

ECE 271 Design Project

Group 14

Spring 2020

Samuel Barton, Carson Edmonds, Ben Jones, Jasper Morrison

June 5th, 2020

1

Contents

Contents 2

Project Description 4

High Level Description 4
2.1 Top-Level Module 6

NES Reader Description and Functionality 6
3.1 Description 6
3.2 Modules 7

3.2.1 4-bit Counter 7
3.2.2 Comparator 8
3.2.3 Single-bit Counter 8
3.2.4 NES Data Decoder 9

3.3 Functionality 10

Encoder Description and Functionality 11

Seven Segment Display Description and Functionality 12

Clock Divider Description and Functionality 14

Display Module Description and Functionality 14

Synthesized Design 15

SystemVerilog & Verilog Files 16
9.1 NES Reader 16

9.1.1 Counter 16
9.1.2 NES Data Decoder 16
9.1.4 Comparator 17

9.2 Encoder 17
9.3 Seven Segment Display 17
9.4 Clock Divider 18
9.5 Display 18
9.6 Nregister 18
9.5 Design Top 19

Simulation Files 20
10.1 NES Reader 20

10.1.1 Counter 20

2

10.1.2 Comparator 20
10.1.3 NES Reader 21

10.2 Encoder 22
10.3 Seven Segment Display Decoder 22
10.4 Clock Divider 22
10.5 Display 23
10.6 Nregister 24
10.7 Top Level Design 24

10.7.1 NES-Encoder Test 24
10.7.2 Full Top-Level Simulation 25

Physical Implementation 26

Resources 29

3

1. Project Description
On a general level, the focus of this project was to learn how to build logic blocks without
guidance to do a specific task, and to be able to understand the logic implemented well enough
to thoroughly test the modules created, a task that the common Electrical Engineer could use
frequently in the future. Specifically to this project, the goal was to be able to interface an NES
controller (acting as a shift register) with multiple blocks of sequential and combinational logic to
translate the pressed buttons on the controller into a letter A-G and output on a seven segment
display. With the 8 inputs on the NES controller, 7 out of the 8 inputs would represent each
letter, displaying the letter on one of the seven-segment displays. There are three key features
of the design, each coming from three different major logic blocks: the NES reader, encoder,
and seven-segment display decoder.
Considering the circumstances of the current term, the testing and simulation portion of this
project will be rather extensive. Despite the underwhelming outcome of not being able to see
the finished product, this gives the developers the ability to understand, thoroughly, the subtle
nuances of digital logic and simulation.

2. High Level Description

Figure 2.1: The basic Hardware diagram showing the inputs that interact with this design, as well

as the three outputs that are dependent on the inputs shown.

The full design shown in Figure 2.1 shows that the entirety of the design is run off of 3 inputs
(the 10 MHz input clock, data input from the NES controller, and an active-low reset coming
from the FPGA. From the NES controller, 7 out of the 8 switches (A, B, Select, Start, Up, Down,
Left) will all be representing a specific note in the musical scale. From there, the data from the
controller will be pushed to the NES reader, where the singular bits of data that had been

4

pushed from the NES controller are re-established into an 8-bit bus and passed to the encoder.
The encoder then takes the 8-bit signal and puts it in a form that is easy for the 4:7 Decoder that
makes up the Seven-Segment Display Decoder to read and create a valid note output (A-G) on
the display.

● Inputs
○ Input_clk: A 10MHz clock signal stemming from the FPGA. For testing reasons,

the clock period will typically be much shorter than that of a 10MHz frequency for
simplicity and shorter simulation times. The main purpose of this signal is to be
slowed to approximately 5kHz, which is the frequency of the clock used in the
NES reader.

○ Reset_n: An active low push button that would be connected to a push button on
the FPGA. This signal resets all components in the above design on its falling
edge.

○ Data_in: The data of the past buttons being pushed on the NES controller. Had
this lab been done in-person, the NES controller would act as a parallel-in,
serial-out shift register, outputting the most significant bit of the parallel data
during a shift period.

