
Sam Wagner
Developer Guide

3/5/21

System Overview: The egg timer has the ability to choose between two different
timer settings, 4 minutes and 10 minutes, has 3 discrete brightness settings and
has the ability to add a minute in the middle of the countdown. The select time
function and the brightness function are both controlled with knobs. The knobs are
rotary potentiometers. These function similarly to the radio tuner or volume
control on your car stereo. The timer can be started with the press of a button.
The user can add a minute with the press of another button. All these inputs go
straight to the Arduino Nano, which is the brain of the system. The Arduino Nano
controls all the outputs and takes in all the inputs. A C script running on it
polls (periodically checks in a loop) for inputs. The JD Power supply from Junior
Design I steps down the wall power to 5V, small enough for the Nano.

Electrical Specifications:
Max voltage supplied to Arduino: 6V
Max voltage supplied from wall plug: 12V
Minimum Voltage: -0.5V
Max current: 800 mA
Nominal current: 40 mA
Max temperature: 125 C
Normal temperature: 21 C
Min temperature:-55 C

User Guide:
1. Open up the enclosure and make sure all the pins are hooked up correctly. Use

the schematic provided below to check.
2. Make sure the external wall jack is connected to the back of the timer. Plug

in the 12 V DC converter into a type A or B outlet.
3. If the display doesn’t turn on still, that means that emergency power switch

has been flicked off. Flip on the switch and the seven segment display will
light up.

4. Now the timer should be on and fully functional. Use the ‘Select Time’ knob
to choose between 4 and 10 minutes.

5. Use the ‘Dimmer’ knob to choose between three brightness levels. Once you
select your time, hit the ‘Start/Stop’ button to begin the count down.

6. If you want to add an extra minute as the timer is counting down, press the
‘Add Minute’ button. Do not continuously press down on this button. Just
press it and then release quickly.

7. To reset the time, turn off and on the power switch.
8. When the speaker goes after after the count down is finish, press

‘Start/Stop’ to get it to stop and to reset the time.
9. You can also reset the time in the middle of the countdown by flicking off

and on the emergency power switch.

Design artifacts:

Figure 1: This is a diagram to understand the inputs and outputs of the system. It
is broken down into blocks so that even a non ECE student can understand how
everything flows. Power input comes from the wall and gets stepped down before it
reaches the Arduino. User inputs can come from four different places They all
travel to the Arduino/PCB. These two things are combined into a single block given
that the PCB only serves as an easy way for the Arduino to read the incoming ADC
values. Finally, there are three outputs directed to two different places. The
seven segment display takes the dimming signal and the write matrix signal, which
the speaker just takes in a PWM wave (a digital wave that goes between only 0 and
1). The table below has the list of interfaces (light_envout, start_dsig, etc,
which you can see in block diagram above) and their properties.

Interface Interface Code Properties

12 V wall power wall_pwr • DC voltage of 12 V.
• Max Voltage 12 V.
• Min Voltage 5 V.
• Max Current: 800 mA.

5 V Input Power input_pwr • Connects to Arduino Nano.
• Max Voltage: 5 V.
• Can be flipped off with an

emergency power switch.
• Max Current: 800 mA

Timer Knob time_knob_usrin • Turns 300 degrees.
• A potentiometer of resistance 10

kOhms.
• Controls the timer value (2

discrete options for time).

Dimmer Knob dim_knob_usrin • Turns 300 degrees.
• A potentiomenter of resistance 10

kOhms.
• Controls the brightness with 3

distinct levels.

Start Button start_button_usrin • Small push button which releases a
logic 0 when not pushed and logic 1
when pushed (could also be active
low).

• Button made of plastic and made to
fit the enclosure. Should be around
1 cm in diameter or less.

Add Minute Button add_min_usrin • Small push button which releases a
logic 0 when not pushed and logic 1
when pushed (could also be active
low).

• Button made of plastic and made to
fit the enclosure. Should be around
1 cm in diameter or less.

Timing Signal time_knob_asig • An analog voltage signal between 0V
and 5V.

• Below 2.5 V will be interpreted as
a logic 0 by the Arduino.

• Above 2.5 V will be interpreted as
a logic 1

• Signal blocked once timer is
running.

Dimming Signal dim_knob_asig • An analog voltage signal between 0V
and 5V.

• Below 1.67 V will be interpreted as
a 00, dimmest level.

• Below 3.33 V will be interpreted as
a 01,

• middle brightness.
• Above 3.33 V will be interpreted as

a 10, highest brightness.

Start Signal start_dsig • Digital Signal; Negative edge
triggered.

• Starts timer.
• Input blocked once timer is

running.

Add Minute Signal add_min_dsig
• Digital Signal; Negative edge

triggered.
• Input is blocked if timer is not

running.
• Input is taken if timer is running.
• A minute is added to the timer when

negative edge received.

Seven Segment Time
Signal

time_dsig • Digital Signal
• Four separate signals, each one

connected to a seven seg block.
• Each signal controls one block.

