
2021 JD Accelerated Project
Abdulla AlMannai

Kevin Kott

Anton Liakhovitch

Dhruv Rengarajan

Contents

Design

Hardware Design

Microphone

Amplifier (Abdulla)

Filter (Kevin)

Software Design

Summary

Serial Protocol

Arduino Firmware (Anton)

Matlab (Dhruv)

Results

Top Level Design

The goal of the project is to create a system which can recognize musical notes. The black-box
diagram below illustrates the overall function of the device. The input is a sound travelling
through the air, and the output is a visual indicator LED which corresponds to the musical note
recognized by the device.

There are a total of eight LEDs, corresponding to the 'white key' notes in the range C4 to C5. The

picture above shows a prototype. From left to right, the LEDs represent the notes C5, B4, A4,

G4, F4, E4, D4, and C4. These LEDs are connected to output pins D2 to D9 on the Arduino. Only

one LED will be illuminated while a note is being played, as shown in the picture above.

The block diagram above represents the signal flow through the various components of the
system. The analog components - microphone, amplifier, and filter - process the input signal into
a voltage and frequency range suitable for analog-to-digital conversion. The AVR microcontroller
samples this analog signal and sends it to a computer in a digital format, where it is processed.
The computer continuously sends its results back to the AVR, which displays the recognized
note on a set of LEDs.

A brief summary of each component's function:
● Microphone: Sense sound and output it as a weak analog signal.
● Amplifier: Amplify the weak signal to a larger voltage range which is suitable for the

AVR's analog-to-digital converter.
● Filter: Further amplify the signal, remove frequency components above and below the

input range, and bias the output signal to make it readable by the AVR's ADC.
● AVR: Sample the signal and send it in digital format to Matlab, then receive an LED

lighting command from Matlab and light the corresponding LED.
● Matlab: Receive the signal in digital format from the AVR, recognize the note being

played, and send the AVR a command to light the corresponding LED. Matlab also
displays additional analysis results once the program is stopped.

Hardware Design

Microphone
The microphone circuit was built using the electret mic provided in the AP kit, and the circuit was
built using the schematic provided as a reference source for the mic as shown below. it was first
soldered to connecting pins for convenient connection on the breadboard. A 20k resistor,
biasing the mic to 1.4V operating at lower voltage for less distortion and power supply noise, is
connected to the mic before the signal is passed through a Low pass filter using a voltage
divider cutting the input voltage to 2.5V from 5V and a frequency cutoff which can be calculated
as follows.
𝑓𝑐1= 12𝜋(100𝑘𝛺)(330𝑛𝐹) = 4.823𝐻𝑧

Amplifier

The amplifier circuit was also used with only components provided in the AP kit and is
connected to a 5V power supply. The op amp used is the LMC6032, a dual amp, but only pins 5,
6, and 7 are used while following the schematic provided in the microphone amplifier reference.
Different values were set for R1 (the resistor that biases the mic), R4, and C2, which is a LPF
and used to set the gain for the circuit. A 100K ohm potentiometer was used as R4 to range the
gain between minimal and maximum depending on user desire. The output voltage is biased to
2.7V before it goes through a HPF to set the output to 0.2V before the signal goes to our 2nd
order filter circuit for further filtering and amplifying of the signal. This HPF has a cutoff
frequency of 4.823Hz. There are multiple HPF and LPF through the circuit setting frequency
ranges and voltage gains as shown in the diagram before the signal is passed on to the filter
stage for further filtration and amplification of the AC signal, therefore high amplification with
minimum noise and distortion can be achieved .

References :

LMC6032 CMOS Dual Operational Amplifier
https://www.ti.com/lit/gpn/lmc6032

Microphone Amplifier:

https://www.ti.com/lit/pdf/sboa290

https://www.ti.com/lit/gpn/lmc6032
https://www.ti.com/lit/pdf/sboa290

Filter
The filter design for the system uses multiple op amps in series to limit the input to a proper
frequency range. In the end, a band-pass filter was constructed to achieve 2nd order filtering
along with a minimal amount of voltage gain.

Design
Since the design requirements list the input range as being the notes between middle C
(261.626 Hz) and high C (523.251 Hz) a band-pass filter was decided on to meet the
specifications. However, even though the range of notes lie between those frequencies, a
separate requirement states that 3 harmonics should also be allowed through to the Arduino.
This puts the input range between 261.626 Hz on the low end and 1569.753 Hz on the high
end. With these frequencies known, a band-pass filter can be designed to operate within the
general frequency range.

