
Bike Headlight and Taillight system

Interface Name Specification

User_control_input Two switches
2 [lbs/]𝐼𝑛2

Sensor_input Gyroscope sensitivity: scale range: ±250, ±500, ±1000, and
±2000°/sec
Accelerometer Sensitivity: scale range: ±2g, ±4g, ±8g and ±16g

Power_to_controller = 5 [V]𝑉
𝑛𝑜𝑚

= 19 [mA]𝐴
𝑛𝑜𝑚

Power_to_LEDs = 12 [V]𝑉
𝑛𝑜𝑚

= 700 [mA]𝐴
𝑚𝑎𝑥

Sensor_to_controller = 1.9-3.6 [V]𝑉
𝑛𝑜𝑚

= 3.9 [mA]𝐴
𝑁𝑜𝑚

Multiple connections to Micro. Contr.

Connect_user_control = 5 [V]𝑉
𝑛𝑜𝑚

= 1.5 [mA]𝐴
𝑚𝑎𝑥

Control_to_LEDs = 5 [V]𝑉
𝑜𝑛

= 0 [V]𝑉
𝑜𝑓𝑓

= 100 [nA]𝐴
𝑚𝑎𝑥

Indicator_output Visual:
LEDs on / off

LEDs_output Visual:
LEDs on / off
380 Lumens Max

Grant Everson
Junior Design 2
February 4, 2022

This documentation is for the user controls of the bike project. These user controls will feature
two LEDs and two membrane push buttons to allow the user to tell what indicator is on and to
turn them on and off. The LEDs will flash in sync with the indicators on the back of the bike.
Pressing a button will turn on the corresponding indicator and pressing it twice in quick
succession will turn it off. This block will communicate with the microcontroller through the
button presses and the microcontroller will control the flashing of the LEDs. Overall block view,
black box, interface definitons, circuit design, pcb design, and total price are in the rest of the
document below.

Figure 1: Top Level Diagram
User inputs = user_cont_input connect_ser_control = To / From microcontroller

Figure 2: Black Box Diagram

Interface Name Specifications:

Left Button (User input) Human pressure input

Right Button (User input) Human pressure input

L-LED (User output) On / Off (Could blink with indicators)

R-LED (User output) On / Off (Could blink with indicators)

VCC = 5 [V]𝑉
𝑛𝑜𝑟𝑚

= 0.0 - 0.5 [mA]𝐴
𝑛𝑜𝑟𝑚

L-LED
(Controlled by signal from arduino)

= 2 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.3 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

R-LED
(Controlled by signal from arduino)

= 2 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.3 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

L-Button Out
(Output to arduino)

= 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.5 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

R-Button Out
(Output to arduino)

= 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.5 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

GND = 0 [V]𝑉
𝑛𝑜𝑟𝑚

= 1 [mA]𝐴
𝑛𝑜𝑟𝑚

Table 1: Interface Specifications

Figure 3: Schematic

Figure 4: PCB Schematic with Dimensions

Quantity Designator Part: Value Price
(individual)

Manufacturer

2 L-LED
R-LED

LED 5mm
2V

$0.07 EDGELEC

2 Circles
underneath
LEDs

Silicon
Conductive
Pad Buttons

N/A $0.18 Unbranded*

3 R0
R1
R2

Resistors 10k Ohm
0.5 Watt

$0.04 EDGELEC

1 PCB $1.55 OSH Park

Total Cost: $1.84

Table 2: Parts Price List
*Buttons found at: https://www.ebay.com/itm/224076733119

Code: (Starts on next page)

// Grant Everson
// Bike Project User Controls test Script
// 1/31/2022
// Used to test the front user controls

// Corresponding pin definitions
const int but1 = 2;
const int but2 = 3;
const int led1 = 4;
const int led2 = 5;

// button states
int but1state = 0;
int but2state = 0;

void setup() {
// Interface definitions for input and outputs
pinMode(but1, INPUT);
pinMode(but2, INPUT);

pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);

}

void loop() {
// read the states of the button
but1state = digitalRead(but1);
but2state = digitalRead(but2);

