

Remotely Operated HyperRail
Developer Guide

Team 11 HyperRail Developer Guide

Kyle Barton, Samuel Barton, Michael Guske, Orion Hollar

ECE 342: Winter 2021

Professor Matt Shuman

March 5th, 2021

1

Table of Contents

1 - System Overview…………………………………………………………………....3

2 - Electrical Specifications………………………………………………………..…...4

3 - User Guide…………………………………………………………………………...6

4 - Design Artifact Figures…………………………………………………………….11

5 - PCB Information……………………………………….………..………………....14

6 - Part Information (BOM)……………………...…..…………………………...…...17

7 - Appendix………………………………………………...……………………...…..19

2

1 - System Overview
The HyperRail is a multi-axis robotic system that was built to allow remote access for the

maintenance and sampling of agricultural crops. From the high level, the system consists of two
aluminium rails and a control box mounted to the Y-Axis. The rails are broken up into two
dimensional axes, there are two horizontal axes creating an X-Y coordinate plane. A third
vertical axis (the Z-Axis) can be installed as well, but only two axes are required for minimal use
of the HyperRail. Each rail is moved by a rubber belt connected to a stepper motor. The X-Axis
has two stepper motors to move it, while only one stepper motor is needed to move the control
box along the Y-Axis. From a lower level view, the control box consists of a Power Distribution
Board (PDB), two microcontrollers, four stepper motor drivers and a grasping mechanism
mounted on the chassis. Besides the physical hardware of the HyperRail, custom software had
to be made in order to control the system. Three different software programs make up the
backbone of the HyperRail, they are GRBL, MQTT Comms, and the Graphical User Interface
(GUI).

Figure 1: High-level black box diagram of the remotely operated HyperRail system(interface
definitions in ​Appendix​).

3

Figure 2: In-depth block diagram of the remotely operated HyperRail system (interface
definitions in ​Appendix​).

2 - Electrical Specifications
Table 1: Recommended Operating Conditions

4

Symbol Typ Unit

system_dcpwr 24 V

motordriver_dcpwr 24 V

graspdriver_dcpwr 4.97 V

lowpower_dsign 4.8 V

board1_dcpwr 4.97 V

board2_dcpwr 4.97 V

movement_dsign 4.7 V

motor_dsign NEMA23: 2.6
NEMA17: 2.2

V
V

grasp_dsign 4.7 V

g_code_comm 4.7 V

Table 2: Absolute Maximum Ratings

5

Symbol Parameter Min Max Unit

system_dcpwr Voltage applied
by external
power supply.

-0.3 30 V

motordriver_dcpwr Stepper motor
driver input
voltage.

10 30 V

graspdriver_dcpwr Servo motor
input voltage

4.8 5.09 V

lowpower_dsign Output from
Arduino to relay
switch in PDB

0 5.5 V

board1_dcpwr Power supplied
from PDB to
Arduino.

4.5 5.5 V

board2_dcpwr Power supplied
from PDB to
ESP32

4.7 10 V

movement_dsign PWM control
from Arduino to
Motor drivers.

0 5.5 V

motor_dsign Digital signal
from DM332T
stepper drivers
to stepper
motors

 NEMA23: 2.6

NEMA17: 2.2

V

grasp_dsign PWM used to
control servo
motor position

4.8 5 V

g_code_comm Digital signal
from Arduino
Nano grbl pins

4.5 5 V

3 - User Guide
The HyperRail system has been designed to work off of 24V from an S-201-24 DC Power
Supply, includes serial communication between the ESP32 wireless module and the G-code
interpreting Arduino Nano, uses an MQTT network to allow for wireless communication between
the ESP32 and the user’s interface of choice, and results in desired motor movement using
G-code commands. The following steps will ensure that future use of this system will work as
intended.

3.1 - Setup:
- Hardware connections:

- Microcontrollers:
- The system must include an ESP32 wireless development board for

connection to the MQTT wireless network to send the user’s G-code
commands from their desired user interface to the HyperRail system.

- Either an Arduino Nano or Uno can be used to handle the grbl libraries for
G-code interpretation. However, the designed enclosure has been
created to fit an Arduino Nano which is substantially smaller than the Uno.

- These two boards are currently established to communicate serially
between each other using the Tx and Rx pins. Connecting a GND pin on
each board to each other is also required for serial communication.

- Wiring:
- In reference to the schematic shown in the PCB Information section of

this guide, the S-201-24 power supply that is the main source of power
must be connected to J1 on the top left of the PCB. ​Note:​ The system
must​ ​be powered using 24V to pin J1 for the entire system to work.

