pings

Being able to determine the
distance between any two GPS
pings allows us to calculate
individual distances within the
trip, which is crucial for
calculating the entire trip
distance.

I have looked for resources online
and found some equations for
calculating distances between two
GPS coordinates.

Messages: Totalled
distance in one trip

The summed distances will be
our trip mileage, which we will
use to estimate the current
odometer reading as well.

This property could be met by
summing up all the individual
distances of the same trip.

Other: Store
individual distances
within the trip into
CSV

This property is needed because
it will log down individual
distances, which will be used to
calculate trip mileage at the end
of the trip.

This property could be met by
recording down the values
returned by the calculation
functions.

Other: Add a trip
record into CSV

Trip records will be kept in a
different CSV file than the
individual distances, to make it

IRS relevant data (starting and
ending odometer readings, trip
mileage) about this trip will be

easier to read for the user. added into a record in CSV.

Other: Update
estimated odometer
reading after trip
ended

This property is needed so that at
the end of each trip, we will
update the odometer reading by
the total trip mileage.

This could be done by appending
the total trip mileage to the current
odometer reading.

4.7.5 Verification Process

For validation, I will be testing the interfaces to say that the block is functional.

mcrcntrllr_dstnc_prcssng_data : Input

Messages: Read GPS
Ping every 2 seconds

The code will feed in a GPS coordinate every 2 seconds.
1. Output the GPS coordinate to the serial monitor before

feeding it into the distance calculating function.
2. Look at the timestamp on the serial monitor and determine if

the timestamp intervals are 2-second long.

dstnc_prcssng_mcrcntrllr_data : Output

Messages: Totalled
distance in one trip

This code will sum up all the individual distances between GPS pings
of the trip.

1. If the output of this code equals all the individual distances in
the CSV added together, then this code is validated.

Messages: Calculated
distance between 2
Pings

This code will calculate the distance between 2 GPS pings.
1. If the output of this code is the same distance as what is

calculated on Google Maps, then this code is validated.C

Other: Add a trip
record into CSV

This code will add trip records such as total trip mileage, beginning
and ending odometer readings to a CSV for the user to read.

1. This code is validated if the correct data values are added
into the correct columns in the CSV file.

Other: Update
estimated odometer
reading after trip
ended

This code will modify the odometer reading value by the amount
traveled in this trip, after the trip ends.

1. This code is validated if it modifies the odometer reading by
the correct amount when the trip-ending is flagged.

4.7.6 References and File Links

“Finding the distance between two points on the Earth,” Projects.raspberrypi.org. [Online].
Available: https://projects.raspberrypi.org/en/projects/fetching-the-weather/6. [Accessed:
21-Jan-2023].

4.7.7 Revision Table

1/21/2023 Initial Document Creation -Chiu

4.8 Enclosure

4.8.1 Description

The enclosure for our project is a 3D printed two-part structure designed to house the
main PCB and the SD Card PCB. The bottom half of the enclosure features heat set inserts that
allow the main PCB to be securely mounted using M3 screws. Furthermore, the bottom half of
the enclosure includes holes for both an RF coaxial connector that connects to the GPS module
and a micro-USB connector that connects to the Raspberry PI Pico on the main PCB. The top
half of the enclosure includes two holes, one for an LED and the other for a toggle switch that
together compose of the HMI. The SD Card PCB is connected to the top half using heat set
inserts secured with M3 screws. Overall, the enclosure provides a durable and secure housing
for the necessary components of the system, while allowing easy access to all of the external
connections to the system.

4.8.2 Design

The design process for the enclosure began with a thorough analysis of our project
sponsors requirements and the final PCB dimensions. Our team then carefully considered the
placement of the components on the PCB and figured out what would be the most ideal location
for the connectors and switches that would be externally interfaced with. After a few rough draft
sketches with pencil and paper I then began modeling the enclosure with the 3D modeling
software Autodesk Inventor 2023 Professional. The initial design was then reviewed and then
adjusted for fitment and functionality before being sent to be 3D printed.

During the prototyping phase, my team and I conducted several tests to ensure the
enclosure met all of the requirements for the final product, including ease of assembly, durability,
and proper ventilation. The heat set inerts used to secure the PCBs in place were chosen for
their ease of assembly and for their strong and reliable connection. Our team also tested the

https://projects.raspberrypi.org/en/projects/fetching-the-weather/6

placements of the external connectors and switches to ensure they were accessible and easy to
use.

After successfully testing the prototype 3D print, the final design was adjusted for any
necessary changes. The necessary changes after the prototype design review was that the
micro-USB connector hole was moved up to better match the height of the PCB mounted
micro-USB connector, enlarging of the LED and toggle switch holes, and slight repositioning of
the mounting holes for the main PCB. The enclosure was then sent for the final 3D print in
which we made sure to use a high infill for the print to make the final result as smooth as
possible. Summing things up, the design process for the enclosure involved careful
consideration of all of the requirements for our project, thorough protypting and testing, and
close attention to detail to ensure a functional and reliable final product.

Fig. 1: Figure showing the inputs and outputs environmentally to the enclosure.

Fig. 2: This is the high level block diagram for the overall system that the Enclosure is apart of.

4.8.3 General Validation

The design of our enclosure was justified based on several factors, one of which was the
ability for rapid prototyping. With 3D printing, we were able to iterate quickly and make
modifications to the design without having to wait for traditional manufacturing processes. This
allowed us to test and refine our design until we were satisfied with the final product.

Another key factor in our decision to use 3D printing was the low cost of filament. This meant
that we were able to produce multiple iterations of the enclosure without significantly impacting
the overall budget of the project. Additionally, the flexibility of 3D printing allowed us to create a
customized design that fit our specific needs.

The enclosure itself consists of two pieces, a bottom piece and a top piece, which are easily
taken apart to access the main PCB. The small form factor of the enclosure was dictated by the
size of the main PCB and the placement of the connectors, especially the RF connector. Our
project sponsor, Stephen Covrig, had requested that the overall package be small enough to fit
in the palm of your hand, and we were able to achieve this goal with our design. Overall, the 3D
printed enclosure allowed us to create a customized, low-cost, and easily accessible solution for
our project needs.

4.8.4 Interface Validation

otsd_enclsr_envin: Input

HMI Switch Must Exist

Main PCB Must Exist

USB Connector Must Exist

enclsr_otsd_envout: Output

Width less than 80mm Measure width with
Calipers to be less than
listed value.

Height less than 40mm
Measure width with
Calipers to be less than
listed value.

Length less than 108mm Measure width with
Calipers to be less than
listed value.

4.8.5 Verification Process

Step 1: Turn on digital calipers and set to inch units by pressing mode button.
Step 2: Measure length of the enclosure with the digital calipers.
Step 3: Measure width of the enclosure with the digital calipers.
Step 4: Measure height of the enclosure with the digital calipers.

4.8.6 References and File Links

[1] “Carr,” McMaster, https://www.mcmaster.com/94180A331/ (accessed May 15, 2023).

4.8.7 Revision Table

Date Revision

04/23/2023 First revision.