// Check if the button states are high
// If so then set LED to high
// Otherwise turn off the LED
if (but1state == HIGH) {

digitalWrite(led1, HIGH);
} else {

digitalWrite(led1, LOW);
}
if (but2state == HIGH) {

digitalWrite(led2, HIGH);
} else {

digitalWrite(led2, LOW);
}

}

Taylor Cole Brennan
Junior Design 2
Jan 28, 2022

Block 2: Sensor and Code
This is to document the Sensor and code block for the Junior design 2 bike project. The

gyroscope/accelerometer has a connection to a voltage source with a max of 3.46 volts, ground
and 3 analog connections to the microcontroller and receives analog information from the
outside world. How it’s coded, the brakes will activate after hitting a minimum deceleration
value, based on the accelerometer input. Based on that value, the High and low value for the
brake lights are divided causing a pulse width modulation. This division is taken into account
when timing the turn signals as well. The turn signals are set to 1sec alterations. The turn
signals need to be activated by user control, but after being activated, the turn signals won’t turn
off until the bike has turned so much (minimum turn amount) in order to detect early turn
signallers.

Figure 1: Top Level Diagram

Figure 2: Black Box Diagram

mailto:brennant@oregonstate.edu

Interface Name Specifications:

Gyroscope_x_axis scale range: ±250, ±500, ±1000, and ±2000°/sec
Standby current: 5μA
Gyroscope operating current: 3.6mA

= 2.375 - 3.46 [V]𝑉
𝑛𝑜𝑟𝑚

Accelerometer scale range: ±2g, ±4g, ±8g and ±16g
normal operating current: 500μA
Low power current: 10μA (1.25Hz), 20μA (5Hz), 60μA
(20Hz), 110μA (40Hz)

= 2.375 - 3.46 [V]𝑉
𝑛𝑜𝑟𝑚

Sensor_input Gyroscope sensitivity: scale range: ±250, ±500, ±1000, and
±2000°/sec
Accelerometer Sensitivity: scale range: ±2g, ±4g, ±8g and
±16g

Vcc = 3.3 [V]𝑉
𝑛𝑜𝑟𝑚

= 19 [mA]𝐴
𝑛𝑜𝑟𝑚

Gnd = 0 [V]𝑉
𝑛𝑜𝑟𝑚

= 1 [mA]𝐴
𝑛𝑜𝑟𝑚

Table 1: Interface Specification

Ref # Qty. Description Item Model # Manufacture
r

Link Price

2A 1 MPU-6050
MPU6050 3 Axis
Accelerometer
Gyroscope Module

3-01-0122-A
B

HiLetgo Amazon $3.33 (3:$10)

Table 2: Parts Price List

https://www.amazon.com/dp/B00LP25V1A/ref=cm_sw_r_em_api_glt_i_64X6E3SN7Q9TZ7EEVA02?_encoding=UTF8&psc=1

Figure 3: Design Schematic

Figure 4: Mechanical Drawing
/*
Author: Taylor Cole Brennan
Date: February 11, 2022
Project: Auto Brake Lights, Bike project
Class: Junior Design 2
*/
//inputs
float left_right = A0; //insert equation to get "prettier numbers, will need manual
calibration
float forward_back = A1; //insert equation to get "prettier numbers, will need manual
calibration
float accel = A3; //insert equation to get "prettier numbers, will need manual
calibration
int left_turn = 2;
int right_turn = 3;
//outputs
int left_turn_led = 4; //digital output, indicator light
int right_turn_led = 5; //digital output, indicator light

int left_tail_light = 6; //digital output, tail light
int right_tail_light = 7; //digital output, tail light
//global variables
float brake_start = 100; //dummy value need to be calc.
float left = -10.0;
float right = 10.0;
float forward = -10.0;
float backward = 10.0;
int left_hold, right_hold, left_dummy, right_dummy;

void setup() {
// put your setup code here, to run once:
pinMode(left_turn, INPUT); //digital
pinMode(right_turn, INPUT); //digital
pinMode(left_turn_led, OUTPUT); //digital
pinMode(right_turn_led, OUTPUT); //digital
pinMode(left_tail_light, OUTPUT); //digital
pinMode(right_tail_light, OUTPUT); //digital

Serial.begin(9600);
}

void loop() {
//check values

float brake_eq = brake/2;
float turn = analogRead(left_right);
float wheelee = analogRead(forward_back);
float brake = analogRead(accel);
int signal_left = digitalRead(left_turn);
int signal_right = digitalRead(right_turn);

