Class: ECE 342
Name: Yuhao Su
Mentor: Karthik
Date: 4/17/2021

Introduction

The project my group chose is Nn-contact Temperature Scanner. The scanner is required to
show the accurate temperature, to alert the user when they have a fever, no contact to function,
to log user information, be intuitive and show the temperature in Fahrenheit and Celsius. To
implement this system, a couple of sensors are used. The block diagram is shown in Figure1
and the interface definition is shown in Table 1. The first | chose is the Prox-sensor block. The
Prox_sensor block only includes a proximity sensor. The proximity sensor can detect the
proximity or presence of nearby objects, so it does not require a physical contact device. When
the scanner approaches the user, the proximity sensor is triggered and tells the system that it is
time to work through a set program. Therefore, the proximity sensor is the basis for the
realization of this system.

User's Inputs System's Outputs
Temp_Display
Emitted User_data_in
»| Tem-sensor —| Display =
. . Audible_Noise
Emitted Induction_data_in Fee -
| Prox-sensor
[\]
Display_data_in
Sounds_data_in
Toggle 5 S Arduino_power_in Arduino Nano e Save Data
»| Power-Supply — —p —
Data_storage _ SD._card >
[y

Charge_data_in

usB

Charge_card

Nathan Yicheng
T

Figure 1: Block diagram

Table 1

Interface Name

Type

Interface Descriptions

User_data_in

Digital

Voltage: 4.5V~5.5V
standard SPI interface
Current: 0.2~200mA

Induction_data_in

Digital

Maximum Voltage: 3.8V
Maximum Current: 200mA
Detect the user’s gesture and
perform the tasks specified
by the microcontroller.

Arduino_power_in

Electrical

Output Voltage: 5V
Maximum Current: 20mA

Charge_data_in

Digital

Input voltage: 5V
Charging cut-off voltage: 4.2V

Display_data_in

Digital

Interface Type: IIC interface
VCC: Power + (DC 3.3 ~5v)

Sounds_data_in

Electrical/Sound

Input Voltage: 3-5V
Max Current : 30mA

Data_storage Digital/Electrical Acquiring data from the
Arduino Nano by transmitting
the data to the SD card.

Temp_Display Digital This is where the temperature
readings of Fahrenheit and
Celsius will be illustrated.

Audible_Noise Electrical/Audio ~80 dB continuous sound

Save Data Coding This is the .txt file with

recorded data.

Documentation

The proximity sensor | use is HiLetgo APDS-9960 (Figure 3). By viewing the datasheet, the
maximum operating voltage and current are 3.8V and 200mA. The HiLetgo sensor board has 6
pins and the pin labels and corresponding description are shown in Table 2. The Arduino Nano
will provide a 3.3V voltage to the proximity sensor, pin A4 and pin A5 will be connected to pin
SDA and pin SCL on the sensor. The physical map connection is shown in Figure 2. The
schematic of the sensor is shown in Figure 4, the custom PCB layout is shown in Figure 5 and
the mechanical drawing is shown in Figure 6.

Material list
e Arduino Nano
e APDS-9960
e LED

0509990000030 @
NILON9 1SH hgmn 9% S4Y ¥¥ EV Zw ‘PU, AY JSHENE ETA
- | S

'QHJTI ?‘ L) LR : 1' .. .,_-,]
L@ . ’ Z;EH}-}I -
=) Lo o D

4 0 . f—

=4
(=8
b3
[= 3
b
-

5

PP | 4

FSOl & > by 2 k-
¥xL oxd 158 0N9 ceo3m0, +0 S8790, 20 80 6O, @TQTITQZIA

DHOCSGEGOLEEEELHRES

Figure 2: Physical map connection

https://www.amazon.com/HiLetgo-APDS-9960-Recognition-Direction-Proximity/dp/B01NACU412/ref=pd_ys_c_rfy_rp_m_all_single_3?_encoding=UTF8&pd_rd_i=B01NACU412&pd_rd_r=TYR1MN5W411VFD4VTFVR&pd_rd_w=szALI&pd_rd_wg=VqBd3&pf_rd_p=5d61ee21-c9c1-4f53-887e-8583c213529a&pf_rd_r=TYR1MN5W411VFD4VTFVR&psc=1&refRID=ZDD5560QTVDJG277K5VX