- As the Power Distribution Board is used to power both the ESP32,
Arduino Nano, and the SG90 servo motor, the 5 header pins located at J2
must be used to power each of the external electronics. As ground pins
are limited, we suggest grounding the Arduino from the top pin on header
J3 on the PCB to allow ease of grounding for the servo motor.

- The high-power XT30 connectors J4-J7 on the bottom right of the PCB
are used for powering each of the motors’ corresponding stepper drivers.
There’s no specifics as to which driver/motor goes to which connector as
they all supply 24V.

- Each of the DM332T stepper drivers have pulse, direction, optocoupler,
and enable pins which need to be connected to the corresponding pulse
and direction pins for each axis on the grbl Arduino pinout shown in the
Design Artifacts section of this document. The optocoupler needs 3.3V on
each stepper driver (despite the datasheet calling for 5V) which can be
supplied from the Arduino Nano 3.3V output pin.

- Each of the stepper motors on the HyperRail system have 4 wires
corresponding to the coils inside the motors that allow for the stepping to
take place. On the DM332T drivers, there are 4 female connectors
labeled A+, A-, B+, and B- which are the connectors corresponding to the
stepper motor coils. The stepper motors have 4 wires, one for each of
these connectors. The connection should be made as the following:

A+: Black, A-: Green, B+: Red, B-: Blue

6

- On the stepper drivers, there are 6 switches between the power/coil
connections and the Arduino control connections. Switches 1-3
correspond to the dynamic current flow that is allowed to the stepper
motors, while switches 4-6 correspond to the microstepping resolution
desired. Make sure that switches 1-3 correspond to the current rating of
the connected stepper motors. On the top surface of the stepper drivers
themselves, there is a guide as to which switch configuration corresponds
to the amount of current and microstepping.

- Pin J3 is the pin to be connected to pin A3 on the Arduino Nano for
Low-Power Mode. When pin A3/J3 is activated, the transistor allows
current flow through the collector of the relay - disconnecting the stepper
drivers and motors from the 24V power source.

Figure 3: Wiring diagram for connection between the Arduino Nano and the DM332T Stepper

Drivers.

- Grbl and configuration:
- As servo control is not supported with the standard grbl v1.1 library, a different

grbl library must be flashed to the Arduino to handle the grasping mechanism
capabilities. This library can be found here: ​https://github.com/cprezzi/grbl-servo​.

- Grbl only needs to be installed on the Arduino, the ESP32 requires its own code
to relay G-Code commands from the user interface to the Arduino

- ESP32 code:
- Libraries:

- The ESP32 code uses two libraries, the WiFi.h and the PubSubClient.h
library. The WiFi.h library gives us access to a variety of different
functions that set up and check Wi-Fi connectivity. The PubSubClient

7

https://github.com/cprezzi/grbl-servo

library allows us to use MQTT functionality with the ESP32. This includes
things such as establishing the ESP32 as a client and accessing a
specific broker.

- Functions:
- Callback(): This function accepts in a string, a byte, and an unsigned

integer as it’s parameters. The callback function collects whatever
outgoing message is waiting at the broker for the subscribed topic. Using
a for loop, the function iterates through each character in the payload byte
(which pulled from the subscribed topic). These characters are then
stored in a string, which after the for loop has ended goes through a
series of continitional statements. Depending on the command, a different
conditional will be executed. After the specific condition has been met,
then the string is transmitted using serial to the Arduino Nano.

- respond(): The respond() function does not have any parameters to it.
The function is called when the ESP32 has sent a message to the
Arduino Nano and now needs to relay the Arduino’s response back to the
user. The function essentially reads the serial ports on the ESP32 and
collects the data into a string. The characters of the array are then stored
into an array of characters, or chars. After this, the array of chars is
published to the broker.

- setup_wifi(): The setup() function is used to connect the ESP32 to a Wi-Fi
network. This function then uses a predefined function from the WiFi to
connect to a Wi-Fi network.

- GUI:
- Libraries:

- The tkinter python library comes pre-installed in most current python
packages. Tkinter is used to create the interface itself as well as any other
interaction with the user. The library contains classes to display buttons,
labels, popups, group together other classes, and more. Near the
beginning of the program the line ‘top = Tk()’ creates the primary window
of the GUI which contains all other components of the GUI. A few lines
down, firstgroup is made as a sub component of top, as seen in the first
argument being ‘top’, a boarder of 5 pixels, seen with ‘bd = 5’ and a
hexadecimal background color with ‘bg = ‘#F0E9D5’’. Next are the input
fields. A label called L1 with text ‘X, Y, F’ is oriented on the left side of the
firstgroup frame. Then the three input areas are created using Entry()
oriented on the right side of the firstgroup frame. The entries are created
in the opposite order as they display on the GUI because the earlier lines
are given priority when being oriented to the right. Finally buttons are
created. The first button is named Gzero, has a border of 5 pixels,
displays the text ‘G0’ on it, and when pressed will run the function labeled
‘G0’ as seen with the ‘command=G0’ input. For every component created
in tkinter they must be completed using the .pack() command, which also
can take inputs such as the orientation of the component such as
“L1.pack(side = LEFT)” will orient the component L1 to the left side of
whatever group it is part of.