//check turn signals
if (signal_left) {left_hold=1; right_hold=0; left_dummy=0;

digitalWrite(left_turn_led, HIGH);}
else if (signal_right) {left_hold=0; right_hold=1; right_dummy = 0;

digitalWrite(right_turn_led, HIGH);}
//check if brake

if (brake < brake_start){
if (left_hold) brake_left(brake_eq);
else if (right_hold) brake_right(brake_eq);
else brake_lights(brake_eq);

} //no brake? Check if turn
else if (left_hold) turn_left();
else if (right_hold) turn_right();

//check if turned fully
if (left_hold || right_hold){

if (turn < left && left_hold) left_dummy =1;
else if (turn > right && right_hold) right_dummy =1;

} //check if straightened out
if (turn > left && left_dummy) {left_hold =0; digitalWrite(left_turn_led, LOW);}
else if (turn < right && right_dummy) {right_hold =0; digitalWrite(right_turn_led,

LOW);}
}

void brake_lights(float brake){ //brake only

digitalWrite(left_tail_light, HIGH);
digitalWrite(right_tail_light, HIGH);
delay(500/brake_eq);
digitalWrite(right_tail_light, LOW);
digitalWrite(left_tail_light, LOW);
delay(500/brake_eq);

}
void brake_left(float brake) { //brake and left turn

digitalWrite(right_tail_light, HIGH);
//1 sec of brake lights

for (int i=0; i<=brake; i++){
digitalWrite(left_tail_light, HIGH);
delay(500/brake);
digitalWrite(left_tail_light, LOW);
delay(500/brake); }

//turn off turn signal
digitalWrite(right_tail_light, LOW);
//repeat loop for another sec
for (int i=0; i<=brake; i++){
digitalWrite(left_tail_light, HIGH);
delay(500/brake);
digitalWrite(left_tail_light, LOW);
delay(500/brake); }

}
void brake_right(float brake) { //brake and right turn

digitalWrite(left_tail_light, HIGH);
//1 sec of brake lights

for (int i=0; i<=brake_eq; i++){
digitalWrite(right_tail_light, HIGH);
delay(500/brake_eq);
digitalWrite(right_tail_light, LOW);
delay(500/brake_eq); }

//turn off turn signal
digitalWrite(left_tail_light, LOW);
//repeat loop for another sec
for (int i=0; i<=brake_eq; i++){
digitalWrite(right_tail_light, HIGH);
delay(500/brake_eq);
digitalWrite(right_tail_light, LOW);

delay(500/brake_eq); }
}
void turn_left() { //left turn only

digitalWrite(left_tail_light, HIGH);
delay(500);
digitalWrite(left_tail_light, LOW);
delay(500);

}
void turn_right() { //right turn only

digitalWrite(right_tail_light, HIGH);
delay(500);
digitalWrite(right_tail_light, LOW);
delay(500);

}
Figure 5: Code

Taylor Cole Brennan
Junior Design 2
Jan 28, 2022

Block 1: Microcontroller

This is to document the microcontroller block for the Junior design 2 bike project. The
microcontroller will take in 5 inputs (3 analog, and 2 digital) and will have 4 outputs. How it’s
coded, the brakes will activate after hitting a minimum deceleration value, based on the
accelerometer input. Based on that value, the High and low value for the brake lights are divided
causing a pulse width modulation. This division is taken into account when timing the turn
signals as well. The turn signals are set to 1sec alterations. The turn signals need to be
activated by user control, but after being activated, the turn signals won’t turn off until the bike
has turned so much (minimum turn amount) in order to detect early turn signallers. The
microcontroller delivers outputs to the turn signal indicators as well as the tail lights.