Figure 3: HiLetgo APDS-9960

Table 2
Pin Label Description
VL Optional power to the IR LED if PS jumper is
disconnected. Must be 3.0 - 4.5V.
GND Connect to ground.
VCC Used to power the sensor. Must be 2.4-3.8V
SDA I°C data.
SCL 1°C clock.
INT External interrupt pin. Active LOW on

interrupt event.

rc is the communication protocol used by APDS-9960. The r‘c protocol allows multiple

peripheral digital integrated circuits to communicate with one or more controller chips. The I’c
protocol enables asynchronous serial ports to obtain the same data transfer rate and clock rate,
thereby supporting multi-controller systems.

The operating range of the proximity sensor is from 4 inch to 8 inch (10-20cm). The size of the
APDS-9960 gesture sensor module is 5.8*3.9*0.3 inches and weigh 0.18 Ounces.

LCe uce 12C Addr: ©x39 uce

120 Pullup T T
Enabl
nable £3 UL =
Connect al 458
: DD Leok B 259
| :‘7 L Pawer Supplies . Lor B
w =

B
L TauF |

w\l;’R m;j{ f\ib +=2 <] BhD mr 5
. [D = ¥5E - Sl T
|« @ } uee o T 5 Lo oA
= SCL
1 . % T APDS-9920
T c 5

GND

|

_l.p 4D *
¢ £-_Jn_.v1 .

=
o

o
. -
—
]

‘-I.E:END UCC SDA SCL INT

000000

Figure 6: Mechanical drawing

Examination

Induction_data_in

Digital

Maximum Voltage: 3.8V
Maximum Current: 200mA
Detect the user’s gesture and
perform the tasks specified
by the microcontroller.

To make sure the sensor can work approximately, hookup the sensor and connect the physical
circuit as shown in Figure 7. Since the maximum operating voltage is 3.8V, connect the VCC pin
to the 3.3v supply on the arduino. Use a multimeter to test the current when the circuit is
working, and get the current 0.29mA (Figure 8). Therefore, the maximum current value and
maximum voltage value of the interface definition have been proved.

Figure 7: Physical circuit

= 600, OFF 600V~
20

' / BACK LIGHT ‘

M
Q 200k A1

l’ﬁhFE ECBE

20k
NPN
ce o N e

CAT 11600V

A

/

S
L SR —C 200men, w2
10ADC COM VQmA

ﬂg&h P

Figure 8: Operating current

To detect the user’s gesture, connect the sensor with the microcontroller (Arduino Nano). Write
a test code to make sure the sensor works as wished. Connect two LEDs with digital pin D2 and
D3 as output. By coding, when the gesture goes to the right, the right LED is turned on, when
the gesture goes to the left, the right LED is turned off. When the gesture goes up, the left LED
is turned on, when the gesture goes down, the left LED is turned off. The example code is
shown in Figure 9.

// Include the header files
#include "SoftwareSerial.h"
#include "Adafruit APDS9960.h"

Adafruit APDS9960 apds;
SoftwareSerial mySoftwareSerial (10, 11); // RX, TX

volid setup()
{
Serial.begin (9600);
Wire.begin();
// Configures pin D2 and D3 as outputs
pinMode (2, OUTPUT) ;
pinMode (3, OUTPUT) ;

if(lapds.begin())
{

Serial.println("Falha ao inicializar o dispositivo. Verifique as conexfes!");

}
else
Serial.println("Dispositivo inicializado!");

apds.enableProximity (true);
apds.enableGesture (true) ;

}
void loop()

{

uint8_t gesture = apds.readGesture();

if(gesture == APDS9960 UP) // When the gesture goes up

{
digitalWrite (3, HIGH); // The LED conncted with D3 would be turned on

if (gesture == APDS9960 DOWN)// When the gesture goes down

{
digitalWrite (3, LOW); // The LED conncted with D3 would be turned off

if (gesture == APDS9960 LEFT)// When the gesture goes left

{
digitalWrite(2, LOW); // The LED conncted with D2 would be turned on

if (gesture == APDS9960 RIGHT)// When the gesture goes right

{
digitalWrite (2, HIGH); // The LED conncted with D3 would be turned off

Figure 9

