
Design Document

Music Affect Data Collection App

Tanya Bihari, Mia Bilka, Michael Murad, and Chris Somnitz

CS 461-400 Fall 2022

Oregon State University

Abstract

There exists a growing interest in the collection and analysis of human affectual
responses to music. Current databases of music affect responses are generally limited or not
publicly accessible. As a solution to this problem, our team will develop a music affect
crowdsourcing application which allows users to self-report their responses to songs streamed
via Spotify. This document specifies the overall architecture of that application as well as the
functionality of its four core components.

Contents
Abstract

Revisions

Overview
Scope
Purpose
Intended Audience

Definitions

Introduction
Existing Solutions
Proposed Solution

Proposed Solution
System Architecture
User Input
Spotify Integration
Backend Server
Database
System Dependencies

System Software
System Hardware

Release / Deployment
Test Plan
Risk Assessment

Appendices
Project Phases and Milestones
Questions / Answers

References

Revisions

Version Date Notes

1 1.0 3 November 2022 Initial revision.

2 2.0 21 November 2022 Edited revision for
submission.

Overview

Scope

This document will detail the specifications and functionality of the application to be
developed. It will cover the organizational layout and flow of our application, the backend and
frontend tools and specifications used to develop the app, and other relevant materials and
details covering the app’s use and development. The document will not cover any
post-deployment plans, including potential research use, maintenance plans, or development
beyond the Minimum Viable Product (MVP).

Purpose

This document will function as a reference for the app’s development through to the
MVP. It will also detail the app’s functionality from the frontend and backend perspectives. This
document may undergo revisions during development to reflect changing design decisions, but
we expect the majority of development to proceed generally based on the application
architecture detailed here.

Intended Audience

The Intended Audience for this document is the development team, project sponsor, and
Senior Software Engineering Project instructional team. This audience may also include
individuals planning to use the app in their research who are interested in its underlying
functionality.

Definitions

The following terms are defined for the project:

● Affect Data - A person’s emotional response to a song, represented with valence
(positive-negative) and arousal (excited-calm).

● SDK - Software development kit.
● User Metadata - Information about a user, such as age, geographical location, or

user ID.
● Song Metadata - Information about a song, such as the associated artist, album,

release date, or length.
● AWS - Amazon Web Services, a cloud platform that can host databases and

code.

Introduction

An increasing interest in understanding human affective responses to music has led to
attempts to collect relevant data through several observational studies and AI-based predictive
tests [1]. Expanding the available data could refine existing algorithms involving human
emotional response to music and would facilitate the development of theoretical but data-lacking
technologies. It could also refine existing technologies used to predict and/or build around
certain emotional models and experiences, such as mood-based playlists, automatic song
suggestion tools, or music recommendation algorithms.

Existing Solutions

To our knowledge, there does not currently exist a crowdsourced, research-oriented
application intended to collect emotional affect data. Popular music streaming services such as
Spotify have shown interest in collecting, analyzing, and predicting affectual responses to music
[2], but this data is largely private, internal, and used for marketing or curation purposes as
opposed to academic research. In addition, copyright laws and other logistical barriers make
extensive data collection difficult for independent academic researchers, resulting in only a small
number of datasets that are sparse and difficult to generalize from.

Existing datasets include the results of the AMG1608, DEAM, PmEmo, Deezer, and
DEAP studies. Aside from the Deezer dataset (which used a neural network instead of human
response) [3], each dataset has less than 2,000 songs and less than 700 participants, thus
providing the need for more extensive data collection.

Proposed Solution

We seek to fill the existing gap in music affect data by creating an application which
allows users to self-report their emotional responses to music, expanding the range of testable
music by integrating with the APIs of existing streaming services and storing collected test data
in the cloud. An application-based method of acquiring music affect data from self-reporting
participants is a new approach to prevalent issues around music affect data collection. Users
will be able to listen to individual songs via an existing music streaming platform, report
emotional affect data via a simple interface, and submit their response to a cloud-based
database. Our project, once released and thoroughly tested, could result in a substantial dataset
representing both concentrated studies of selections of music as well as that of the participants’
general listening habits. A working application has the potential to solve multiple problems
around music affect data collection while introducing new possibilities to this area of research.