Figure 1: Top Level Diagram

Figure 2: Black Box Diagram

mailto:brennant@oregonstate.edu

Interface Name Specifications:

Gyroscope_x_axis scale range: ±250, ±500, ±1000, and ±2000°/sec
Standby current: 5μA
Gyroscope operating current: 3.6mA

Gyroscope_y_axis scale range: ±250, ±500, ±1000, and ±2000°/sec
Standby current: 5μA
Gyroscope operating current: 3.6mA

Accelerometer scale range: ±2g, ±4g, ±8g and ±16g
normal operating current: 500μA
Low power current: 10μA (1.25Hz), 20μA (5Hz), 60μA
(20Hz), 110μA (40Hz)

left_turn_signal = 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.5 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

right_turn_signal = 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.5 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

Vcc = 5 [V]𝑉
𝑛𝑜𝑟𝑚

= 19 [mA]𝐴
𝑛𝑜𝑟𝑚

Gnd = 0 [V]𝑉
𝑛𝑜𝑟𝑚

= 1 [mA]𝐴
𝑛𝑜𝑟𝑚

L_LED_indicator = 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.3 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

R_LED_indicator = 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.3 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

L_tail_light = 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.5 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

R_tail_light = 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.5 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

Table 1: Interface Specification

Ref # Qty. Description Item Model # Manufacture
r

Link Price

1A 1 Arduino Nano V3.0
ATmega328P

8541582500 LAFVIN Amazon $6.66 (3:$20)

Table 2: Parts Price List

https://www.amazon.com/LAFVIN-Board-ATmega328P-Micro-Controller-Arduino/dp/B07G99NNXL/ref=pd_sbs_1/136-7520262-4495207?pd_rd_w=MIYbq&pf_rd_p=cd718a0c-f7e0-41b6-9f23-6496d85d1998&pf_rd_r=CZV7EKV2G73ZSX8EJA5E&pd_rd_r=cb9565da-7786-40dc-8b16-4794b2cfc165&pd_rd_wg=DJq99&pd_rd_i=B07G99NNXL&psc=1

Figure 3: Design Schematic

Figure 4: Mechanical Drawing

/*

Author: Taylor Cole Brennan
Date: January 28, 2022
Project: Auto Brake Lights, Bike project
Class: Junior Design 2
*/

float left_right = A0; //insert equation to get "prettier numbers, will need manual
calibration

float forward_back = A1; //insert equation to get "prettier numbers, will need manual
calibration

//* float up_down = A2; commented out, most likely only need the two above*//

float accel = A3; //insert equation to get "prettier numbers, will need manual
calibration

int left_turn = digitalRead(1);

int right_turn = digitalRead(2);

int left_turn_led = 3; //digital output, indicator light

int right_turn_led = 4; //digital output, indicator light

int left_tail_light = 5; //digital output, tail light

int right_tail_light = 6; //digital output, tail light

float brake_start = 100; //dummy value need to be calc.

void setup() {

// put your setup code here, to run once:

pinMode(left_turn_led, OUTPUT); //digital

pinMode(right_turn_led, OUTPUT); //digital

pinMode(left_tail_light, OUTPUT); //digital

pinMode(right_tail_light, OUTPUT); //digital

Serial.begin(9600);

}

void loop() {

float turn = analogRead(left_right);

float wheelee = analogRead(forward_back);

float brake = analogRead(accel);

int signal_left = digitalRead(left_turn);

int signal_right = digitalRead(right_turn);

float brake_eq = brake / 2; //equation to determine amount of time for volts to LED

//values to set parameters on turns, decelleration, tricks?

float out = 0.0;

float left = -10.0;

float right = 10.0;

float up = 10.0;

float down = -10.0;

int left_hold, right_hold;

//check if the bike is slowing down

if (brake < brake_start){

do {

//check if there is a turn signal

if (signal_left) left_hold = 1;

else if (signal_right) right_hold = 1;

//right turn

if (right_hold){

//turn on led indicator, turn on turn light for 1 sec

digitalWrite(right_turn_led, HIGH);

digitalWrite(left_tail_light, HIGH);

//1 sec of brake lights

for (int i=0; i<=brake_eq; i++){

digitalWrite(right_tail_light, HIGH);

delay(1000/brake_eq);

digitalWrite(right_tail_light, LOW);

delay(1000/brake_eq);

}

//turn off turn signal

digitalWrite(left_tail_light, LOW);

//repeat loop for another sec

for (int i=0; i<=brake_eq; i++){

digitalWrite(right_tail_light, HIGH);

delay(1000/brake_eq);

digitalWrite(right_tail_light, LOW);

delay(1000/brake_eq);

}}

else if (left_hold){

//turn on led indicator, turn on turn light for 1 sec

digitalWrite(left_turn_led, HIGH);

digitalWrite(right_tail_light, HIGH);