● Outputs:
○ NES_latch: When in conjunction with a physical NES controller PISO

shift-register, this latch signal is used to tell the controller to load (in parallel) the
new inputs from the data bus.

○ NES_clock: Similar to the NES_latch, this clock signal would also be connected
to the shift register acting as the NES controller, creating the “shift” signals that
output the current most significant bit into the serial out signal that would be the
data pin in the design above.

Figure 2.2: NES Latch/Clock timings, along with button inputs that correspond to the given bit, with A

being in the place of the MSB. ​[1]

5

2.1 Top-Level Module

Figure 2.3: Top module showing the 6major modules used, as well as the inputs shown in Figure 2.1.

Regarding Figures 2.1 and 2.3 above, it is apparent where the inputs shown in the general block
diagram in Figure 2.1 lead to, as well as a general flow of how the input data will be processed
and outputted by the designed modules. Sections 3-7 will cover the specific design and
functionality of each of the blocks shown in the figure above.

3. NES Reader Description and Functionality

3.1 Description

Figure 3.1: NES Reader block diagram showing the 3 inputs (Clock, data, and active-low reset), along

with the 3 outputs (8-bit read data bus, NES Clock, and NES Latch).

NES controllers act as parallel-in serial-out shift registers, essentially taking 8 bits of data
and storing it between 8 different D flip-flops connected in series that will “push” the data out of
one side of the string of flip-flops one at a time, at the rising clock edge. The NES Reader
portion of the interface between controller and console takes the individually shifted bits from
the controller and stores them back into an 8-bit signal that is then sent to the console in the
standard use of the NES. Not only is the reader responsible for storing the bits of data that are
shifted out, but the reader is also responsible for creating two very important waveforms that will
determine how the controller functions. These two waveforms are called the NES latch and NES

6

clock signals. On the rising edge of the latch signal, the 8-bits of data stored coming from each
of the 8 buttons on the controller are simultaneously loaded into the shift register, while the
rising edge of the clock then acts as the clock edge that pushes the data out of flip-flop that
holds the least significant bit.

Keeping in mind that the buttons must be pushed to become activated, the data coming
out of the NES controller will be in an active-low form, meaning that the NES reader will have to
store 0’s indicating when a button on the NES has been pushed.

3.2 Modules

The NES reader module consists of a 4-bit counter, along with two comparators, a 1-bit
counter, and a module that “decodes” the inputs from the NES controller and creates a signal on
the 8-bit bus to be passed to the following modules.

3.2.1 4-bit Counter

Figure 3.2: Block diagram of the 4-bit counter showing the two inputs (the slowed 5 KHz input clock and

reset) along with the 4-bit “counted” output bus.

The sole purpose of the 4-bit counter is to break down the 5 KHz clock into 16 different
states, which is useful for the creation of both NES latch and clock as well making the creation
of the read data bus much simpler. A 4-bit counter was used due to the property of a counter
resetting once it hits its maximum sum that can be displayed by the number of output bits in a
specific module. In the case of a 4-bit counter, the “count” resets after 15. This number is
important, because NES latch and clock both rely on the state number (0-15) to determine
whether they are high or low at a given instance, which makes the need to do exact timing of
waveforms (a characteristic that is necessary in the conventional NES controller/reader/console
relationship) irrelevant for the purpose of our design.

7

3.2.2 Comparator

Figure 3.3: Block diagram of the modular N-bit comparator. The N-bits are characterized by the

parameters provided in each module, and can vary depending on the designer's needs.

The function of the comparators used in the NES reader module was to check for equality
compared to a set value given by parameters. Both comparators that were used in the NES
Reader module checked for the instance when the counter in the above section had been reset
to the state (or output value) of 0. The purpose of one of the comparators was to reset the input
decoder (explained in section 3.2.4) to clear the bus storing the inputs being received, allowing
for accurate accumulation of data that corresponded to the latch and clock signals also created
by the NES reader. The second comparator was used to signify whether the state of the counter
was in the “latch” state or not. If the value of the state was between 0 and 1, the latch of the
NES should be high, allowing the data stored in the parallel inputs of the controller to be loaded
into the shift register that makes up the controller. For the remaining 15 states, the latch should
remain low, and the NES clock should be oscillating.