Proposed Solution

System Architecture
The proposed system is a multi-platform web and mobile application. The system will

have a front-end that includes the user input and Spotify streaming, and a back-end with a
server and database to record the responses. These system components are each explained in
more detail in the User Input, Spotify Integration, Backend Server, and Database sections
below.

Figure 1

A diagram of the system architecture.

User Input

On the user end, the application will generally be very simple, consisting of a few pages
and processes. A mockup of the page designs can be found in the appendix.

Figure 2

User experience flowchart.

As shown in Figure 2, the application will consist of a homepage that allows a user to
traverse to a simple tutorial that introduces the user to the basics on how to enter data. Then a
user can select a song, hit play, and enter responses. This process will then be looped.

To collect user music affect data, we will need an interface that allows users to enter
their emotional response. The goals are collecting a rich dataset, while still having a simple,
intuitive interface. There is a balancing act that needs to be done, where an interface that is too
simple will yield lacking results, whereas an informationally dense UI can yield a more valuable
dataset, yet may not be as usable. The goal is to find the perfect balance.

Based on previous field studies, such as Deezer [3] or DEAM [4], the arousal/valence
model seems to be the gold standard emotional model.

Figure 3
James Russell’s circumplex model of emotions.

The arousal / valence model in Figure 3, seems to suit itself well to be translated to a UI
that a user can enter musical affect data with. Questions arise though, if discrete values should
be used versus values in a range, and if so, how intuitive is it for users? Perhaps the
intermediate emotions can be overlaid on the UI. Intermediate values would yield a rich dataset,
yet might be confusing to users if not executed properly.

Using a 2x2 grid, similar to the model shown in Figure 3, could easily map valence to the
x axis and arousal to the y axis. In Flutter, you can determine the relative location of a tap. It will
provide a tuple of Cartesian coordinates to be mapped to the arousal / valence model directly.

The collection of data would commence when the user initiates the playing of a song.
Perhaps over a specified interval, the last cartesian coordinates entered could be saved in an
array of objects containing the interval and cartesian coordinates.

Figure 4
Possible process for collecting music affect data and sending it to the server.

● Music affect data collection algorithm - The algorithm begins when a user starts a
song, sets the conditions to collect user inputted data, and then upon completion, sends
to to the server

○ Loop collecting data - User input is collected on an interval
■ Every 5 seconds save last entered user input

○ Store data in data structure - Data to be stored in an array of objects, which
contain the interval and cartesian coordinates that map to arousal / valence
model.

○ Send data to server - Upon completion of the song, send data to the server

Figure 4 shows a process for collecting data, yet there still remain some questions. What
happens if a user never enters any data? Also what happens if a user enters some data in quick
succession before the interval elapses? Do we store a visual indicator for previously entered
data? There will need to be multiple proof of concepts (POC) created, and edge cases will need
to be ironed out.

Proposed Solution
To ensure that a rich dataset is created, an interface consisting of a clickable 2x2 grid

(whether square or circle) will represent an arousal / valence emotional model, and allow users
to input music affect data.

Figure 5
A rough mock up of a tappable 2x2 grid

Upon starting a song, the user will be able to tap a portion of the screen that will map
touch location to Cardesian coordinates. These coordinates will then be stored in an array of
objects along with the interval. The x axis will represent arousal, the y axis will represent
valence.

Although there are still outstanding questions and perhaps a great amount of variations
and testing to be done, this paper will serve as a starting point in the journey towards finding the
perfect balance between detailed user input and a simple interface.

Next steps will be actually creating POCs and getting feedback from our mentor to make
sure that the final product is in line with the initial goals of the project. The POCs we will need to
verify would be the UI interface, and the different implementations of it, how it would work, what
the UI would look like, and the fine details surrounding it. Also the POC of implementing the
Spotify SDK and integrating it into the system. There will be many iterations and deviations
needed to come up with a satisfactory final product.