//1 sec of brake lights

for (int i=0; i<=brake_eq; i++){

digitalWrite(left_tail_light, HIGH);

delay(1000/brake_eq);

digitalWrite(left_tail_light, LOW);

delay(1000/brake_eq);

} //turn off turn signal

digitalWrite(right_tail_light, LOW);

//repeat loop for another sec

for (int i=0; i<=brake_eq; i++){

digitalWrite(left_tail_light, HIGH);

delay(1000/brake_eq);

digitalWrite(left_tail_light, LOW);

delay(1000/brake_eq);

}}

//no turn, only do the brake light calc

else {

digitalWrite(left_tail_light, HIGH);

digitalWrite(right_tail_light, HIGH);

delay(1000/brake_eq);

digitalWrite(right_tail_light, LOW);

digitalWrite(left_tail_light, LOW);

delay(1000/brake_eq);

}

}while (brake < brake_start); //end loop if no longer slowing down, reset hold
values

left_hold = 0;

right_hold=0;

}

else if (signal_left){

do {

//set led indicator

digitalWrite(left_turn_led, HIGH);

left_hold = 1;

int left_dummy =0;

if (turn < left) left_dummy=1;

//check if we have made a turn by passing a certain value, and 1 sec delay
between on/off values

digitalWrite(left_tail_light, HIGH);

delay(1000);

digitalWrite(left_tail_light, LOW);

delay(1000);

//if we have turned so far, and are no long in the left turn range, set hold to
0 to end loop

if (turn > left && left_dummy==true) left_hold=0;

}while (left_hold);

}

else if (signal_right){

do {

//set led indicator

digitalWrite(right_turn_led, HIGH);

right_hold = 1;

int right_dummy =0;

if (turn > right) right_dummy=1;

//check if we have made a turn by passing a certain value, and 1 sec delay
between on/off values

digitalWrite(right_tail_light, HIGH);

delay(1000);

digitalWrite(right_tail_light, LOW);

delay(1000);

if (turn < right && right_dummy==true) right_hold=0;

//if we have turned so far, and are no long in the left turn range, set
hold to 0 to end loop

}while (left_hold);

}
}

Figure 5: Code

/*
Author: Taylor Cole Brennan
Date: February 6, 2022
Project: Microcontroller test code
Class: Junior Design 2

*/

float left_right = A0; //insert equation to get "prettier numbers, will need manual
calibration

float accel = A1; //insert equation to get "prettier numbers, will need manual
calibration

int left_turn_led = 2; //digital output, indicator light

int left_turn = 3;

void setup() {

// put your setup code here, to run once:

pinMode(left_turn_led, OUTPUT); //digital

Serial.begin(9600);

}

void loop() {

// put your main code here, to run repeatedly:

float turn = analogRead(left_right);

float brake = analogRead(accel);

int signal_left =0;

signal_left= digitalRead(left_turn);

if (brake < 300) Serial.print("Slowing Down");

else if (brake > 700) Serial.print("Speeding Up");

Serial.print(brake);

if (turn < 300) Serial.print("Left");

else if (turn > 700) Serial.print("Right");

Serial.print(turn);

if (signal_left) {Serial.print("Turn Signal"); digitalWrite(left_turn_led, HIGH);

delay(3000); digitalWrite(left_turn_led, LOW);}

Serial.print(brake);

}

Figure 6: Test Code for IO Validation

YouTube Link

Video 1: IO Validation

Since the microcontroller takes in both digital and analog inputs, the usage of multiple analog
input and a single digital input is demonstrated in the video. The system only has digital outputs
in the form of LED lights, so the use of a single LED light with switch control is demonstrated.

https://youtu.be/vaK8YMBV0m4

The inputs are also translated on the Serial Monitor to display the turning value and acceleration
value.

Bike 8 Block Diagram Check - Jeremy Xu - Battery

Figure 1: Top-level Diagram

This block diagram submission focuses on the battery for the Bike Turn Signal system.
The battery that we are using is a 3000mAh lithium-ion battery that can supply 5V through its
USB port and a maximum of 12V through its barrel jack. It also receives 12V through the same
barrel jack to charge.

The battery is stored in a waterproof case and can be removed from the assembly to
facilitate charging.