- The paho-mqtt library must be installed. This library is used to wirelessly
connect the interface with the rest of the system with an online broker as
a middleman. To connect to a specific broker mqtt needs a specific
address and a ‘room’ to send information to and to read. All systems that
need to be connected will be looking at the same room. When one system

8

publishes information to a specific topic in a room, all other systems that
are subscribed to that topic and connected to that room will be notified
and be able to receive that information.

- Functions:
- check_inputs: A simple command that is used to ensure that the

information typed into the 3 data entry boxes are float values. It accepts
one input which it will attempt to translate into a float value. If it is unable
to translate it to a float value, an exception will be called which creates an
error popup for the user and returns a value of 1 to indicate an error. If it
can be translated to a float value then an exception will not be called and
a value of 0 will be returned to indicate no error.

- G0 & G1: The G0 and G1 commands construct an output string from the
data input into the 3 entry boxes. First both functions start by creating a
string called output with the values ‘G0 X’ and ‘G1 X’ respectively. The X
is put in because the commands have a format of ‘G1 X# Y# F#’. Next
values are taken in from the entry boxes with the .get() command. These
values are then input to the check_inputs command. If any of the
check_inputs commands return a 1, then it indicates an error and the
function returns. But if they all pass the check then the program begins
constructing the output string by appending the variable values to the end
of the current string. Using client.publish the output string is then sent to
the mqtt topic named “ESP32”.

- G90-M6: All 6 of these commands are extremely simple. As the G Code
for these commands have no variables, the functions just publish a static
string to the mqtt topic named “ESP32”.

- PSM: This function toggles the power saving mode functionality of the
system. it uses a variable named ‘state’ to remember if the system is
currently already in power saving mode or not. If the system is not in
power saving mode then it will publish the string “PSMON” to the mqtt
topic “ESP32” to be read by the system. It will then set the current state to
0 to indicate power saving mode and deactivate all of the other buttons on
the interface. If the system is currently in power saving mode then it will
publish “PSMOFF”, set the current state to 1 and restore functionality to
the other buttons.

- on_connect: This function runs as soon as the program connects to the
mqtt room. It makes the interface subscribe to the topic named “resp”,
which stands for response. When the rest of the system has something to
send back to the user, it will write the information to the topic “resp” and
the interface will run the on_message command when it notices the
update.

- on_message: This command takes the information sent by other users
into the subscribed topics and then presents them to the user. First it
stores the message into a string labeled command using
str(msg.payload). Because the messages to and from the free broker can
occasionally have noise, the function then uses a loop to only pull correct
characters from command and store them in another string named temp.
Finally a popup is made using tkinter titled ‘Feedback’ which will display
the received message string to the user.

9

3.2 - Use:
- Commands:

- Movement:
- The G-code commands G90, G91, G20 and G21 are used to configure

how movement commands are interpreted. G90 and G91 enable Absolute
Mode and Incremental Mode respectively. If told to go to X 20 and Y 5,
Absolute mode will make the head move to that position in relation to its
default position and Incremental mode will make the head move 20 units
in the x direction and 5 units in the y direction in relation to its current
position. G20 and G21 enable Inches Mode and Millimeter Mode
respectively. These commands interpret whether an input of X 20 means
to move 20 inches or 20 millimeters. The system starts by default in
Incremental Millimeter mode.

- The G-code commands G0 and G1 move the head to the desired
positions. G0 takes an X and Y value and goes at a specific speed. G1
takes in an X, Y, and F value, with the F value determining the speed that
the head moves at. The G90, G91, G20 and G21 commands listed above
determine how these variables are interpreted.

- Change of Tool:
- As the “Change of Tool” command in G-code (M6) is not currently

supported on grbl v1.1, the ESP32 includes a work-around code for using
the change of tool. The grasping mechanism (which includes the SG90
servo) is what will be used for the change of tool. When the M6 command
has been passed from the user interface to the ESP32, the ESP sends
two servo commands (included from the manipulated grbl library above)
to open and close the grasping mechanism using the “S#” commands.
Refer to the ESP code section of this document for insight on how this
command works.