The edge cases will need to be sorted out. Perhaps the user will need to have an initial
emotion and that and serve as the default should they not enter any data. We will need to
experiment with a detailed overlay (that can be toggled) on the UI that shows a few intermediate
emotions. Hopefully a UI element can be created, that is simple and intuitive, that can show
previous or current selections.

All in all, this will serve as the starting point, and has hopefully addressed possible edge
cases that will need to be addressed. There was a lot learned in this process. And with

everything said, I feel very confident that we will be able to create this system and come up with
a decent UI.

Spotify Integration
Currently Spotify is the choice for streaming music integration into the application. The

goal will be to have a way for users to choose songs, hit play, and then be able to input their
music affect data. Spotify does have Android and iOS SDK’s as well as web API. A possible
challenge might be integrating a native SDKs into Flutter. Upon initial investigation, there is a
Flutter package that wraps the native wrapper called spotify_sdk, hopefully this will assist in
the process.

Beyond the technical difficulties, there are requirements for us to even use the spotify
SDK.

For Android, we will need to register our application on the Spotify Developer Dashboard
and obtain a client ID. To complete the process we will need to whitelist a redirect URI that the
Spotify Account Service will use to callback to our app after authorization. Moreover, we will
need to register App Fingerprints which are used for authentication between our Android
Application and the Spotify Service. For our iOS application, we will need to do similar steps.

Hopefully the parts that involve native code can be handled in an easy way or by the
spotify_sdk package.

Spotify also has a list of requirements to use their SDK that we need to be aware of.
Most of these requirements involve us not deriving any data about the users in a specific way.
We need to be mindful of these requirements.

Backend Server
This section contains the design specifications for the server-side data collection and

storage processes of the app. The backend of the application is concerned with sending user
affect data from a user’s device to our servers, where the data can be parsed and then stored in
a persistent database.

From a server-side perspective, we are interested in a few relevant variables:

1. Song metadata (artist, album/release, track title, etc.)
2. User affect data (x/y coordinates paired with timestamps)
3. User metadata (some anonymized form of user ID associated with the affect

data)

The application will contain the user affect data, song metadata, and user metadata
within a JSON object that can be sent in the body of a REST request to our API. It is possible
that issues may occur during the user data collection process on the application side (e.g.
internet connectivity problems, bugs, user error) that interrupt or corrupt response data before a
full response is completed. To minimize inaccuracies in the overall dataset, we will not send any
user affect data from the application to the server before it is guaranteed, application-side, that
the user affect data is complete and accurate, contained within the appropriately formatted
JSON object, and ready to be sent to the server.

Once this data is ready to be sent, it will then be transferred from the user’s local
instance of the application to persistent storage in the cloud database. The application will make
a PUT request to our server with a JSON object containing all relevant data. Our server will
verify that data and send a response back to the client application as to whether data storage
was successful.

We will use Amazon API Gateway to handle the initial PUT request, then send the
data to be stored to an AWS Lambda function which will interface with the database as needed.
The entire server-side data collection, verification, and storage process will happen in a number
of steps, as shown in Figure 6.

Figure 6
A diagram showing the process of user affect data collection from application to database storage.

A successful query would follow this set of steps:

1. The application sends a PUT request to the server, the body of which is a JSON object
containing all of the relevant user response data.

2. Using Amazon API Gateway, our API handles the PUT request. If the PUT request is
acceptable, our API forwards the data to an AWS Lambda function.

3. The AWS Lambda function interfaces with our database to store the data.
4. If the data is stored successfully, our Lambda function returns this information to our API,

which then sends an OK response back to the application.

Database
Description

This project will use a relational database. Getting the users' responses and storing them
in the database is the end goal of the app. Once the user has listened and responded to the
song, the app will send the stored response to the server where the database is hosted. The
response data will be stored as either an array or JSON type which will be an array of arrays
that will hold the time interval, valence and arousal coordinates, along with metadata about the
response. The database will also include a table of songs, which will be updated whenever
response data for a new song is received, and a table of Users, that will allow us to differentiate
users and store some metadata about them. Response data will be able to be retrieved by
searching for song titles, artists, song lengths, and/or date ranges.