3.2.3 Single-bit Counter

Figure 3.4: The block diagram of the 1-bit counter used to create the NES Clock signal. This module is

very similar to the 4-bit counter given in the sections above.

Similar to the 4-bit counter shown in section 3.2.1, the single-bit counter uses the 5 KHz
clock used for the 4-bit counter, yet it slows the period to be half of that of the 5 KHz clock.
Attached to the reset pin of the single-bit counter is the latch signal created by the comparator
described in section 3.2.2. Essentially what this is doing is stopping this counter from
incrementing and dividing the input clock signal any time that the latch is high, which (in
reference to the waveform of NES latch and clock shown in figure 2.2), is accurate to the
desired function of NES clock. Connecting the latch signal to this single-bit counter that creates
the NES clock signal also ensures that the NES clock only has 8 rising edges to shift exactly the
8 bits that are present in the shift register out.

8

3.2.4 NES Data Decoder

Figure 3.5: Block diagram that displays the inputs that are used for the Data decoder, as well as the 8-bit

bus that outputs the collected data from the controller.

The NES Data Decoder takes in the serially-outputted data from the NES controller and
re-configures the 8 bits that had been stored into a single 8-bit bus that can then be passed to
the remaining portion of the design. The data pin will be connected to the Serial Out pin of the
PISO shift register in the NES controller. The reset pin of the data decoder is connected to an
OR gate that, when either the reset button on the FPGA has been pushed or the states have
been reset by the 4-bit counter, the read data bus is then cleared to 0000 0000. This allows for
the decoder to be “reading” accurate data from the shift register, and resetting the read values
simultaneously to when the latch goes high. Depending on the state value, the data input that
comes in from the NES controller is put in a specific bit in the 8-bit output bus. Table 3.1 shows
the state of the counter with the corresponding spot in the output bus.

State Bit

1 7

3 6

5 5

7 4

9 3

11 2

13 1

15 0

Table 3.1: State and output bit relationship inside the NES Data Decoder module.

Due to the property of the shift register “shifting” out the least significant bit of the
collected data from the buttons being pressed, the order of most significant bit to least
significant bit inside the shift register becomes the opposite inside the NES reader, and,
specifically, the NES data decoder. For example, if the NES controller was holding the value

9

1100 1010 in the shift register, after going through each of the states, the 8 bit output will read
0101 0011, essentially flipping the bits of the extracted data in the NES controller.

3.3 Functionality

Figure 3.6: Block Diagram showing the top-level of the NES reader module.

In Figure 3.6, the wiring between each of the modules described in this section is shown.

One element to notice is that the reset signal given from the use of the push button is active low.
Keeping in mind that the modules that are resettable in this design are run on an active high
reset signal, the reset_n signal from the push button is inverted and further referenced for the
rest of the modules as “reset”. As roughly described in the previous sections, the majority of
these modules rely on state information from the 4-bit counter which essentially connects the
NES data decoder, the latch comparator, and the reset comparator in parallel to each other.

The full description of the NES Reader (in steps) goes as the following:
1) The 4-bit counter must be reset using the active low push button. As the button is

pressed, the signal (reset_n) is flipped (becoming reset) and used for the
remaining modules.

2) The 4-bit counter counts the rising clock edges of the 5 KHz clock up to a value
of 15.

3) The sum created by the counter represents a state of the system and is then
passed to the latch comparator, data decoder, and reset comparator.

a) The latch comparator creates a latch signal if the state is between 0 and
1, otherwise the NES clock begins alternating at half of the speed of the 5
KHz input clock.

b) The reset comparator sends a reset signal if the state is equal to 0 to
reset the data decoder.