Seven Segment
Dimming Signal

dim_dsig • Digital Signal
• There are three possible values for

the signal 00, 01 and 10 which
correspond to the brightness
levels.

• This signal goes to all the seven
seg blocks and dims them equally.

Speaker Wave ac_wave_dsig • Digital Signal coming out of the
Arduino Pin 8.

• Must have a frequency of 440 +/- 1
Hz.

Speaker Audio audio_envout • The frequency must have an A tone
(440 +/- 1 Hz).

Seven Segment
Number Display

light_envout • Has three different and distinct
brightness.

• Outputs yellow light. (subject to
change)

• The outputted light should tell the
user how much time is remaining.

Table 1: Interface Definitions

Figure 2: The schematic is similar to the block diagram in that it shows much of
the same blocks. However, it shows another level of complexity. There are the
individual pins on the blocks (so it’s now clear where each signal is going),
specific resistor values, and specific voltage values. R3 and R4 are variable
resistors with three terminals. One terminal going to 5V, the middle terminal
reading off a voltage to a connection (in this case a pin) and the last terminal
going to 0V. One thing this diagram doesn’t show is that all the 5V sources are
tied together and all GNDs (which means 0V and are represented by the triangle
symbols) are tied together too.

Figure 3: Arduino Nano Schematic.

Figure 4: JD Power Supply Schematic. It shows the individual chips, resistors and
capacitors. There are sub-blocks labeled in the diagram.

Figure 5: Seven Segment Display Schematic (sorry it’s a little hard to read)

Taking things to one more level of complexity, these are the schematics for the big
blocks like the Arduino, Power Supply and Matrix Display. At this level of detail,
one can see individual resistors, chips, registers, etc that make up these blocks.

Figure 4: (PCB Layout) The PCB is 27x77mm which is around 3 square inches. It was
printed by oshPark. There are two sides to the design, the 5V side and the GND
side. The PCB was essentially designed so that it would be a replacement
breadboard. However, it can accommodate 2 push buttons with spots for 2 pullup
resistors (R1 and R2). There are 24 pins, most of which were used. J11 and J10
turned out to be extra. Because of a design flaw, J19-J22 are also not used. It was
discovered these pins were not needed. The PCB still works just fine with these
small errors. This is the only important layer, since the backside is just full of
through holes. Below is a list of pins and their uses:

J1: Jumper to supply 5V to the circuit. Lower terminal of emergency switch
connected here.
J2: Goes to 5V on the seven segment display.
J3: Goes to 5V of the dimmer potentiometer.
J4: Goes to 5V of the timer select potentiometer.
J5: Extra. Used in this case to supply 5V to the Arduino Nano.
J6: Connect to JD Power Supply GND.
J7: Goes to GND of the seven segment display.
J8: Goes to GND of dimmer potentiometer.
J9: Goes to GND of the timer select potentiometer.
J10: Not used. Goes to lower terminal of speaker to serve as GND. Arduino has extra

GND.
J11: Not used. Extra.
J12: Hook Arduino GND to the other GNDs.
J13: Goes to Arduino pin A2. Connected upstream from the push button.
J14: Push button 1 upper terminal.
J15: Push button 1 lower terminal.
J16: Goes to Arduino pin A3. Connected upstream from the push button.
J17: Push button 2 upper terminal.
J18: Push button 2 lower terminal.
J19-J22: Not used. Originally connected to the middle terminals of the
potentiometers.
J23: Connected to the JD Power Supply 5V pin.
J24: Connected to the upper terminal of the emergency power switch.

Figure 5: (The 3D enclosure) A box some 250mm x 120 mm x 87 mm was designed with
holes to fit the seven segment display, the rotary potentiometers (variable
resistors used to vary the voltage), push buttons, the speaker, the emergency
switch and the power jack. The lid is designed to snap onto the top of the box. The
inner part of the lid, fits snugly into the box, which allows it to snap on. The
box will be made of lightweight plastic that is sturdy and durable. It will have a
thickness of 10 mm all around. The components are placed in the holes and the
remaining gaps are filled in with silicone (waterproofing and adhesive agent) to
make it waterproof.

Figure 6: Dimensions for the front of the box. All circular holes in the diagram
are 7mm in diameter. The box is mirrored across the middle, which means the
dimensions on the left are the same as on the right.

Figure 7: Dimensions for the right side of the box and the lid. The large hole is
for the speaker. The lid has a handle, which makes it easy for the user to pull up
and take it off.

Figure 8: Dimensions for the back side of the box. The little hole near the bottom
is used for the external power jack. The JD Power plug should be attached on the
side of the hole with some adhesive to hold it in place.

Figure 9: This is the left side of the box. The emergency power switch should fit
inside this hole. Make sure there is enough silicone to hold the switch in place.

Figure 10: This a view of the box and the lid from above. The box is on the left
and the lid is on the right. The thickness of the box is 10mm all the way around.

Figure 11: This is the bottom the lid. The extrusion on the bottom is a little
smaller than the length and width of the inner perimeter of the box. This is
because if they had the exact same dimensions, the lid wouldn’t fit (or at least it
would be a struggle to get it on). This small offset allows the lid to be ‘snapped’
on.