A user ID will be stored so that if the same user responds to the same song twice, the
old response will be overwritten. Duplicate responses should be avoided, but anonymity is a
concern for this app, so the user ID will be generated using a hash of the user's Spotify
username.

The response data will be stored inside the actual database, as a JSON type or as an
Array type in the Response table (mentioned below). We will need to do some experimentation
to see which is preferable. This would allow us to leverage the relationship between users,
songs, and data, while still using a flexible data structure.

Models

The file containing the data of a single response will be a 3-row matrix of comma
separated values, with the top row containing the time intervals and the bottom rows containing
the valence and arousal positions at each time interval.

The database will include three tables: A Response, User, and a Song table. The
Response table will include the data, and the metadata of the response: The user ID, song ID,
and date recorded. The Song table will include the song ID, artist, song title, and song length.
The User table will consist of the ID, and some metadata of the user, however, based on laws
surrounding privacy, such as GDPR, we may not be able to save these. Further research needs
to be done.

Figure 7
ER Diagram.

Interface/API

A variety of functions will be provided to allow the server to access the database. These
functions will include:

An INSERT statement to add a new song and return whether it was successful.

An INSERT statement to add a new response and return whether it was successful.

A SELECT statement to check if a response with a certain song ID and user ID already
exists and returns true or false.

An UPDATE statement to replace an old response with a new one and return whether it
was successful.

And a SELECT statement to retrieve response data about one or more songs, able to be
filtered by song ID, date range, artist name, song title, or song length. Returns paths to all
relevant response data files, grouped by song.

Persistence

Postgres, or any SQL database hosted on AWS, by default will persist the data. AWS
does have backups available as well should we want to create backups in case of a
catastrophic failure.

Technologies

We’ll be using PostgreSQL as our database system. It's free, widely-used, and is highly
compliant with the SQL standard, so it's the easiest option. This database will be very simple, so
it won't require anything specialized. MariaDB is also being considered as an option for the
same reasons.

System Dependencies

System Software
Our application will make use of a number of software tools.

1. Development
a. Flutter - framework for app development.
b. GitHub - version control and source code hosting.
c. Visual Studio Code - IDE for development.

2. Audio Streaming
a. Spotify SDK/API - source of audio streaming data and song metadata.

3. Server and Database
a. AWS - server and tools.

i. AWS Lambda
ii. Amazon API Gateway

b. Hosted SQL database
4. Deployment

a. Google Play Store
b. Apple App Store
c. Web server that hosts Flutter web app, possibly hosted by AWS

System Hardware
Users will require an Android or Apple smartphone or desktop device to use the

application, but otherwise no special hardware is required. AWS will handle everything in the
cloud for us, and they will deal with all the hardware that the server and database run on.

Release / Deployment
We plan to release a mobile application via the Google Play Store and Apple App Store

for smartphone users. We also plan to host a web version of the application that can be
accessed from desktop browsers. Our plan for application deployment, including timelines for
submitting applications to these platforms as well as a chosen host for our web application, is
still under development.

Test Plan
Much of this is to be determined at this point but there are some basic testing

requirements that we can meet.
Flutter has built in support for unit and integration tests. These will be important to test

the input UI and make sure that it is working properly. For these tests we will probably be
implementing test driven development and blackbox testing where we simulate a user using the
application. Also for the algorithm itself that handles data collection on an interval, we might
implement some combination of black/white box testing.

For our API we can use tools like Postman to test our endpoints to make sure that they
are performing correctly.

Risk Assessment
As use of the Spotify streaming service is integral to the functionality of our application,

we will need to thoroughly review and continue to reference the Spotify Developer Policy
throughout development to ensure we are using their API correctly under the published terms.
One of these terms prohibits us from creating user “profiles” or collecting identifiable data on
individual users through our use of the Spotify API. We will need to ensure that user data is
sufficiently anonymized before being stored in our database while also ensuring that we are able
to collect a useful amount of user metadata and prevent duplicate responses.

