The original purpose of our project was to create a Scara based robot arm that could quickly and
accurately use G Code based commands from a GUI element. On top of this, our group added the extra
conditions that it needed to also be able to take an input image, whether it was an image already on the
computer or if it was taken with the webcam, and generate G Code from that image to draw a rough
version of it, and for it to have the option to allow the user to draw in a canvas and then have the arm
produce a similar drawing. To accomplish these requirements, we decided that the project would be
broken down into several core blocks: the GUI block, the computer vision block, the Arduino block, the
servo block, the arm apparatus block, and the drawing tool holder block.

When designing, we considered two main options for what to use to control the servos, an
Arduino or a Raspberry Pi. With the Raspberry Pi we could have the system be all-in-one that would allow
a user to simply connect a monitor and a mouse, minimizing the need for a computer, but unfortunately
we found that this was not an option as running computer vision on a Raspberry Pi was very difficult with
its limited specifications. Therefore we decided to have a two-part system where we run the computer
vision and GUI on a base computer that then sends the commands to an Arduino that then translates the
commands and controls the servos.

For the Arduino firmware, we went with an implementation of an open-source G Code interpreter
called GRBL. GRBL is often used in 3D printer projects and has full support with G Code and can be used
in a large array of build formats. Normally GRBL only supports linear movement of axises, this lead us to
use an implementation that converts the Cartesian coordinates in the command into angles for the servos
to move to.

Another design problem we ran into was that the servos required at least 6 volts to function
properly. We tossed back and forth between whether we should create a whole new block for a power
supply or if we should just try to step up the output voltage of the Arduino to reach 6 volts. In the end we
decided to just use an external power supply as we were already too far into the project to consider
building a separate block for it.

From this project we learned several lessons. The first that we learned is that if we are going to
use open-source code that it needs to be thoroughly tested for our needs and that we need to make sure
that it supports the hardware that we are using. We realized far too late that the software that we used
does not fully work and caused us to have to modify the implementation for it to be semi-successful since
we could not swap to another firmware as it did not support our hardware. Another thing that we learned
is that the sooner that we can put things together and start testing, the better. We put things together far
too late and scrambled to sort out the last couple of issues.

PROJECT TITLE:
PROJECT MEMBERS:
DATE DUE:
Legens Comseouats cowouesse
WBS PCT OF TASK.
M T WRTF SSNMTWRTFSSNMTWRTF SSNMTWRTF SSNMTWRTFSSNMTWRTF SSNMTWRTEFSSNMTWRTEF SSNMTWRF
1 Plan 444110 aman? 4184724 42550 51258 5/9-5115 516522 523529 5/30-6/3

Engineering Requirement 4/6/22 a7/22 Team 100
Block Diagram 1 4/6/22 410/22 Team 100
Project Timeline 4/6/22 4/11/18 Austin 100

2 Design

21 List of Parts Draft
Block Check Off
CAD

Pseudocode
25 Order Paris
3 Build/Test

Design Feedback Session

Rough Draft Build
edback
Revised Build 1

Desig Submissio

F 1/2: 1 T 100 .
311 Backup Test & Build 5/18/22 5/25/22 Team 100 .
4 Project Presentation
Poster Draft 51322 5o Tean 100 BEEREEE
System Verification 5/20/22 5/27/22 Team 100

Expo 6/1/22 6/1/22 Team 100
Showcase Assignment §/27/22 6/3/22 Tear 100