04/30/2023 Added more detailed references for interface
definitions.

05/10/2023 Updated document based on feedback.

05/11/2023 Added more figures in Section 3.

4.9 HMI

4.9.1 Description

The HMI, or Human Machine Interface, is an essential component of the system that
provides a user-friendly way to interact with the system and understand its status. It consists of
a toggle button and an RGB LED, which displays blue for personal trips and green for business
trips, indicating when the vehicle mileage is being recorded. The HMI is mounted on top of the
3D printed enclosure, providing a convenient location for easy access and visibility. The toggle
button allows the user to switch between personal and business modes, while the LED provides
clear and visible feedback on the current mode. Overall, the HMI enhances the system's
usability and provides a simple and intuitive way for users to interact with the system and
understand its status.

4.9.2 Design

The design process for the HMI involved careful consideration of the user's needs and
preferences. The toggle button and LED were chosen for their simplicity and effectiveness in
conveying information. To ensure ease of use, the toggle button was placed in a prominent
location on top of the enclosure, making it easily accessible and visible to the user. Similarly, the
RGB LED was placed in a visible location on the top of the enclosure, ensuring that the user
can easily see the current mode of operation. The color choice for the LED, blue for personal
trips and green for business trips, was selected for its clarity and visual appeal. Overall, the
design of the HMI was informed by the principles of usability and simplicity, with a focus on
providing an intuitive and user-friendly interface.

In addition to its functional aspects, the HMI was also designed with aesthetics in mind.
The toggle button and RGB LED were selected for their sleek and modern appearance, which

complements the overall design of the system. The placement of the HMI on top of the 3D
printed enclosure not only provides functional benefits but also contributes to the overall visual
appeal of the system. The clean lines and minimalistic design of the HMI and enclosure create a
cohesive and stylish look that is both functional and visually pleasing.

Finally, the HMI was tested extensively to ensure that it met the required specifications
and provided a seamless user experience. The toggle button and LED were tested for their
responsiveness and accuracy, and adjustments were made to ensure that they functioned
smoothly and reliably especially with debouncing tuning. The HMI was also tested in various
lighting conditions to ensure that the LED was clearly visible and the button was easily
distinguishable. Through testing and refinement, the HMI was designed to provide the best
possible user experience and meet the requirements of the system.

Fig. 1: This figure shows the inputs and output interfaces to the HMI block.

Fig. 2: This is a picture of the HMI in action.

Fig. 3: This is the high level block diagram for the overall system that the HMI is apart of.

4.9.3 General Validation

Throughout the design process of the Human-Machine Interface (HMI), careful
consideration was given to the user's needs and preferences. The toggle button and RGB LED
were selected for their simplicity and effectiveness in conveying information to the user. The
RGB LED is visible from a distance and its green color is clear, indicating a business trip while
the blue color is less confrontational and not an annoyance to the user. The toggle button was
placed in a prominent location on top of the enclosure, making it easily accessible and
preventing drivers from taking their attention away from the road for too long. The design of the
HMI was informed by the principles of usability and simplicity, with a focus on providing an
intuitive and user-friendly interface.

The aesthetics of the HMI were also taken into account during the design process. The toggle
button and RGB LED were selected for their sleek and modern appearance, which
complemented the overall design of the system. The placement of the HMI on top of the 3D
printed enclosure not only provided functional benefits but also contributed to the overall visual
appeal of the system. The clean lines and minimalistic design of the HMI and enclosure created
a cohesive and stylish look that was both functional and visually pleasing.

Finally, the HMI underwent extensive testing to ensure that it met the required specifications and
provided a seamless user experience. The toggle button and RGB LED were tested for their
responsiveness and accuracy, and adjustments were made to ensure that they functioned
smoothly and reliably, including debouncing tuning. The HMI was tested in various lighting
conditions to ensure that the LED was clearly visible, and the button was easily distinguishable.
Through testing and refinement, the HMI was designed to provide the best possible user
experience and meet the requirements of the system. The result was an intuitive and
user-friendly HMI that complemented the overall design of the system, providing both
functionality and style.

4.9.4 Interface Validation
Otsd_hm_usrin: Input

Other: When
the button is
actuated, it
triggers only
once
(debouncing
check).

Inspection

Other: Button
can be actuated
10 times and 9
of the 10 times
the signal has

Inspection

to be received.

Timing: GPIO
logic pin on
microcontroller
changed on
button release.

Inspection

Mcrcntrllr_hm_asig: Output

Other: Green
LED - Business
Mode

Inspection

Other: Red LED
- Error Report

Inspection

Other: Blue
LED - Personal
Mode

Inspection

Vmax: 3.3 V Measurement

Hm_otsd_usrout: Output

Other: Green
LED is visible
for Business
Trip

Inspection

Other: Light is
visible from 3
feet away.

Inspection

Other: Blue
LED is visible
from for
Personal Trip

Inspection

hm_mcrcntrllr_asig: Output

Other: Push Measurement

button
connected to
the internal
pull-up resistor
of Rpi (active
low signal)

Vmax: 3.3 Measurement

4.9.5 Verification Process

Test 1: 1. Provide power to the system at 5V.
2. Observe onboard LED. Confirm state: Blue = Personal, Green = Business.
3. Press the onboard button once.
4. Observe the onboard LED once more. The LED will have swapped colors,
indicating the shift to the other trip mode.
5. Record a trip, then check the trip CSV.
6. Confirm that the trip state displayed by the LED aligns with the trip type listed
in the most recent trip entry.

4.9.6 References and File Links

[1] Metal thin film chip resistors -進工業株式会社(susumu)｜薄膜 ...,
https://www.susumu.co.jp/common/pdf/n_catalog_partition01_en.pdf (accessed May 16,
2023).

[2] WP154A4SUREQBFZGC T-1 3/4 (5mm) full color led Lamp - Kingbright USA,
https://www.kingbrightusa.com/images/catalog/spec/WP154A4SUREQBFZGC.pdf (accessed
May 16, 2023).

4.9.7 Revision Table

Date Revision

02/23/2023 Initial Creation.

02/30/2023 Added more detailed references for interface

definitions.

03/10/2023 Updated document based on feedback.

03/11/2023 Added more figures in Section 3.

4.10 GPS Module

4.10.1 Description

The NEO M8N GPS module is an integral part of the main PCB in the system. The
module operates on the L1 band at 1575MHz and is equipped with a transceiver that connects
to an external active antenna with 26dB amplification. The antenna node has an RLC filter
implemented on it, ensuring high-accuracy impedance matching. The GPS module can achieve
a high accuracy of 2.5m in high accuracy mode, making it suitable for various applications that
require precise location data. To communicate with the Raspberry PI Pico microcontroller, the
NEO M8N GPS module uses UART communication, specifically the UART version without CTS
or RTS. This allows for a reliable and efficient exchange of data between the GPS module and
the microcontroller. Additionally, the GPS module is integrated as part of the main PCB, allowing
for a compact and streamlined design. The NEO M8N GPS module is a highly capable and
accurate component that plays a crucial role in the system's overall functionality.