Figure 2: Black-box diagram

Battery specs Value

Maximum 𝑉
𝑜𝑢𝑡

12𝑉/5𝑉

Capacity 3000 𝑚𝐴ℎ

Dimensions 105𝑚𝑚 × 64𝑚𝑚 × 24𝑚𝑚

Table 1: Battery specifications

Interface Name Specifications

Power_to_controller
(; GND)𝑉

𝑐𝑐,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝑉
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟,𝑚𝑎𝑥

= 5𝑉
𝐴

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟,𝑚𝑎𝑥
≈ 19𝑚𝐴

GND = 0𝑉

Power_to_LEDs
(; GND)𝑉

𝑐𝑐,𝐿𝐸𝐷

𝑉
𝐿𝐸𝐷,𝑚𝑎𝑥

= 5𝑉
𝐴

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟,𝑚𝑎𝑥
≈ 42. 54𝑚𝐴

GND = 0𝑉

Table 2: Interface specifications

Interface Name Specifications:

Left Button Open / Shorted circuit

Right Button Open / Shorted circuit

L-LED (User output) On / Off (Could blink with indicators)

R-LED (User output) On / Off (Could blink with indicators)

VCC = 5 [V]𝑉
𝑛𝑜𝑟𝑚

= 0.0 - 0.5 [mA]𝐴
𝑛𝑜𝑟𝑚

L-LED = 2 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.3 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

R-LED = 2 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.3 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

L-Button Out = 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.5 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

R-Button Out = 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.5 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

GND = 0 [V]𝑉
𝑛𝑜𝑟𝑚

= 1 [mA]𝐴
𝑛𝑜𝑟𝑚

Table 3: Full interface specifications

Bill of Materials Cost

TalentCell Rechargeable 12V 3000mAh
Lithium ion Battery Pack

$28.79

ABS Plastic Dustproof Waterproof IP65
Junction Box Hinged Shell Universal
Electrical Project Enclosure

$13.99

3/8" | 50ft Split Loom Tube $10.99

100pcs Cable Zip Ties Heavy Duty 8 Inch $5.49

Hot Glue Gun and Sticks, 30 $12.49

200 Pieces M4 Machine Screws and Nuts $10.99

Total $82.74
Table 4: Bill of Materials

https://www.amazon.com/dp/B01M7Z9Z1N/
https://www.amazon.com/dp/B01M7Z9Z1N/
https://www.amazon.com/dp/B07PK8K8S2/
https://www.amazon.com/dp/B07PK8K8S2/
https://www.amazon.com/dp/B07PK8K8S2/
https://www.amazon.com/gp/css/order-history?ref_=nav_orders_first
https://www.amazon.com/gp/product/B07TG9VMWY/ref=ppx_yo_dt_b_asin_title_o00_s01?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07K791YRP/ref=ppx_yo_dt_b_asin_title_o00_s01?ie=UTF8&psc=1
https://www.amazon.com/gp/product/B07X5RLSGC/ref=ppx_yo_dt_b_asin_title_o00_s01?ie=UTF8&psc=1

Figure 3: Battery enclosure, bottom

Figure 4: Battery enclosure, top

Bike 8 Block Diagram Check - Jeremy Xu - Enclosure

This block diagram submission focuses on the enclosure for the Bike Turn Signal system.
Due to the lack of electrical components, there are no interfaces. Physical specifications have
been provided instead. Technical drawings of the components have been provided on the
following page and as a separate attachment to the submitted Canvas assignment.

Front Button Enclosure Specs Dimensions

Bottom Plate Primary Dimensions 38mm x 25mm x 2mm

Top Plate Primary Dimensions 38mm x 25mm x 6mm

Mounting Hardware 4x M4 x 12mm bolts, 4x M4 x 3.2mm nuts

Bill of Materials Cost

4x 6-32 machine screws/nuts $1.28

Total $1.28

Interface Name Specifications:

Left Button Open / Shorted circuit

Right Button Open / Shorted circuit

L-LED (User output) On / Off (Could blink with indicators)

R-LED (User output) On / Off (Could blink with indicators)

VCC = 5 [V]𝑉
𝑛𝑜𝑟𝑚

= 0.0 - 0.5 [mA]𝐴
𝑛𝑜𝑟𝑚

L-LED = 2 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.3 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