A possible failure scenario would be some sort of issue using streaming SDKs like
Spotify. Whether that be a difficulty in implementing the service, or perhaps them suspending
the service based on the type of application we are building.

Another possible point of failure would be the App Store refusing to host our iOS
application based on their requirements and guidelines. We will need to be very diligent about
abiding by these and hopefully the premise of the application will not be prohibitive to them
accepting it. Apple is known to be very inconsistent and hard to communicate with during this
process.

Another issue might be the ability for the server to handle the capacity of users input. As
it stands, we intend on using AWS Lambda functions to handle requests, and these can
essentially scale to meet anything we might need it to, however, they will need to be able to
connect to the database and there may be issues with connection limits being hit. Depending on
how many users the application ends up serving, we may need to find a solution to this problem
if it exists.

Appendices

Project Phases and Milestones

Phase I

Date Milestone Description Complete?

October 13, 2022 Problem Statement Establish the problem to be
solved and the potential
solution to the problem.

Yes

October 20, 2022 Requirements
Document

Establish the outline of the
project and its expected
resulting product.

Yes

November 3, 2022 Initial Design
Document

Describe the product in detail
and specify its architectural
components.

Yes

November 10, 2022 v0.0.1 Demonstrate very basic
functionality of the product’s
underlying components.

November 21, 2022 Final Design
Document

Edit the Initial Design
Document into a finished
version, including design
changes and external input.

November 21, 2022 Client Verification Request approval from the
project sponsor to move
forward with development.

November 30, 2022 v0.0.2 Demonstrate basic
functionality of the application.

Our Phase II and Phase III plans will be written at the start of the second and third terms of the
project.

UI Mockups

Figure 8
Home page that a user would land on initially.

Figure 9
Tutorial page where the user is guided through how to select songs and enter data.

Figure 10
Song selection example.

Figure 11
Affect Response Page, where the user would enter data.

Questions / Answers

Q: For input, do we want a range of values for each emotion, meaning, do we want to simply
have “excited”, or have a range of how excited, e.g. 0.1 - 1.0?

A: This depends on the implementation method, but for the most part the more
information the better. We can look at existing studies to determine what a theoretical
range of values should look like, and how we can standardize these values to compare
existing studies with our own results.

Q: Are we setting up the cloud services, (e.g. server, database), ourselves?

A: We can make use of the university’s AWS resources to work with an existing cloud
infrastructure. We may still have to make some of the backend work ourselves but we
won’t be starting from scratch or finding out how to host our own data.

Q: Should we prioritize usability (ease of self-reporting emotional data, simpler reporting
options) or detail + accuracy of data collection (more complex/time-intensive reporting options
but more data per report)?

A: A balance of the two is important. Our app won’t be effective if no participants are
able to or even want to use it, but we also need to gather enough quantitative
information per report that our data is meaningful.

Q: Who makes up the user base of this app?

A: This app is intended to be a crowdsourcing solution to gathering research on music
affect data. The app will initially be informally tested via the app’s developers and any
other individuals interested in contributing to the quality assurance and bug-fixing stage
of the development process. After the app’s development is complete, it will be
accessible to the general public, though it may be deployed to particular research
groups.

References

[1] A. Beery, “Predicting Music Emotion with Social Media Discourse,” thesis, 2022.

[2] N. Walker, “Spotify Patented Emotional Recognition Technology to Recommend Songs
Based on User’s Emotions,” Journal of Law and Technology, 11-Jan-2022.

[3] R. Delbouys, R. Hennequin, F. Piccoli, J. Royo-Letelier, and M. Moussallam, “Music Mood
Detection Based on Audio and Lyrics with Deep Neural Net," in Proceedings of the 19th
International Society for Music Information Retrieval Conference, 2018, Paris, France
[Online]. Available: IRCAM, http://ircam.fr [Accessed: 14-Oct-2022].

[4] A. Aljanaki1, Y. Yang, and M.Soleymani, “DEAM: MediaEval Database for Emotional
Analysis in Music”, PLoS ONE 12(3): e0173392.
https://doi.org/10.1371/journal.pone.0173392 2017

https://doi.org/10.1371/journal.pone.0173392