4.10.2 Design

The design process for the NEO M8N GPS module involved careful consideration of the
required specifications and performance requirements for the system. The selection of the L1
band at 1575MHz was based on its availability and compatibility with the system's other
components. The decision to use an external active antenna with 26dB amplification was made
to ensure reliable and accurate reception of GPS signals, while the RLC filter implementation on
the antenna node was necessary to achieve high-accuracy impedance matching. These choices
ultimately led to the NEO M8N GPS module's ability to achieve a high accuracy of 2.5m in high
accuracy mode, making it suitable for various applications that require precise location data.

The selection of UART communication for the NEO M8N GPS module was based on its
reliability and efficiency for exchanging data between the GPS module and the microcontroller.
Specifically, the UART version without CTS or RTS was chosen to simplify the design and
reduce complexity. The integration of the GPS module as part of the main PCB allowed for a
compact and streamlined design, making it easier to manufacture and assemble.

Throughout the design process, careful consideration was given to the system's overall
functionality and performance requirements. The NEO M8N GPS module's highly capable and
accurate performance was a crucial factor in ensuring the system's overall success. The design
process involved a balance between selecting the necessary components, optimizing their
performance, and integrating them into the system's design to achieve the desired outcome.

Fig. 1: This figure shows all the input and output interfaces to the GPS Module block.

Fig. 2: This is a snapshot of the GPS module circuit.

Fig. 3: This is the high level block diagram for the overall system that the GPS module is apart
of.

4.10.3 General Validation

The design of the NEO M8N GPS module went through a thorough validation process to
ensure its accuracy and functionality met the requirements of the system. The module's
high-accuracy mode provides a location accuracy of 2.5m, making it highly suitable for various
applications requiring precise location data. The built-in functions of the NEO M8N, including
odometer and speed calculations, made it a useful choice for mileage tracking duties, and its
compatibility with the system's other components allowed for streamlined integration.

The selection of an active antenna with 26dB amplification and an RLC filter
implementation on the antenna node was necessary to achieve high-accuracy impedance
matching. The active antenna's ability to pick up signals in noisy environments commonly found
in cars was critical for reliable GPS reception. The transceiver was simple to tune with the RLC
filter, and this combination allowed for optimal signal strength and reception.

During the design process, considerations were made for the system's overall
functionality and performance requirements. The NEO M8N GPS module's high accuracy and
reliable performance were integral to the system's overall success. The integration of the GPS
module into the main PCB enabled a compact and streamlined design that was easier to
manufacture and assemble. Overall, the NEO M8N GPS module met the system's requirements
and validated the design choices made during its selection and integration.

4.10.4 Interface Validation

otsd_gps_mdl_rf: Input

Other: Receive
Positional data

Communication established.

Other:
Operating
frequency of
1575MHz on
the L1 band.

Communication established.

Protocol: GPS
Network
Operation

Communication established.

gps_mdl_mcrcntrllr_comm: Output

Datarate: 19200 Communication established.

Protocol: UART Communication established.

Protocol: SPI Communication established.

pwr_stppr_gps_mdl_dcpwr: Input

Inominal: 50mA This nominal current was chosen
based on the expected current
needs of the system overall. The

For the BM78 bluetooth module:
● 43mA for continuous TX

condition, rounded up to 50mA.
[2]

Ipeak: 100mA In this example, we don't expect
the current draw of the whole
system to ever spike above this
number. The value was selected
by adding up the maximum
current of all parts and multiplying
by 2

For the BM78 bluetooth module:
● Peak current draw 100mA from

on board LDO. [2]

Vnominal: 3.3V In this example, this property was For the BM78 bluetooth module:

chosen based on the design we
plan to use in the power supply
block.

● Nominal operating voltage
listed as 3.3V. [2]

Pwr_stppr_gps_mdl_dcpwr: Output

Inominal: 30mA This nominal current was chosen
based on the expected current
needs of the system overall. The

For the NEO-M8N:
● 27mA typical current listed.

Rounded up to 30mA. [4] (pg.
19)

Ipeak: 70mA In this example, we don't expect
the current draw of the whole
system to ever spike above this
number. The value was selected
by adding up the maximum
current of all parts and multiplying
by 2

For the NEO-M8N:
● 67mA max current rating listed.

Rounded up to 70mA [4] (pg
19.)

Vnominal: 3.3V In this example, this property was
chosen based on the design we
plan to use in the power supply
block.

For the NEO-M8N:
● 3.0V typical voltage listed for

M8N [4] (pg. 18)

4.10.5 Verification Process

Test 1: 1. Create a route on Google Maps.

2. Turn the device on.

3. Using Business Mode of the device, record a trip that accords to the
created route.

4. Compare the recorded GPS distance with the mileage shown on Google
Maps.

4.10.6 References and File Links

[1] “NEO-M8 series,” u, https://www.u-blox.com/en/product/neo-m8-series (accessed May
15, 2023).

[2] “NEO-M8 series,” u, https://www.u-blox.com/en/product/neo-m8-series (accessed May
15, 2023).

[3] “NEO-M8 series,” u, https://www.u-blox.com/en/product/neo-m8-series (accessed May
15, 2023).

4.10.7 Revision Table

Date Revision

04/23/2023 Initial Creation.

04/30/2023 Added more detailed references for interface
definitions.

05/10/2023 Updated document based on feedback.

05/11/2023 Added more figures in Section 3.

4.11 Power Stepper

4.11.1 Description

Power conversion circuitry to supply our logic circuits with the appropriate voltage. This
block steps a 5V DC input down to DC 3.3V. The 5V DC input is from a USB car charger as
typically seen plugged into a cars cigarette lighter. The specific logic circuits being supplied by
the 3.3V DC output of the power stepper are the SD card, GPS module, and Bluetooth module.
The purpose for this block is specifically to supply enough current for the three logic circuits.
The daughtered microcontroller used for our system is capable of supplying 3.3V at 300mA
peak. This is short of the 400mA peak current draw for our system which created the need for a
specific power conversion circuit.

4.11.2 Design

The microcontroller we are using is the Raspberry Pi Pico which can be powered
through the micro usb connector or Vin pin on the board with 5V. The Pico has an on board
buck-boost converter in which it then steps down the 5V input to 3v3 to power the logic of the
board and also supply the GPIO pins and more specifically the 3v3 Out pin. The max current
that can be supplied by the 3v3 Out pin is 300mA. Our total max draw for powering the
microcontroller, GPS module, Bluetooth module, and SD card module is 400mA. This being the
case, we were unable to power the whole circuit off of the 3v3 Out pin on the Raspberry Pi Pico
since our worst case exceeded the rating of our 3v3 pin.

Additional power load may be found in testing with the antenna for the GPS module.
From my research and experience antennas can have extreme load conditions for a very short
amount of time that can cause significant issues for the system. Further validation of the design
will need to be done in a variety of conditions to ensure that the antenna load conditions are met
in addition to the rest of the systems components.