- Low-Power Mode:
- The Low-Power Mode feature of this HyperRail system is custom to this

project. As there’s no coolant involved in this project, the “Coolant Enable
pin (A3)” on the Arduino Nano is used to send the signal to the PCB to
enable/disable Low-Power Mode. When the user selects the Low-Power
Mode option on the user interface, the ESP sends a homing command to
the Arduino, followed by the M8 (coolant enable) command to the Arduino
which engages the Low-Power Mode. When the user decides to take the
system out of low-power mode, the ESP32 sends the M9 (coolant
disable) command to bring pin A3 on the Arduino back to its resting state
of approximately 0V.

10

4 - Design Artifact Figures

Figure 4: 3D model of the HyperRail mechanical system.

Figure _ above shows the rail system that our team’s motion control system will be controlling.
This design was created by the project’s mentor Jorian Bruslind. This design currently only
supports movement in the X and Y-axis, while progress in creating an extra arm in the Z-axis is
currently underway. This structure is built with 80/20 T-slot framing, and the rail’s movement is
controlled by two NEMA17 stepper motors to handle X-axis movement and one NEMA17
stepper motor for Y-axis movement. The enclosure box on the right-side of Figure _ is to be
designed by each of the HyperRail groups. For the purpose of our group, our enclosure will hold
both the Arduino Nano, the ESP32, as well as the Power Distribution Board.

Figure 5: Grbl v1.1 Arduino Pinout.

Figure _ is a diagram of the grbl v1.1 pinout on an Arduino Uno. For the purposes of this project,
an Arduino Nano was used with grbl as our G-code interpreting microcontroller. Though the
model of the Arduino used is different than the one shown in Figure _ above, the corresponding

11

pins are the same on each of the boards. For implementation of our team’s Low-Power Mode,
pin A3 which is listed as a “Coolant Enable” pin was repurposed to send a 5V signal to the relay
network used to disconnect the stepper motors from the power supply. For implementing a
servo motor to control our system’s grasping mechanism, a custom ​grbl library​ was used in
which the PWM values from pin D11 are set from 255 (max PWM) to 0 for opening and closing
the grasping mechanism. Other than these two changes, the rest of the pre-defined grbl pins
shown in Figure _ are used for their intended purposes.

Figure 6: ESP32-WROOM-32 Pinout Diagram

The above figure shows the complete pinout for the ESP32, for the HyperRail though, only a
few specific pins on the ESP32 are used. The Rx and Tx pins are used for serial communication
with the Arduino Nano. Tx is connected to the Rx pin on the Arduino and Rx is connected to the
Tx on the Arduino. The 5V and GND pin are used to supply power to the ESP32, since it is not
being supplied power through the USB port. Both boards also need to be connected to each
other using another GND pin, that’s separate from the one being used for supplying power to
the board.

12

https://github.com/cprezzi/grbl-servo

Figure 7: 3D model of the HyperRail grasping mechanism.

The grasping mechanism shown in Figure _ above was designed around the Tower Pro SG90
servo motor in which will be controlled and powered using the Arduino Nano. The rotation of the
motor will be controlled by pulse-width modulation coming from pin D11 on the Arduino using
the “S” G-code commands. Command S0 is used to open the grasping mechanism while
command S255 sets the PWM to its maximum value to close the grasping mechanism. These
values following the “S” command are still to be determined, as there was some delay in getting
our grasping mechanism 3D printed for testing purposes.

Figure 8: 3D model of the enclosure to be mounted to the side of the HyperRail System.

As stated earlier, our enclosure was designed to hold the two microcontrollers that our system
includes, as well as the designed Power Distribution Board. As an engineering requirement, no
wires must be leaving or entering the enclosure, so our design includes specific connectors for
powering our stepper motors and drivers, as well as sending the controlling signals from the
Arduino to the stepper drivers. The enclosure was sized to 180mm x 180mm x 82.5mm and

13

includes holes for 5 panel-mount db9 connectors for the signal wires exiting the enclosure as
well as 52.1mm x 5.5mm DC Barrel Jacks used for powering the stepper drivers.

Figure 9: User interface for sending G-code commands to the ESP32.

The Graphical User Interface is the primary way to send commands to the rest of the system.
Created using the tkinter library, it has a simple design with 3 entry boxes at the top to input
variable values and a total of 9 buttons used to wirelessly send the associated command to the
system. Each button has a label and a brief description of it’s function underneath it. When the
PSM button is pressed, the system is meant to go into power saving mode so the other buttons
become greyed out and unresponsive until the button is pressed again.