With the frequency range of the input calculated, the next task was to determine what type of
filter to use. Given that operational amplifiers were provided, it was decided that they would be
incorporated into the circuit design. After a little bit of research, it was discovered that the
LMC6032 8-DIP operational amplifier was actually a dual operational amplifier. That is, the
integrated circuit was a combination of multiple operational amplifiers sharing the same positive
and negative voltage rails. This design was used to our advantage as now, instead of designing
a band-pass filter using a single operational amplifier, a low-pass filter and high-pass filter could
be combined in series to achieve a band-pass filter with a larger slope of decay.

With a general design decided upon, there was still the decision of what filter topology to use.
The best topology for the operational amplifier provided was decided to be Sallen-Key. These
amplifiers were chosen for a multitude of reasons; they have an extremely large input
impedance as well as minute output impedance, the second order characteristics inherent with
design was a bonus, as was their ability to be cascaded in series.

Below is pictured both the high-pass filter and low-pass filter designs used in the final system.
High-Pass Filter Equations Used Low-Pass Filter Equations Used

The final step in the design process for the Sallen-Key filter was to calculate the values for the
elements used. Given the equations listed on the previous page, the fact that the gain resistors

A and B would be equal, as well as the fact that the filter's resistors and capacitors values would
be equivalent as well simplified the arithmetic. Manipulating the equations of the previous page,
we can solve for either the resistors or the capacitors in the circuit. Given that our selection of
capacitors is limited, a capacitor value will be chosen that matches one of the values provided
while the resistor's value will be solved for. Arbitrarily, a value of 1𝜇F was chosen for the
capacitor. With this is mind we can now rearrange the frequency cut-off equation to solve for the
required resistance, as is shown below:

𝑅 = 1
2𝜋𝑓

𝑐
𝐶

Filter calculations
Knowing our frequency range, 261.626 Hz to 1569.753 Hz, we can plug these values into the
equations above. Which, after entering the maximum frequency, gave us:

𝑅 = 1
2𝜋 * 261.626𝐻𝑧 * 1𝜇𝐹 = 608. 33𝛺

This resistor value is not one provided. Plugging in the next closest resistor value found in our
kit, 1k𝛺, to the cut-off frequency equation listed on the previous page gave us:

𝑓
𝑐
 = 1

2𝜋 * 1𝑘𝛺 * 1𝜇𝐹 = 159. 155𝐻𝑧
This is an acceptable cut-off frequency for our high-pass filter. Similarly for the low-pass filter:

𝑅 = 1
2𝜋 * 1569.753𝐻𝑧 * 330𝑛𝐹 = 307. 238𝛺

This isn't an acceptable resistor value. Smaller capacitors were provided. After switching the
capacitor out with a 45nF capacitor we get this:

𝑅 = 1
2𝜋 * 1569.753𝐻𝑧 * 45𝑛𝐹 = 2253. 08𝛺

We can change the resistor's value to 2.2k𝛺 since this is a resistor provided. Finally, for our
low-pass filter, we get:

𝑓
𝑐
 = 1

2𝜋 * 2.2𝑘𝛺 * 45𝑛𝐹 = 1607. 63𝐻𝑧

The final schematic can be referred to in the design files document. Lastly, an AC signal
analysis was performed to confirm the functionality of the schematic. This is shown below:

Software Design

Summary
In this design, the AVR microcontroller and Matlab PC software work together to collect data,
perform analysis, and display results.

Top level algorithm:

1. AVR samples analog microphone data into a buffer
2. When the buffer is full, the AVR sends data to a Matlab script running on a PC
3. Matlab analyzes the data to determine which note is being played
4. Matlab sends the result back to the AVR
5. The AVR lights up an LED corresponding to the detected note
6. Execution returns to step 1

In step 1, the AVR collects microphone amplitude samples at a frequency of 11Khz. Instead of
sending and processing these samples continuously, samples are first collected into a buffer
and then processed once the buffer is full. This ensures that only step 1 of the algorithm needs
to run in real time at the 11Khz sampling frequency. The other steps still need to run relatively
fast for acceptable performance, but the program will continue to function if a section
unexpectedly takes too long to execute.