The solution that I came up with is to power the logic circuits external to the Raspberry Pi
Pico with a separate power path. This power path is from the 5V DC input node through the
NCP59748 linear regulator to supply 3v3 to the SD card, Bluetooth module, and GPS module
with the capability of a max current supply of 1.5A. The supporting components for the linear
regulator include C1, C3, and C4 10uF capacitors for filtering on the input and output nodes. C2
10nF capacitor is responsible for setting the soft start time for the linear regulator. Resistors R1
and R2 are responsible for setting the output voltage regulation to 3v3. R3 is providing high
impedance as the Power Good functionality is not utilized.

Fig. 1: The output interfaces of the Power Stepper Block are all grouped together and
connected to the LDO_Output node in the schematic below.

Fig. 2: This is the schematic of the NCP59748MN1ADJTBG linear regulator circuit.

Fig. 3: This is the high level block diagram for the overall system that the power stepper is apart
of.

4.11.3 General Validation

The pcb design for the Power Stepper block is appropriate when considering the bill of
material costs. The Power Stepper design utitlizes the NCP59748 linear regulator in the DFN10
package. Linear regulators of similar specifications hover between the $1.50 to $3.00 range with
the more expensive examples correlating to smaller package size regulators. The NCP59748

offered one of the smallest package sizes with the DFN10 coming in at 3mm x 3mm while still
costing under $2.00 at $1.92. The other expensive item for the board is the PCB itself which
came in at $2.82 shipped from OSHPark. The per board price will drop significantly when
ordered in greater quantities than the 3 for prototyping and from larger board houses such as
JLCPCB. The total cost for the board including the aforementioned items and passive
components is $5.38. Price comparison to other premade modules for 5V to 3.3V conversion
bodes well for the design as the least expensive premade module that could be purchased
came in at $8.00

The components chosen for the design all had in stock quantities on Digi-Key exceeding
3,600 pieces. The lowest stock component was the 10nF capacitor responsible for setting the
soft start time for the linear regulator. There were many alternative options for the 10nF on
Digi-Key with similar stock listed. Furthermore the soft start feature in which the 10nF is
populated for is not necessary for our application. These reasons justified the selection of the
C1206C103K6RAC7800 10nF capacitor.

The selection of the NCP59748 linear regulator simplified the Power Stepper block for
the system greatly. The alternative design for the Power Stepper block included current steering
due to the initial source combination of the buck-boost converter on the Raspberry Pi Pico and
an external buck converter to rectify the current waveform of the 3.3V node. Current steering
can be tricky and most importantly time intensive to get working correctly especially during peak
conditions. The selection of a linear regulator allowed the circuit to be greatly simplified and the
engineering time reduced when compared to the current steering design. Furthermore the
design is much more modular as it isn’t dependent on the specific buck-boost converter
characteristics of the Raspberry Pi Pico.

Technical performance is the primary reason for the selection of the NCP59748 linear
regulator as it performed the best in thermal, max power loss, and peak current draw conditions.
In 40 deg C conditions the junction temperature saw a thermal max of 55.8 deg C which is well
in range of what the DFN10 package can handle. The peak power loss condition saw 691mW
which was reasonable considering the load conditions of 405mA peak current draw.

Fig. 4: This shows the simulation results for the NCP59748 linear regulator in the
expected conditions of the system.

The Linear Regulator DFN10 package size will allow the final result to be very small and
fit well within our projected max dimension sizes of the enclosure for the system. The passive
components currently chosen for the Power Stepper Board could be reduced in size by 2
package sizes. Currently the components are all Standard 1206 package size to allow for ease
of hand soldering for the prototype. 0603 package size passive components can be selected
and the overall footprint of the circuit could be reduced significantly if it is required.

The layout design for the Power Stepper PCB was executed with the main focus of ease
of fabrication and testing ahead of the actual implementation within the larger system. Test
points TP1 and TP4 are placed on the Votage input and Voltage output nodes respectively of
the linear regulator to allow the board to be compatible with a variety of connection styles for
testing. TP3 is placed between the Vin node and the Vbias node of the linear regulator to allow
for the test case of whether the Vbias can be connected to the same node as Vin. TP2 is placed
to allow a Vbias to be introduced to the linear regulator incase Vbias can’t be jumped to Vin. The
Vin and Vout nodes are pours of equal width to the test point pad outer diameters.

Fig. 5: This is the layout of the Power Stepper board as described by the schematic and block
diagram shown in Fig. 2 and Fig. 1 respectively.

4.11.4 Interface Validation
Otsd_pwr_stppr_dcpwr: Input

Inominal:
100mA

This nominal current was chosen
based on the expected current
needs of the system overall. The

For the NCP59748 in a DFN10
package:

● Component is rated to +1.5A at
our target junction temperature
of 70 degrees C. Nominal
current is well within range. [1]
(Absolute Max Ratings, pg. 3)

● In 40C air, the component can
handle 9W of dissipation. This
current would be ~.7W of
dissipation. [1] (pg.7)

Ipeak: 400mA In this example, we don't expect
the current draw of the whole
system to ever spike above this
number. The value was selected
by adding up the maximum
current of all parts and multiplying

For the NCP59748 in a DFN10
package:

● At 3.3V output, maximum of
+3A can be supplied. [1]
(Typical Characteristics, pg. 7)

● In 125C Junction Temperature,

by 2 the component can handle 9W
of dissipation. 9W dissipation is
the worst case. [1] (Typical
Characteristics table, pg. 7)
Since 3A current is well beyond
our worst case scenario we
foresee no issues (Judgment
Call)

Vmax: 5.5V In this example, this property was
chosen based on the design we
plan to use in the power supply
block.

For the NCP59748 in a DFN10
package:

● Nominal voltage input is 5.5V.
[1] (Max ratings table, pg. 4)

● Voltage dropout from input to
output is 165mV at 5.5V. [1]
(Absolute max ratings, pg. 3)

Pwr_stppr_bltth_mdl_dcpwr: Output

Inominal: 50mA This nominal current was chosen
based on the expected current
needs of the system overall. The

For the BM78 bluetooth module:
● 43mA for continuous TX

condition, rounded up to 50mA.
[2]

Ipeak: 100mA In this example, we don't expect
the current draw of the whole
system to ever spike above this
number. The value was selected
by adding up the maximum
current of all parts and multiplying
by 2

For the BM78 bluetooth module:
● Peak current draw 100mA from

on board LDO. [2]

Vnominal: 3.3V In this example, this property was
chosen based on the design we
plan to use in the power supply
block.

For the BM78 bluetooth module:
● Nominal operating voltage

listed as 3.3V. [2]

Pwr_stppr_fl_mngmnt_dcpwr: Output

Inominal: 15mA This nominal current was chosen
based on the expected current
needs of the system overall. The

For the SD storage in a microSD
package:

● Nominal current listed for write
at 3.3V is 15mA [3]

Ipeak: 170mA In this example, we don't expect
the current draw of the whole
system to ever spike above this
number. The value was selected
by adding up the maximum
current of all parts and multiplying
by 2

For the SD storage in a microSD
package:

● Peak current listed as 163mA
for 3.3V, rounded up to 170mA
for spec. [3]

Vnominal: 3.3V In this example, this property was
chosen based on the design we
plan to use in the power supply
block.