10

c) On the odd numbered states, the data decoder fills the most significant bit
starting when the state is equal to 1 to the least significant bit when the
state is equal to 15.

4. Encoder Description and Functionality

Figure 4.1: The simple block diagram that shows the single 8-bit input bus that leads into the

encoder module as well as the 4-bit output bus.

The sole purpose of the encoder module is to take the data collected from the buttons of
the NES controller, and organize them in a way that would be more readable and easier to
handle for the seven segments to display. For the given design, the goal was to assign a single
button with a single displayed output on the seven-segment display, implying that a module
similar to that of a priority encoder. For example, if the button A and B were to be pushed at the
same time, the button with the highest priority would be the value displayed on the
seven-segment display. Bearing in mind that the NES reader essentially flips the data received
in the NES controller, Table 4.1 shows the bit placement of each of the buttons, as well as their
priority found in the encoder.

Button Raw Data Bit
(Controller)

Read Data Bit
(Reader)

Priority

A 0 7 1

B 1 6 2

Select 2 5 3

Start 3 4 4

Up 4 3 5

Down 5 2 6

Left 6 1 7

Right 7 0 8

Table 4.1: Data bit conversions between the controller and the reader, as well as the priority encoding of
each button (1 being the highest priority and 8 being the lowest). ​[2]

11

After priority had been given to the most significant bits in the read data bus, the next

step was to then create a signal that was more comprehensible for the seven-segment display
decoder to work with. Referencing the input values to the displayed outputs on the displays
themselves (a table of the inputs to displays can be found in Section 5), the arbitrary choice to
have the button A represent the note A, and Left represent the note G made the encoding fairly
simple. A table of input buttons with the outputs and displayed notes is found in Table 4.2.

Button Read Data
 (8 bits)

Priority Output Value
(4 bits)

Note

A 1XXX XXXX 1 0000 A

B 01XX XXXX 2 0001 B

Select 001X XXXX 3 0010 C

Start 0001 XXXX 4 0011 D

Up 0000 1XXX 5 0100 E

Down 0000 01XX 6 0101 F

Left 0000 001X 7 0110 G

Right 0000 0001 8 0111 Not Used

Table 4.2: Input buttons with their corresponding read data signals, encoded output signals, and
corresponding notes that each button represents.

5. Seven Segment Display Description and Functionality

Figure 5.1: Block Diagram of the frequently used block diagram for 4:7 Decoder used to decode signals to

be sent to the Seven-Segment displays.

The purpose of the seven segment display module is to display a 4-bit input which
comes from the decoder and output letters onto the FPGA’s seven segment display. The display
takes in a 4-bit binary input and then outputs onto the seven segment display. For this project
the outputs will be the letters A-G. In Table 5.1 ​the truth table shows the logic for the display.
The seven segment display is logic LOW so on is 0 and off is 1. In Figure 5.1 ​the seven

12

segment display design is shown. The 4-bit data input passes through the logic gates and
based in the truth table outputs one of the letters A-G. This design has been simulated and the
expected outputs agree with the actual outputs upon testing in ModelSim.

Figure 5.2: Synthesized design (provided by RTL Viewer in Quartus) of the Seven Segment Display

module.

Binary
input
(4-bit)

Seg0 Seg1 Seg2 Seg3 Seg4 Seg5 Seg6 Displayed
output

0000 0 0 0 1 0 0 0 A

0001 1 1 0 0 0 0 0 B

0010 0 1 1 0 0 0 1 C

0011 1 0 0 0 0 1 1 D

0100 0 1 1 0 0 0 0 E

0101 0 1 1 1 0 0 0 F

0110 0 0 0 0 1 0 0 G

Table 5.1:Seven Segment Display for desired outputs A-G.

13

6. Clock Divider Description and Functionality

Figure 6.1: Block diagram of the Clock Divider module used.

The purpose of this module is to reduce a 10 MHz clock signal from the FPGA to a

usable 5 kHz signal that will be used by the NES reader. To achieve this, a counter is used. The
counter contains a 23-bit output bus named “divided” which increments on each rising edge of
the 10 MHz clock. The 10th bit is used in the design as the NES system clock, which is used for
both clock signals and latch signals.