5 - PCB Information
PCB design was completed using Altium CircuitMaker design software. The PCB was designed
to hold the entirety of the Power Distribution Board, including a DC-DC buck converter used to
power both of the microcontrollers included in the HyperRail system, as well as a relay network
used to implement the Low-Power Mode command. The DC-DC buck converter was designed
around Texas Instruments’ TPS54232DR switching voltage regulator which was used in the JD
Power Supply which was analyzed and used thoroughly during the previous Junior Design class
last term. The PCB was designed to be 90mm x 60mm, allowing for plenty of space for the
relatively large relay to be mounted to the PCB, as well as leave enough space for the large
power-rail traces to not interfere with other components or traces.

14

Figure 10: Schematic of the designed DC-DC buck converter as well as relay network for
implementing Low-Power Mode, partially designed in Texas Instruments’ ​Webench Power

Designer​.

Figure 11: PCB traces of the Power Distribution board created in Altium CircuitMaker.

15

https://webench.ti.com/power-designer/switching-regulator/customize/3?AppType=None&O1I=2&O1V=5&VinMax=24&VinMin=20&base_pn=TPS54232&fromdisty=digikey&lang_chosen=en_US&op_TA=30&optfactor=3&origin=launch_wb
https://webench.ti.com/power-designer/switching-regulator/customize/3?AppType=None&O1I=2&O1V=5&VinMax=24&VinMin=20&base_pn=TPS54232&fromdisty=digikey&lang_chosen=en_US&op_TA=30&optfactor=3&origin=launch_wb

Figure 12: 3D rendering of the designed PCB.

Figure 13: Physical PCB after all components had been added to the design and been tested for
functionality.

16

6 - Part Information (BOM)
Table 3: Bill of Materials for components used for the creation of the framing and physical

system of the HyperRail.

* In the future, a z-axis will be established which will include another NEMA17 Motor
** If a z-axis is included, an extra DM332T must be added

Table 4: Bill of Materials for components used for the creation of the Power Distribution Board

PCB.

17

Type Designator Units Unit Cost

Stepper Motor NEMA17 1* $10.48

 NEMA23 2 $53.50

Servo Motor Tower Pro SG90 1 $3.99

Stepper Driver DM332T 3** $18.95

Microcontroller Arduino NANO 1 $20.70

 HiLetgo ESP-WROOM-
32

1 $10.99

 Total Components Total Cost

 8 $210.01

Component Type Designator Value Units Cost

Capacitor C1 10 Fμ 1 $0.32

 C2 15pF 1 $0.12

 C3 1nF 1 $0.17

 C4 8.2nF 1 $0.10

 C5 0.1 Fμ 1 $0.10

 C6 22 Fμ 1 $0.53

Resistor R1 169k Ω 1 $0.10

 R2 19.6k Ω 1 $0.10

18

 R3 42.2k Ω 1 $0.10

 R4 10.2k Ω 1 $0.10

 R5 1.96k Ω 1 $0.10

 R6 1k Ω 1 $0.10

Diode D1 B340A-13-F 1 $0.43

 D2 1N4007-TP 1 $0.10

Inductor L1 SRN8040-8R2Y 1 $0.71

Relay K1 G5LE-1-ASI DC3 1 $1.46

Switching Regulator U1 TPS54232DR 1 $1.54

 Total Components Total Cost

 17 $6.18

7 - Appendix
Table 3: System interface definitions.

19

Type Name Characteristics

DC Power (dcpwr) system_dcpwr V​nominal​: +24VDC
I​peak​: 8.3A

 motordriver_dcpwr V​input​: +24VDC
I​input​: 6.9A

 board1_dcpwr V​input​: +5VDC
I​input​: <1A

 board2_dcpwr V​input​: +5VDC
I​input​: <1A

 graspdriver_dcpwr V​input​: +5VDC

User Input (usrin) main_usrin Type: typed float numbers and
button presses
Purpose: Accept user input

Data variable_data Type: Command calls and
variable transfer
Purpose: front-end
communication with back-end

Wired Communication (comm) g_code_comm Type: Serial communication

Wireless Communication (RF) web_comm_rf Type: Wifi
Purpose: Wireless
communication to ESP32

Digital Signals (dsign) movement_dsign V​max​: +5VDC
V​min​: 0VDC

 motor_dsign Type: changing voltage for 4-coil
stepper motor control

 grasp_dsign Type: PWM

 lowpower_dsign V​max​: +5VDC
V​min​: 0VDC

User Output (usrout) system_movement_usrout Type: Desired movement of the
HyperRail system