For the SD storage in a microSD
package:

● Nominal voltage listed as 3.3V.
[3].

Pwr_stppr_gps_mdl_dcpwr: Output

Inominal: 30mA This nominal current was chosen
based on the expected current
needs of the system overall. The

For the NEO-M8N:
● 27mA typical current listed.

Rounded up to 30mA. [4] (pg.
19)

Ipeak: 70mA In this example, we don't expect
the current draw of the whole
system to ever spike above this
number. The value was selected
by adding up the maximum
current of all parts and multiplying
by 2

For the NEO-M8N:
● 67mA max current rating listed.

Rounded up to 70mA [4] (pg
19.)

Vnominal: 3.3V In this example, this property was
chosen based on the design we
plan to use in the power supply
block.

For the NEO-M8N:
● 3.0V typical voltage listed for

M8N [4] (pg. 18)

4.11.5 Verification Process

Test 1: Nominal current test.

Step 1: Turn on voltage supply, make sure output is not enabled and set voltage supply
to 5V.

Step 2: Turn on DC load, make sure output is not enabled, and set DC load to 100mA
constant current.

Step 3: Connect Vin terminals to 5V supply.
Step 4: Connect multimeter in series with the Vout (pwr_stppr_bltth_mdl_dcpwr,

pwr_stppr_fl_mngmnt_dcpwr, and pwr_stppr_gps_mdl_dcpwr interfaces combined) positive line
and the positive terminal of the DC load and set the multimeter to current measurement mode.

Step 5: Connect GND terminal of Vout to GND of DC load.
Step 6: Enable output on the Voltage Supply.
Step 7: Enable output on DC load.
Step 8: Record current output shown on multimeter.
Step 9: Shutoff Load.
Step 10: Shutoff Voltage Supply.
Step 11: Disconnect Vin and Vout terminals from Supply and Load.

Test 2: Peak current test.

Step 1: Turn on voltage supply, make sure output is not enabled and set voltage supply
to 5V.

Step 2: Turn on DC load, make sure output is not enabled, and set DC load to 400mA
constant current.

Step 3: Connect Vin terminals, interface otsd_pwr_stppr_dcpwr, to 5V supply.
Step 4: Connect multimeter in series with the Vout (pwr_stppr_bltth_mdl_dcpwr,

pwr_stppr_fl_mngmnt_dcpwr, and pwr_stppr_gps_mdl_dcpwr interfaces combined) positive line
and the positive terminal of the DC load and set the multimeter to current measurement mode.

Step 5: Connect GND terminal of Vout to GND of DC load.
Step 6: Enable output on the Voltage Supply.
Step 7: Enable output on DC load.
Step 8: Record current output shown on multimeter.
Step 9: Shutoff Load.
Step 10: Shutoff Voltage Supply.
Step 11: Disconnect Vin and Vout terminals from Supply and Load.

Test 3: Nominal Voltage

Step 1: Turn on voltage supply, make sure output is not enabled and set voltage supply
to 5V.

Step 2: Turn on DC load, make sure output is not enabled, and set DC load to 100mA
constant current.

Step 3: Connect Vin, interface otsd_pwr_stppr_dcpwr, terminals to 5V supply.
Step 4: Connect Vout positive line and the positive terminal of the DC load and set the

multimeter to DC voltage measurement mode.
Step 5: Connect GND terminal of Vout to GND of DC load.
Step 6: Enable output on the Voltage Supply.
Step 7: Enable output on DC load.
Step 8: Touch positive and negative cable of multimeter to Vout (

pwr_stppr_bltth_mdl_dcpwr, pwr_stppr_fl_mngmnt_dcpwr, and pwr_stppr_gps_mdl_dcpwr
interfaces combined) positive and negative terminals, record the voltage shown on the
multimeter.

Step 9: Shutoff Load.
Step 10: Shutoff Voltage Supply.
Step 11: Disconnect Vin and Vout terminals from Supply and Load.

Test 4: Max input voltage.

Step 1: Turn on voltage supply, make sure output is not enabled and set voltage supply
to 5V.

Step 2: Turn on DC load, make sure output is not enabled, and set DC load to 100mA
constant current.

Step 3: Connect Vin, interface otsd_pwr_stppr_dcpwr, terminals to 5.5V supply.
Step 4: Connect Vout positive line and the positive terminal of the DC load and set the

multimeter to DC voltage measurement mode.
Step 5: Connect GND terminal of Vout to GND of DC load.
Step 6: Enable output on the Voltage Supply.
Step 7: Enable output on DC load.
Step 8: Touch positive and negative cable of multimeter to Vout (

pwr_stppr_bltth_mdl_dcpwr, pwr_stppr_fl_mngmnt_dcpwr, and pwr_stppr_gps_mdl_dcpwr
interfaces combined) positive and negative terminals, observe voltage for 1 minute to see if
voltage drops from 3.3V on output (evidence of thermal shutdown).

Step 9: Shutoff Load.
Step 10: Shutoff Voltage Supply.
Step 11: Disconnect Vin and Vout terminals from Supply and Load.

4.11.6 References and File Links

[1] “NCV59748 - linear voltage regulator with bias rail, 1.5 a .” [Online]. Available:
https://www.onsemi.com/pdf/datasheet/ncv59748-d.pdf. [Accessed: 11-Feb-2023].

[2] “BM78-Bluetooth Dual Mode Module - mouser.com.” [Online]. Available:
https://www.mouser.com/datasheet/2/268/BM78_Bluetooth_Dual_Mode_Module_DS6000
1380-2999436.pdf. [Accessed: 11-Feb-2023].

[3] “SD Standard Overview: SD Association,” SD Association | The SD Association,
09-May-2022. [Online]. Available:
https://www.sdcard.org/developers/sd-standard-overview/. [Accessed: 11-Feb-2023].

[4] “U-blox M8 high precision GNSS modules.” [Online]. Available:
https://content.u-blox.com/sites/default/files/NEO-M8P_HardwareIntegrationManual_UBX-
15028081.pdf. [Accessed: 11-Feb-2023].

4.11.7 Revision Table

Date Revision

01/23/2023 Added more thorough test steps.

01/30/2023 Added more detailed references for interface
definitions.

02/10/2023 Updated document based on feedback.

02/11/2023 Added more figures in Section 3.

4.12 Trip ID

4.12.1 Description

4.12.2 Design

4.12.3 General Validation

4.12.4 Interface Validation

4.12.5 Verification Process

4.12.6 References and File Links

4.12.7 Revision Table

4.13 Main Code

4.13.1 Description

The Main Code block of our design is a representative block which encompasses all
aspects of code blocks which operate the mileage tracker device itself. This includes the
Bluetooth Handshake(Section 4.2), File Management(Section 4.4), Distance
Processing(Section 4.7), and Trip ID(Section 4.12) blocks, as well as the communication

of outputs/inputs to/from the Bluetooth Module(Section 4.1), External Storage
Hub(Section 4.5), HMI(Section 4.9), and GPS Module(Section 4.10) blocks.