7. Display Module Description and Functionality

Figure 7.1: Display module block diagram.

The purpose of this module was to guarantee that the seven-segment display was only

displaying the value of the data that had been collected through the full period of the latch,
rather than updating the display any time a new bit of data had been read from the NES
controller. To do so, the module was designed to update the seven-segment display half way
through the 15th state inside the NES reader using the slowed 5 KHz clock, and the current
state of the Reader module(the input node “Data” would include the data pertaining to the
current state). Choosing the midpoint of the 15th state guaranteed that every bit of data stored

14

in the PISO shift register of the NES controller had been shifted out, but the data read in the
NES reader hadn’t been reset. The display module was designed to act as an updated clock
signal for a 4-bit register, assuring the 4 bits of encoded data created was only being sent to the
seven-segment displays at the appropriate time. The connection between the Display and N-bit
(acting as a 4-bit) register module is shown in Figure 7.2.

FIgure 7.2: Block diagram showing the connection between the Display and N-Bit Register module.

8. Synthesized Design

Figure 7.1: Synthesized block diagram of the top level module designed.

Figure 7.2: Resource summary of the top-level design after synthesis.

According to the resource summary shown in Figure 7.2, the amount of logic elements

used in the top-level design of this project is much lower than the total amount of elements that
could be used, and no memory is used for this design.

15

9. SystemVerilog & Verilog Files
This section shows all of the SystemVerilog files that were created during the design

process of this project. The SystemVerilog files used in the NES Reader module can be found in
section 7.1, encoder in section 7.2, seven-segment display decoder in 7.3, clock divider module
in section 7.4, as well as the top-level SystemVerilog file in section 7.5.

9.1 NES Reader

9.1.1 Counter

NESreader/counter.sv ​[3]

9.1.2 NES Data Decoder

NESreader/NESdatadecoder.sv ​[4]

16

9.1.4 Comparator

NESreader/comparator.sv

9.2 Encoder

DesignTop/encoder.sv

9.3 Seven Segment Display

DesignTop/sevenseg.sv ​[3]

17

9.4 Clock Divider

DesignTop/clockDIvider.sv

9.5 Display

DesignTop/display.sv

9.6 Nregister

DesignTop/Nregister.sv ​[3]

18

9.5 Design Top

DesignTop.v

19

10. Simulation Files

10.1 NES Reader

10.1.1 Counter

Figure 9.1.1(a): Counter test do file.

Figure 9.1.1(b): Waveforms from counter simulation.

For testing the counter, the do file creates 10 instances of a rising edge of a clock signal,

and the output that displays the running total of outputs. As there were two different instances of
the same counter with different parameters, the counter that was simulated held 8 bits of data
compared to the much smaller 4 or single bits that were used in this project.

10.1.2 Comparator

Figure 10.1.2(a): Comparator test do file.

20

Figure 10.1.2(b): Waveform corresponding to the simulation of the comparator testing module.

Similar to the modularity induced in the counter module, the designed comparator

module is also modular with controls being given to the parameters in the Quartus design. The
standard SystemVerilog code, however, checks when the current state reaches 8, explaining
the reason behind why the output signal is going high at that state.

10.1.3 NES Reader

Figure 10.1.3(a): NES Reader do file

Figure 10.1.3(b): Waveforms produced from running the corresponding do file.

This simulation was to test whether the NES reader as a whole (counters, comparators,

and decoders) were working as expected. The main goal of this module was to place the input
data in the 8-bit bus, “filling” the bus from MSB to LSB, which was checked by leaving the input
data high to see the individual bits filling up. This module also checked whether the NES latch
and clock signals were being created at the appropriate times and states, while the data was
being reset synchronously with the rising edge of the latch.