R-LED = 2 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.3 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

L-Button Out = 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.5 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

R-Button Out = 5 [V]𝑉
𝑎𝑐𝑡𝑖𝑣𝑒

= 0.5 [mA]𝐴
𝑎𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [mA]𝐴
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

GND = 0 [V]𝑉
𝑛𝑜𝑟𝑚

= 1 [mA]𝐴
𝑛𝑜𝑟𝑚

Table 1: Interface Specifications

FrontButtonBottomPlate

FrontButtonTopPlate

Grant Everson
Junior Design 2
February 11, 2022

This documentation includes information on the circuit that will allow the high-power LED
indicators to be controlled by an arduino. This circuit is designed to be controlled with
pulse-width modulation in mind. This will allow the brightness of the LEDs to be variable with
other factors, such as braking harder on the bike. The mosfets will allow the microcontroller to
control a larger amount of current than is able to be output from the digital pins. The IRF520N
was selected due to its ability to be turned off and on at a rapid pace along with its gate
requiring 4v to turn on, which the 5v pins of the microcontroller can handle. The current design
does not necessarily need this as the current through the LEDs is not at its maximum, but with
lower resistor values this could be achieved.

Figure 1: Top Level Diagram

Figure 2: Black Box Diagram

Interface Name: Sub Interface: Specifications:

Control_to_LEDs Arduino_In_Left = 5 [V]𝑉
𝐴𝑐𝑡𝑖𝑣𝑒

= 100 [nA]𝐼
𝐴𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [A]𝐼
𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒

Arduino_In_Right = 5 [V]𝑉
𝐴𝑐𝑡𝑖𝑣𝑒

= 100 [nA]𝐼
𝐴𝑐𝑡𝑖𝑣𝑒

= 0 [V]𝑉
𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒

= 0.0 [A]𝐼
𝐼𝑛𝑎𝑐𝑡𝑖𝑣𝑒

Power_to_LEDs VCC = 5 [V]𝑉
𝑁𝑜𝑚

= 42.54 [mA]𝐼
𝑁𝑜𝑚

(This is 21.27 mA per LED)
= 350 [mA] (per LED)𝐼

𝑚𝑎𝑥

GND = 0 [V]𝑉
𝑁𝑜𝑚

= 42.54 [mA]𝐼
𝑁𝑜𝑚

(This is 21.27 mA per LED)
= 350 [mA] (per LED)𝐼

𝑚𝑎𝑥

LEDs_Output DL LED Visual:
Active = On
Inactive = Off

DR LED Visual:
Active = On
Inactive = Off

Table 1: Interface Specifications

Figure 3: Arduino controlled LEDs Schematic

*Note 1: Both Arduino_In_Right and Arduino_In_Left are equivalent to Control_to_LEDs as this
is actually a 2 wide bus. These arduino controls are +5v or 0v as they are digital.
*Note 2: Similar to above, the +12V and GND are equivalent to Power_to_LEDs as delivering
power requires both hot and ground.

Quantity Designator Part Value Price
(individual)

Manufacturer Distributor

2 QL
QR

Mosf
et

IRF520N $0.38 BOJACK https://ww
w.amazon.
com/dp/B0
82J3F8HJ/

2 DL
DR

LED 2.2 V
(Typical)
350 mA
(max)
Color: White

$0.90 LEDGUHON https://ww
w.amazon.
com/dp/B0
91C36CQ
N/

2 RL
RR

Resi
stor

470 Ohm $0.04 EDGELEC https://ww
w.amazon.
com/dp/B0
7QG1V4B
H/

Total
Cost:

$1.32

Table 2: Bill of Materials

Additional note:
Assisted with the following components:

● Battery selection & interfacing

Extra:
Waterproof enclosure for battery, sensors, and microcontroller. Jeremy was able to recreate the
schematic for the waterproof box that we got from LMioEtool. This box is able to fit the battery,
arduino, sensor, and the majority of wiring needed for the front controls and rear-indicators.This
box will need to be modified to allow wires to go to and from the front controls and
rear-indicators but this can be done simply by drilling a hole and sealing it up again with
waterproof sealant.

Figure 4: Waterproof box bottom

Figure 5: Waterproof box lid