5 System Verification Evidence
5.1 Universal Constraints

5.1.1 The system may not include a breadboard

Our system currently meets this requirement.
Evidence shown by picture below.

Figure 5.1.1: Final System Design

5.1.2 The final system must contain a student designed PCB with greater than 30
pads.

Our system meets this constraint by having a student designed power PCB that has at least 30
pads on it.

Figure 5.1.2: Shows our surface mounted Pico that meets the 30+ pad requirement by itself.

Total pads (excluding through hole mounted components) totals to 140 pads.

5.1.3 All connections to PCBs must use connectors.

Our system meets this constraint.

Evidence shown by image.

5.1.4 All power supplies in the system must be at least 65% efficient.

Our system meets this constraint by calculating the ratio between input power and output power.
It is calculated to be 64.9% efficient.

Evidence is from block validation checkoff for the power stepper block. The math from that video
shows Pin = Iin * Vin = 0.505 W and Pout = Iout * Vout = 0.329 W. Efficiency is Pout/Pin = 0.651
which means the Linear Regulator is 65.1% efficient.

Video Link:
https://drive.google.com/drive/folders/1frcKB6ai1lFUrfxvq06DCMyX1Lv-9Yic?usp=share_link

5.1.5 The system may be no more than 50% built from purchased 'modules.'

Built Blocks Purchased Blocks

Enclosure External Storage Hub

HMI

Power Stepper

Bluetooth Module

GPS Module

Microcontroller

We have more hand-built blocks in our system than we do purchased blocks. Our final
percentage of built is 85.7% built.

Photo evidence below.

https://drive.google.com/drive/folders/1frcKB6ai1lFUrfxvq06DCMyX1Lv-9Yic?usp=share_link

Figure 5.1.5.1: This picture shows all of the components included on the PCB and also
therefore shows all of the components that are built.

5.2 Project Requirements

Below are the engineering requirements we must meet with the final system. These are derived
from the requirements set forth by our project partner, and are converted to measurable
engineering requirements with set tests to confirm that each has been met.

5.2.1. Bluetooth Configurable

5.2.1.1. Project Partner Requirement:
Mileage, odometer readings, and trip intention are editable via Bluetooth by users
from mobile devices.

5.2.1.2. Engineering Requirement:
The system will enable 9 out of 10 users to edit odometer and trip purpose data
stored on local memory of the mileage tracker device via mobile devices and
report that 'it was easy to use'.

5.2.1.3. Testing Method:
Demonstration.

5.2.1.4. Verification Process:
1. Instruct the user to open the mobile application’s guided walkthrough.
2. Upon finishing the walkthrough, instruct the user to start a trip, then end

the trip through the application.
3. Instruct the user to open a file, edit the data on a trip, save the edit, and

then confirm that the edit was saved.
4. Ask the user if the mobile application was “easy to use”.
5. Repeat for 10 users.

5.2.1.5. Pass Condition:
Test passes if 9 out of 10 users consider the file editing process to be easy to
use.

5.2.1.6. Testing Evidence:
No testing evidence available at this time. The bluetooth block of the main device
is not currently functioning, and thus this functionality cannot be fulfilled.

N/A

5.2.2. Compact Packaging

5.2.2.1 Project Partner Requirement:
A small unit capable of recording trip information.

5.2.2.2 Engineering Requirement:
The system will be smaller than 3.75x2.75x2 inches.

5.2.2.3 Testing Method:
Inspection.

5.2.2.4 Verification Process:
1. Turn on digital calipers and set units to inch by pressing the mode button.
2. Measure length of the enclosure with the digital calipers.
3. Measure width of the enclosure with the digital calipers.
4. Measure height of the enclosure with the digital calipers.

5.2.2.5 Pass Condition:
Length is measured to be less than 3.75 inches, Width is measured to be less
than 2.75 inches, and Height is measured to be less than 2 inches.

5.2.2.6 Testing Evidence:
Take pictures of the length, width, and height measurements shown on the
screen of digital calipers.

Figure 5.2.2.6.1: This image shows the length measurement of the enclosure.

Figure 5.2.2.6.2: This image shows the width measurement of the enclosure.

Figure 5.2.2.6.3: This image shows the height measurement of the enclosure.

Our system has dimensions of 3.39” x 2.33” x 1.33”, which fits the requirement of
being within 3.75” x 2.75” x 2”.

5.2.3. Driver Safety

5.2.3.1 Project Partner Requirement:
This device should not cause driver safety concerns.

5.2.3.2 Engineering Requirement:
The system will not allow the user to make changes via the user interface within
30 seconds of beginning travel.

5.2.3.3 Testing Method:
Inspection.

5.2.3.4 Verification Process:
1. Have one user designated as the driver while another user is the data

collector. Do not begin driving until Step 3.
2. TEST 1: Start timer and select Begin Trip in the mobile application. Input

the current odometer and stop the timer upon landing on the lockout
mid-trip page, note the time, and end the trip within the application.

3. TEST 2: While remaining on the main page of the mobile application,
restart the timer and begin driving.

4. Upon the application automatically progressing to the lockout mid-trip
page, stop the timer and note the time.

5.2.3.5 Pass Condition:
Test passes if both tests demonstrate a lockout time of less than 30 seconds from
the start of the trip.

5.2.3.6 Testing Evidence:
No testing evidence available at this time. The bluetooth block is not currently
functioning and is required for the function of this requirement.

N/A

5.2.4. End User Documentation

5.2.4.1 Project Partner Requirement:
The device should include instructions for how to use the device.

5.2.4.2 Engineering Requirement:
The system will include documentation that 9 out of 10 users consider to be
sufficient for operation of the system.

5.2.4.3 Testing Method:
Demonstration.

5.2.4.4 Verification Process:
1. Ask the user to read the instruction manual or use the Walkthrough

option.
2. Have the user follow the guide step by step.
3. Upon finishing reading, instruct the user to demonstrate what the guide

taught them by having them begin and end a trip, then edit a trip entry
within a trip log.

4. Ask the user "was the documentation sufficient for the operation of the
system?"

5.2.4.5 Pass Condition:
Test passes if 9 out of 10 users find the guided walkthrough sufficient for
operation of the system.

5.2.4.6 Testing Evidence:
Video of one user test (survey feedback).

Google Drive Link:
https://drive.google.com/drive/folders/1b3wl3K27PilPM2xEdML3AsyuCw4i6ric?u
sp=sharing

https://drive.google.com/drive/folders/1b3wl3K27PilPM2xEdML3AsyuCw4i6ric?usp=sharing
https://drive.google.com/drive/folders/1b3wl3K27PilPM2xEdML3AsyuCw4i6ric?usp=sharing

5.2.5. Neatly Presented Data

5.2.5.1 Project Partner Requirement:
Keep track of relevant business trip information automatically and deliver it to the
user to help the user complete their yearly taxes.

5.2.5.2 Engineering Requirement:
The system will present accessed data such that 9 out of 10 users report it is
easy to locate data from a specific trip using both the user interface and the csv
file output and the recorded data will conform to IRS requirements for mileage
reporting.