Code for the Arduino Nano:
#include <Wire.h> // Enable this line if using Arduino Uno, Mega, etc.
#include <Adafruit_GFX.h>
#include "Adafruit_LEDBackpack.h"

Adafruit_7segment matrix = Adafruit_7segment();
const int analogInPin = A0; //dimmer knob input
const int analogInPin1 = A1; //select time knob
const int analogInPin2 = A2; //start/finish button
const int analogInPin3 = A3; //add minute button
int sensorValue = 0; // value read from the potentiometer
int sensorValue1 = 0; // value read from another potentiometer
int sensorValue2 = 0; // value read from a button
int sensorValue3 = 0; // value read from another button
int minutes = 0;
int seconds = 0;
void setup() {
#ifndef __AVR_ATtiny85__
 Serial.begin(9600);
 Serial.println("7 Segment Backpack Test");
#endif
 matrix.begin(0x70);
}

void loop() {
 // print with print/println
 sensorValue2 = analogRead(analogInPin2);
 while(sensorValue2 > 800){
 //adjust brightness
 sensorValue = analogRead(analogInPin);
 delay(1);
 if(sensorValue < 341){ //if voltage below 1.67 V
 matrix.setBrightness(0); //set brightness to lowest level
 }

 delay(1);
 if((sensorValue >= 341) && (sensorValue < 682)){ //if voltage between 1.67
V and 3.33 V
 matrix.setBrightness(3); //set brightness to medium level
 }
 delay(1);
 if(sensorValue >= 682){ //if voltage greater than 3.33 V
 matrix.setBrightness(15); //set brightness to highest level
 }
 sensorValue1 = analogRead(analogInPin1); //read for timer value
 delay(1);
 if(sensorValue1 >= 512){
 minutes = 1000;
 seconds = 0;
 }
 delay(1);
 if(sensorValue1 < 512){
 minutes = 400;
 seconds = 0;
 }
 matrix.println(minutes+seconds); //print ADC value
 matrix.writeDisplay(); //display ADC value on matrix
 sensorValue2 = analogRead(analogInPin2);
 delay(1);
 if(sensorValue2 < 900){
 break;
 }
 }

 sensorValue = analogRead(analogInPin); //take in analog ADC value
 while(minutes+seconds >= 0){
 while(seconds > 0){
 for(int i = 403; i > 0; i--){
 delay(1);
 sensorValue = analogRead(analogInPin);
 if(sensorValue < 341){ //if voltage below 1.67 V
 matrix.setBrightness(0); //set brightness to lowest level
 }
 if((sensorValue >= 341) && (sensorValue < 682)){ //if voltage between 1.67
V and 3.33 V
 matrix.setBrightness(3); //set brightness to medium level
 }
 if(sensorValue >= 682){ //if voltage greater than 3.33 V
 matrix.setBrightness(15); //set brightness to highest level
 }
 delay(1);
 sensorValue3 = analogRead(analogInPin3);
 if(sensorValue3 < 100){
 minutes = minutes + 100;
 matrix.println(minutes+seconds); //print ADC value
 delay(300); //wait for the button to stop bouncing
 sensorValue3 = analogRead(analogInPin3);
 }
 }//total delay (2ms+ a little extra) * 400 loops = 1 second delay in total
 seconds = seconds - 1;
 matrix.println(minutes+seconds); //print ADC value
 matrix.writeDisplay(); //display ADC value on matrix
 }
 minutes = minutes - 100;

 seconds = seconds + 60;
 }
 sensorValue2 = analogRead(analogInPin2);
 delay(1);
 while(sensorValue2 > 800){
 tone(8, 440, 5);
 sensorValue2 = analogRead(analogInPin2);
 if(sensorValue2 < 100){
 break;
 }
 delay(1);
 }
 delay(200);
 }

Component Model no. Specifications

Jameco 10k Potentiometer 24N-10K-15R-R 300 degree rotation – 125V – 0.05 W

Arduino Nano ATMega168P Board P1564414455 8 bit AVR – 16 KB memory

0.56” Adafruit Seven Segment Backpack Chip no: HT16K33 5V 1.05”x1.97” Yellow LED Display

JD Power Supply N/A 12 V in – 5/3.3V out

Kobitone Speaker 25SP105

Freq Response of 350 Hz to 4KHz.
Rated Power: 0.3 W
Max Power: 0.6 W
Impedance: 8 Ohm +/- 15%

Panasonic 10k SMD resistor from Digi-key P10KACT-ND

Resistance: 10k, 1.25x2.0x0.6mm
Rated power: 0.125 W
Temp: -55 to 155 C

0.1” long male connector pins 2012-254-1140-RG 0.6 mm in diameter

Twidec SPST mini pushbuttons JND-PBS-110-X6C
Rated for 1A 250 V AC,
6.9 mm in diameter

TWTADE 2 pin Rocker Switch KCD1-X-Y 6A/250V, 21x15mm

Table 2: Part Information

Figure 12: Final product display. Timer in the mock enclosure.