The specification requires processing of input frequencies as low as 260Hz, and requires that at
least three periods of the signal are collected at a time. The buffer size was chosen to be 170
samples, which is enough to store four full periods of a 260Hz signal when sampled at 11Khz.
The 11KHz sampling frequency was chosen because it is high enough to record 20 samples in
one period of the highest valid input frequency (523Hz), as required by the project specification.

Once the AVR is finished collecting data, it sends the buffer to Matlab via an RS-232 serial
connection. Matlab processes the 170 sample buffer via Fourier analysis to determine which
note is being played. It then sends the Arduino a message encoding the recognized note (LED
Command Message), and the Arduino lights up an LED corresponding to the note.

This entire process (data collection, processing, display) repeats until the user presses a "Stop"
button in the Matlab program. At this point, Matlab halts the program loop and performs final
analysis steps on the last sample buffer collected.

Serial Protocol
The AVR firmware and Matlab script communicate by means of an RS-232 serial connection. A
higher level protocol dictates the format of the messages between them.

There are two types of message in the protocol, the Sample Buffer Message and the LED
Command Message.

Sample Buffer Message
The sample buffer message is always sent from the Arduino to the Matlab script, and it serves
two purposes:

● Transfer the latest sample buffer to Matlab
● Let Matlab know that the Arduino is ready to collect more data and is waiting for a

response

The message is encoded as ASCII text. It consists of the following:
1. 170 comma-separated decimals integers containing the raw values sampled from the

AVR's ADC. Numbers are not padded with zeros on the left side, and there is no comma
before the first number or after the last number.

2. A line-feed character to signify the end of the message.

Example message:
143,146,149,153,158,163,168,173,177,182,187,192,197,1,5,10,15,19,25,29,34,39,44,48,53,58,62,67
,72,77,82,86,91,96,101,105,110,115,120,125,130,134,139,144,148,153,158,163,168,172,177,182,187
,191,196,1,5,10,15,19,24,29,34,39,43,48,53,57,62,67,72,76,81,86,91,96,100,105,110,115,120,124,
129,134,139,144,148,153,158,163,167,172,177,182,187,191,196,0,5,10,14,19,24,28,34,38,43,48,53,
57,62,67,72,76,81,86,91,96,100,105,110,114,119,124,129,134,138,143,148,153,158,163,167,172,177
,182,186,191,196,0,5,10,14,19,24,28,34,38,43,48,53,57,62,67,71,76,81,86,91,95,100,105,109,114,
119,124,129,134,138,143[LF]

Here, [LF] represents a line feed character.

LED Command Message
The LED command message is always sent from Matlab to the Arduino, and serves two
purposes:

● Tell the Arduino which LED to turn on
● Let the Arduino know that Matlab is ready to accept more data and is waiting for a

Sample Buffer Message

The message is encoded as ASCII text. It consists of the following:
1. A single character representing the LED that must be lit. A number from 0 to 7

represents an LED index, while any other character is a "turn off all LEDs" command.
2. A line-feed character to signify the end of the message.

For example, "2[LF]" means "Light the third LED". Alternatively, "8[LF]" means "Turn off all
LEDs".

Design Justification
Several protocol variations were initially considered, each with their own strengths and
drawbacks. This particular CSV-over-ASCII approach has the issue of low efficiency. It would be
possible to transmit data much faster by sending it raw, with no ascii encoding - resulting in
smaller, fixed-length packets. ASCII encoding wastes data, because there are many messages
which are possible but invalid. However, none of the advantages of raw data encoding are
actually needed with the sample-buffering design. Because there is no hard time constraint on
transmission time, it is acceptable for messages to be long and variable length. Furthermore,
ASCII encoding provides the advantage of being easy to work with during both development
and testing - making it the best fit for this system.

AVR Firmware
The goal of the Arduino firmware is to collect data, send it to the Matlab program, and then
execute an LED command from Matlab.

Top level algorithm:

1. Collect ADC data into a buffer, in real time
2. Send data to Matlab
3. Wait for Matlab to respond with an LED command
4. Execute LED command
5. Return to step 1

Step 1 must run in real time, collecting data at a specific sampling frequency. This is achieved
via the AVR's TIM0 8-bit timer peripheral, configured to trigger an interrupt at approximately
11Khz. While 11Khz is not actually possible, the timer can oscillate at 10989Hz when set to
divide the 16Mhz I/O clock by 182. Every time the timer triggers, an interrupt service routine
reads an ADC sample and adds it to the buffer. The ADC itself is configured with an x64 clock
prescaler, which allows it to sample within the 11Khz time frame while retaining high accuracy.