5.2.5.3 Testing Method:
Demonstration.

5.2.5.4 Verification Process:
1. Have the device generate an output on the SD card.
2. Showcase the output on the Mobile App.
3. Showcase the output on a PC.
4. Ask 10 people if they find the output on both platforms is easy to locate

data from a specific trip and that it contains IRS relevant data fields such
as “date”, “odometer readings”, “mileage”, “business purpose”.

5.2.5.5 Pass Condition:
Test passes if 9 out of 10 users agree that data from a specific trip is easy to
locate.

5.2.5.6 Testing Evidence:
Video of one user test (survey feedback).

Google Drive Link:
https://drive.google.com/drive/folders/1-x68g9djhBC1IQ1IGsat9sAKHiRNtSJ5?us
p=sharing

https://drive.google.com/drive/folders/1-x68g9djhBC1IQ1IGsat9sAKHiRNtSJ5?usp=sharing
https://drive.google.com/drive/folders/1-x68g9djhBC1IQ1IGsat9sAKHiRNtSJ5?usp=sharing

5.2.6. Tracking Vehicle Mileage

5.2.6.1 Project Partner Requirement:
The device will need to track trip distance accurately enough for IRS submission.

5.2.6.2 Engineering Requirement:
The system will record user input mileage data and an automated backup to
ensure an error no greater than +/- 0.1 miles for every 5 miles of trip.

5.2.6.3 Testing Method:
Test.

5.2.6.4 Verification Process:
1. Create a route on Google Maps.
2. Turn the device on.
3. Using Business Mode of the device, record a trip that accords to the

created route.
4. Compare the recorded GPS distance with the mileage shown on Google

Maps.

5.2.6.5 Pass Condition:
If the error between the automated backup data and the mileage from Google
Maps is less than 10%, then the requirement passes.

5.2.6.6 Testing Evidence:
The mileage recorded is 3.418 miles for the trip that we took from Dearborn to
Winco. We expect to see 3.6 miles according to Google Maps. This means that
our system has an error of (3.418-3.6)/3.6= -5.06%

Google Drive Link:
https://drive.google.com/drive/folders/1eAmSDSJKmk6yeV-PTnHt9b0pLaKe5DfJ
?usp=sharing

https://drive.google.com/drive/folders/1eAmSDSJKmk6yeV-PTnHt9b0pLaKe5DfJ?usp=sharing
https://drive.google.com/drive/folders/1eAmSDSJKmk6yeV-PTnHt9b0pLaKe5DfJ?usp=sharing

5.2.7. Trip Identification

5.2.7.1 Project Partner Requirement:
The device will indicate the current trip mode to users–business or personal.
Users should be able to change the mode of operation within a second.

5.2.7.2 Engineering Requirement:
The system will indicate trips as either business or personal in both the user
interface and the csv file output.

5.2.7.3 Testing Method:
Demonstration.

5.2.7.4 Verification Process:
1. Provide power to the system at 5V.
2. Observe onboard LEDs.

Confirm state: Blue = Personal, Green = Business.
3. Press the onboard button once.
4. Observe the onboard LED once more. The LED will have swapped colors,

indicating the shift to the other trip mode.
5. Record a trip, then check the trip CSV.
6. Confirm that the trip state displayed by the LED aligns with the trip type

listed in the most recent trip entry.

5.2.7.5 Pass Condition:
The system will correctly indicate the current trip mode as reflected in the trip
entry on the CSV.

5.2.7.6 Testing Evidence:
Video of process and screenshot of CSV opened in Microsoft Excel and or
Google Sheets.

Video Link:
https://drive.google.com/drive/folders/169ahmKNtQqTK02LYJ3oYEvNN9mZbifF
O?usp=share_link

https://drive.google.com/drive/folders/169ahmKNtQqTK02LYJ3oYEvNN9mZbifFO?usp=share_link
https://drive.google.com/drive/folders/169ahmKNtQqTK02LYJ3oYEvNN9mZbifFO?usp=share_link

5.2.8. Vehicle Powered

5.2.8.1 Project Partner Requirement:
The device will operate on vehicle power or battery power. The device should not
use more power than what’s charging the vehicle battery.

5.2.8.2 Engineering Requirement:
The system will draw vehicle or battery power without exceeding 5V or a 500mA
current draw.

5.2.8.3 Testing Method:
Test.

5.2.8.4 Verification Process:

1. Turn on a power supply in the lab.
2. Set power supply to 5V with at least a current supply of 500mA on

Channel 1 for Input Voltage.
3. Measure with a multimeter to ensure we are receiving 5V on our input to

the power converter.
4. Look at power supply current being drawn to measure the nominal current

load for the board and that it doesn't exceed 500mA while logging a trip.

5.2.8.5 Pass Condition:
The requirement passes if the system operates at 5V at no more than 500mA.

5.2.8.6 Testing Evidence:
Video showing the procedure and the power supply values after the steps
completed.

Google Drive Link:
https://drive.google.com/drive/folders/1nO8unCqpr4vz7m8Y8Am76QLq6gawf5vj
?usp=share_link

https://drive.google.com/drive/folders/1nO8unCqpr4vz7m8Y8Am76QLq6gawf5vj?usp=share_link
https://drive.google.com/drive/folders/1nO8unCqpr4vz7m8Y8Am76QLq6gawf5vj?usp=share_link

6 Project Closing
6.1 Future Recommendations
This section details future recommendations for potential further development of this project.
Several areas of focus are considered, to include technical, global impact, and teamwork
recommendations.

6.1.1 Technical Recommendations

6.1.1.1 Android OS Implementation: Currently, the system has only been
developed to include an application utilizing Apple’s iOS and CoreBluetooth
framework. As development time was limited to this 9-month project, a decision
needed to be made on a platform to focus development for, and iOS was most easily
accessible to the team. With additional development time allotted, the creation of
companion apps on other platforms, such as the equally popular Android OS, would
allow for broader access to allow users to interact with the system. [1]

6.1.1.2 Odometer Scanning: Enable number recognition from the camera on the
mobile device would improve the efficiency of user input on odometer readings of the
vehicle. We have the option to input odometer readings manually on the Mobile App,
which strengthens the accuracy of mileage tracking. Adding the odometer scanning
functionality would allow the user to keep track of their trip more accordingly to their
vehicle. [2]

6.1.1.3 Broader Positioning Network Access:While GPS is the standard
positioning signal utilized in the United States, other nations have their own satellite
systems in place which may provide more accurate readings when within their
regions of focus. Adding more possible networks to access would allow for as
accurate as possible tracking wherever you are when one positioning signal is not as
strong or unavailable, and allow for more accurate tracking around the globe. [3]

6.1.1.4 Recognize the Usual Route: Add an algorithm on the microcontroller to
recognize the usual GPS pings and suggest the user a potential Business Purpose
based on the recognition of the route. This would save time for the user, as they
would no longer need to type in details about the usual route. [4]

6.1.2 Global Impact Recommendations

6.1.2.1 Additional Language Support: The system is currently entirely developed
in English only, and English is not a universal language. Adding additional
localization support would allow for greater access to the system with a broader
range of consumers, allowing for access globally beyond America and Europe. [5]