21

10.2 Encoder

Figure 10.2.1: Encoder Test Do file

Figure 10.2.3: Encoder simulation waveform

Testing the encoder by switching a single bit in two different instances allowed for a

more simple examination of the encoder module. The gist of what the do file is doing to test the
outputs is checking to see if the register prioritizes the active low inputs in the correct order, and
output the correct encoded system based on the first low bit the module receives.

10.3 Seven Segment Display Decoder

Figure 10.3.1: ModelSim waveform of the seven segment display. It shows the possible outputs for the

different inputs.

10.4 Clock Divider

Figure 10.4.1: Clock Divider Test Do File

22

Figure 10.4.2: Clock divider simulation waveform

The divided frequency was confirmed to be relatively accurate by measuring the
distance the period of the clk signal with the divided[10] signal, even with the arbitrary clock
periods given in the do file above which were much shorter than the true period of a 10 MHz
signal.

eriod of clk 10 ps requency 1x10 HzP : → F = 11
 eriod of divided[10] Δt 26798080 ps 6777600 ps 0480 psP : = − 2 = 2

requency 48828125 Hz→ F = 1
20480x10 12 =

 4882.8 Hz kHz1x10 Hz11

48828125 Hz = x
10 Hz7

→ x = ≈ 5

10.5 Display

Figure 10.5.1: Do file used to test the Display module.

Figure 10.5.2: Corresponding waveform from the do file executed.

23

10.6 Nregister

Figure 10.6.1: Do file simulating the function of the N-bit register. The default parameter of this module

was N = 4 which explains why only 4 bits are being manipulated.

Figure 10.6.2: Derived waveforms from executing the do file above.

10.7 Top Level Design

10.7.1 NES-Encoder Test

Figure 10.7.1(a): Do file for checking if the NES reader interfaced with the encoder correctly

24

Figure 10.7.1(b): NES_encoder simulation which tests the interface between the data read by the NES

reader and the decoder to put in the correct signals for the seven segment display

10.7.2 Full Top-Level Simulation

Figure 10.7.2(a): Do file doing a test of the full top-level design.

Figure 10.7.2(b): Waveforms corresponding to the simulated do file above.

This simulation was to show the full interaction between input data, the functionality of

the NES reader, the encoder changing the read data into a simpler form, and the seven
segment display showing the note corresponding to the note that had just been pressed. As
testing the functionality of each module was the goal in mind, the data inputs that were forced

25

were chosen to mimic the user activating all buttons on the board, then all but the A button, B
button, and so on.

11. Physical Implementation

Figure 12.1: Seven segment output ‘A’

26

Figure 12.1: Seven segment output ‘B’

Figure 12.1: Seven segment output ‘C’

Figure 12.1: Seven segment output ‘D’

27

Figure 12.1: Seven segment output ‘E’

Figure 12.1: Seven segment output ‘F’

28

Figure 12.1: Seven segment output ‘G’

12. Resources
[1] B. Chase , B. Excel, & J. Morgan, “Goblin Ranger Game.”
https://spaces.usu.edu/plugins/viewsource/viewpagesrc.action?pageId=53511846​, N.D.
[2] J. Corleto, “NES Controller Interface with an Arduino UNO.”
https://www.allaboutcircuits.com/projects/nes-controller-interface-with-an-arduino-uno/​, 2016.
[3] D. Harris & S. Harris, “Digital Design and Computer Architecture.” ​https://ebookcentra
l.proquest.com/lib/osu/detail.action?docID=980017​, 2013.
[4] M. Shuman, Sample NES Reader SystemVerilog code, 2020.

- Note: example code provided on canvas for the NES reader was referenced for the
creation of the NES reader module. Though some of the elements of the given module
had been changed, the NES data decoder was taken from the example code.

29

https://spaces.usu.edu/plugins/viewsource/viewpagesrc.action?pageId=53511846
https://www.allaboutcircuits.com/projects/nes-controller-interface-with-an-arduino-uno/
https://ebookcentral.proquest.com/lib/osu/detail.action?docID=980017
https://ebookcentral.proquest.com/lib/osu/detail.action?docID=980017