The block diagram below illustrates the overall program flow.

Dark lines represent actual function calls and flow. To make this easier to read, grey dotted lines
are added to represent the order in which the program normally executes when the timer
interrupt is considered.

A semaphore flag and the sample buffer form a crude mutex. When the main thread reaches the
"Transfer Control to ISR" step, it sets the flag to signify that the ISR may mutate the sample
buffer and the main thread may not. Once the ISR has triggered enough to fill the sample buffer,
it clears the flag to let the main thread know that it can take control of the sample buffer
resource.

After the ISR returns control to the main thread, the program is no longer bound by the real-time
constraint of the sampling frequency. In other words - the rest of the main loop simply needs to
execute quickly (on a human scale), but does not need a guaranteed execution time. Thus, the
"Send Data" portion of the protocol can afford to spend time converting the acquired data to
ASCII and sending it in CSV format.

The "Receive Command" section simply waits until data is available in the serial buffer, then
interprets the first available ASCII character as an LED command and discards the rest. After
lighting the requested LED, the program again returns control to the ISR and starts the main
loop over again.

The resulting firmware collects data quickly and reliably, while being easy to test and
troubleshoot through a simple ASCII RS-232 console.

Matlab

Matlab performs several functions in this design. These include reading in data from the
Arduino, performing graphical analysis, and computing specific values required by the
specification such as Signal-to-noise ratio and frequency distribution.

This can be summarized in the below algorithm:
1. Send Arduino an LED command as a signal that it is ready to receive data
2. Receive the sample buffer
3. Processes buffer using a fast Fourier transform
4. Extract the fundamental frequency from the Fourier transform output
5. Match recognized frequency with a constant corresponding to a musical note
6. Prepare to send the recognized note to the Arduino as the next LED command, and

return to step 1

This process starts with Matlab sending the AVR an LED message to signal that Matlab is ready
to accept data. The Arduino Nano sends a buffer of data composed of ASCII text. Each buffer
contains 170 decimal numbers representing samples of data. Matlab is responsible for reading
through a full line of the buffer, only stopping once an end-of-line character is detected. A serial
object reads a line of the buffer, splitting it using comma delimiters and storing it in an array.

Once the serial driver has parsed through the buffer, the program performs a Fourier transform
using the built-in Matlab function. The software calculates the magnitudes of the Fourier outputs
(discarding the phase component) and interprets the largest magnitude frequency bin as the
base frequency. Next, the resulting frequency is matched to the frequency of the closest musical
note. Finally, the number of the LED it corresponds to is noted down, and sent back to the
Arduino through the serial connection. This process repeats until the user presses a "stop"
button. At this point the program closes the serial connection, and the values stored in the buffer
are used to calculate the SNR and confirm that it is above 20. The magnitude versus time and
magnitude versus frequency graphs are created, the latter with the appropriate harmonics.

The process of receiving data, transforming it, matching it and then sending it runs in a constant
loop. However, in order to exit the loop and graph the current data, a special button was added
to the UI window in Matlab that does exactly that. When pressed, the button causes the
program to break out of the main loop and move on to the graphing functions. Therefore, the
loop will run indefinitely until the user presses the button, and the data currently stored in the
buffer is graphed.

Results
260Hz and 520Hz signal input
We tested our circuit by getting the data through pin A0 on the Arduino nano and using our
software design, the mic was tested using multiple frequencies to make sure that it is working to
the requirements specified. And as expected, the results were to standards required. First test
was while playing a continuous Signal of 260 Hz to make sure that the corresponding LED
which is LED 0 was turning on. The sine wave did not have any distortions with Peak to PEak
output of almost 3V, and the SNR was indeed above 20 and was registered at 28.33 as shown
in Figure 1. The second test conducted was using a continuous 520Hz signal, and the result
was an undistorted sine wave with 2Vpp and LED 7 was lighting up with an SNR value of 38.86
as shown in figure 2 .

As stated above and shown in the result figures, while stimulated, the signal output was within
the required voltage range having more than 1 volt of amplitude, and having an SNR above 20.

Figure 1

Figure 2

No signal input
The last test was with no signal input, where the mic was not stimulated and the signal output
had about 0.2Vpp magnitude and SNR value of 25.64 as shown in figure 3. These results also
comply with the project requirements where it states that if no signal was played as input or mic
was not stimulated, then output must have less than 0.2V amplitude while also having an SNR
of more than 20 for all cases.