6.1.2.2 Adding Color Blindness Settings:We currently use 3 colors to represent
the modes of operation of our device – Blue, Green, and Red. It would be a great
addition to provide an option to indicate the modes of operation using blinks on the
LED. With 1Hz blinks being Personal Mode, 2Hz blinks being Business Mode, and
3Hz blinks used for Error Reporting. [6]

6.1.3 Teamwork Recommendations

6.1.3.1 SMART Goals Presentation: Share with the team our SMART goals we
each set at the end of lecture time, and present the progress we made on each
SMART goals that we set out previously to keep each other accountable on weekly
progress. [7]

6.1.3.2 Meeting Regularly:While our team did meet regularly, the meetings were
often focused on other work in the course and less on collaborative work toward
progress on our system itself. We recommend any future team developing on this
system to meet up on a more regular basis, at least twice a week, to ensure that
collaboration is being met across the board on a project where every block relies
heavily on the function of another. [8]

6.2 Project Artifact Summary with Links
Microcontroller State Machine Code:
https://drive.google.com/drive/folders/1hxeApKtO5aENFcIurYF6VkTsA-tJdyJi?usp=sharing

System Level PCB:
https://drive.google.com/drive/folders/1hxeApKtO5aENFcIurYF6VkTsA-tJdyJi?usp=sharing

Raspberry Pi Pico Datasheet:
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html

https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf

Neo M8N GPS Chip Datasheet:
https://content.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf

https://content.u-blox.com/sites/default/files/products/documents/u-blox8-M8_ReceiverDescrPro
tSpec_UBX-13003221.pdf

https://content.u-blox.com/sites/default/files/NEO-8Q-NEO-M8-FW3_HIM_UBX-15029985.pdf

Linear Regulator Datasheet:
https://www.onsemi.com/pdf/datasheet/ncp59748-d.pdf

https://drive.google.com/drive/folders/1hxeApKtO5aENFcIurYF6VkTsA-tJdyJi?usp=sharing
https://drive.google.com/drive/folders/1hxeApKtO5aENFcIurYF6VkTsA-tJdyJi?usp=sharing
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html
https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf
https://content.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf
https://content.u-blox.com/sites/default/files/products/documents/u-blox8-M8_ReceiverDescrProtSpec_UBX-13003221.pdf
https://content.u-blox.com/sites/default/files/products/documents/u-blox8-M8_ReceiverDescrProtSpec_UBX-13003221.pdf
https://content.u-blox.com/sites/default/files/NEO-8Q-NEO-M8-FW3_HIM_UBX-15029985.pdf
https://www.onsemi.com/pdf/datasheet/ncp59748-d.pdf

BM78 Bluetooth Module Datasheet:
https://www.mouser.com/datasheet/2/268/BM78_Bluetooth_Dual_Mode_Module_DS60001380-
2999436.pdf

TVS Diode (ESD Protection, Fast ns Response compared to Zener) Datasheet:
https://www.digikey.com/en/htmldatasheets/production/1062384/0/0/1/aoz8131.html

GPS Antenna Information:
https://drive.google.com/file/d/1mcDZ3XW-I5dL1MnoJhqfL61UWaW1ToNe/view?usp=sharing

6.3 Presentation Materials

ShowCase Link:
https://eecs.engineering.oregonstate.edu/project-showcase/projects/?id=0M5L73tckRA0RyrW

6.4 References and File Links
[1] V. Nova, “Converting IOS apps to Android: Software and design priorities for sustainable
innovation,” Heady, 19-Mar-2021. [Online]. Available:

https://www.mouser.com/datasheet/2/268/BM78_Bluetooth_Dual_Mode_Module_DS60001380-2999436.pdf
https://www.mouser.com/datasheet/2/268/BM78_Bluetooth_Dual_Mode_Module_DS60001380-2999436.pdf
https://www.digikey.com/en/htmldatasheets/production/1062384/0/0/1/aoz8131.html
https://drive.google.com/file/d/1mcDZ3XW-I5dL1MnoJhqfL61UWaW1ToNe/view?usp=sharing
https://eecs.engineering.oregonstate.edu/project-showcase/projects/?id=0M5L73tckRA0RyrW

https://www.heady.io/blog/converting-ios-apps-to-android-software-and-design-priorities-for-sust
ainable-innovation. [Accessed: 28-Apr-2023].

[2] A. Rosebrock, “Recognizing digits with OpenCV and Python,” PyImageSearch, 22-Mar-2023.
[Online]. Available:
https://pyimagesearch.com/2017/02/13/recognizing-digits-with-opencv-and-python/. [Accessed:
28-Apr-2023].

[3] “Other Global Navigation Satellite Systems (GNSS),” GPS.gov: Other Global Navigation
Satellite Systems (GNSS). [Online]. Available: https://www.gps.gov/systems/gnss/. [Accessed:
28-Apr-2023].
[4] L. ZHAO and Y. LI, “Identifying origin-destination trips from GPS data – application in travel
time reliability of dedicated trucks,” Promet - Traffic&Transportation, vol. 34, no. 1, pp. 25–38,
2022. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1134&context=matcreports

[5] B. Racoma, “Importance and benefits of mobile app localization,” Day Translations Blog,
14-Apr-2022. [Online]. Available: https://www.daytranslations.com/blog/why-app-localization/.
[Accessed: 28-Apr-2023].

[6] Colour Blind Awareness, 13-Apr-2022. [Online]. Available:
https://www.colourblindawareness.org/. [Accessed: 28-Apr-2023].

[7] The 10 main benefits of goal-setting,
https://www.goucher.edu/experience/getting-involved/leadership/documents/Goal-Setting.pdf
(accessed May 16, 2023).

[8] “The true purpose of a team meeting (+best practices and tips),” RSS,
https://www.hugo.team/blog/purpose-of-a-team-meeting#:~:text=Team%20meetings%20provide
%20a%20space,their%20achievements%20from%20last%20week. (accessed May 15, 2023).

6.5 Revision Table

4/28/2023 Chiu, Ewing, Lacey - Project Closing Creation

5/12/2023 Added references to teamwork recommendation

5/12/2023 Created Project Artifact Folders

https://www.heady.io/blog/converting-ios-apps-to-android-software-and-design-priorities-for-sustainable-innovation
https://www.heady.io/blog/converting-ios-apps-to-android-software-and-design-priorities-for-sustainable-innovation
https://pyimagesearch.com/2017/02/13/recognizing-digits-with-opencv-and-python/
https://www.gps.gov/systems/gnss/
https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1134&context=matcreports
https://www.daytranslations.com/blog/why-app-localization/
https://www.colourblindawareness.org/
https://www.goucher.edu/experience/getting-involved/leadership/documents/Goal-Setting.pdf
https://www.hugo.team/blog/purpose-of-a-team-meeting#:~:text=Team%20meetings%20provide%20a%20space,their%20achievements%20from%20last%20week
https://www.hugo.team/blog/purpose-of-a-team-meeting#:~:text=Team%20meetings%20provide%20a%20space,their%20achievements%20from%20last%20week

