Study Timer Developer Guide

ECE 342 Winter 2020

Sean Lee

Page 1

Table of Contents

System Overview
Electrical Specification
User Guide

Block Diagram

Electrical Schematic

3D Model and Dimensions
PCB Layout

Parts List

Arduino Code

Page 2

10

10

System Overview

The study timer is used to set a prescribed amount of time where you cannot use your phone in
order to conduct study sessions without the distraction of your handheld device. The user may
select between two timer options of five or twenty-five minutes through pushbuttons and start
the study timer by their phone on top of the timer box. If the phone is removed from its
designated area during the timer countdown, a buzzer will go off until the phone has been
placed back where it was. Once the timer runs out, the buzzer will go off until the phone has
been removed from its designated area and the system will proceed to restart its routine all
over again. A seven segment display is used to display the time, and two photo sensors are
used for reading the light levels of the environment. One photo sensor is used for detecting the
presence of the phone and the other is used to detect the light levels around the study timer in
order to determine the brightness setting of the timer display.

Electrical Specification

Parameter Value
Operating Voltage 3.3 Volts
Maximum Supply Voltage 3.55 Volts
Minimum Supply Voltage 3.15 Volts
Maximum Supply Current 1.5Amp
Minimum Supply Current 0.5 Amps
Operating Temperature -40 to 60 Celsius

Table 1: Electrical Specifications

User Guide

Power Device:

To power up the system, insert a USB 2.0 A-Male to Mini-B cable into the USB port located to
the left hand side of the timer box labeled “USB.” Once the USB port has been plugged in, the
timer display located on the top of the timer box will display a zero.

Setup Timer:

Page 3

The system provides the selection between two timer options of five or twenty-five minutes.
The five minute timer option is selected through pushing the button labeled ‘5’ located at the
front of the timer box. The twenty-five minute timer option is selected through pushing the
button labeled ‘25’ located at the front of the timer box. The selected timer option should be
seen on the timer display.

Start Timer:

The timer will commence once a phone (or any solid, opaque object) has been placed on top of
the sensor located on top of the timer box and below the timer display. The timer should then
commence.

Time’s Up:

Once the timer reaches zero, the buzzer will go off indicating that the phone can now be
removed. The buzzer will stop once the phone has been removed away from the sensor area on
top of the timer box. The system will then start all over again, allowing the user to select a new
timer option to start the timer again.

Block Diagram

BUZZER USROUT

E_BUTTON2_USRIN SEVEN_SEG_USROUT

— — —

Figure 1: Black Box Diagram of System

This diagram showcases all external inputs and outputs of the system.

Page 4

‘ BUZZER_USROUT

I
. | | .

\ ARDUINO CODE

‘! ‘ Seven SEVEN_SEG_USROUT

S— Sagment ey

ARDUINO_CODE

Figure 2: Block Diagram of Individual Blocks in System

This diagram showcases the connection between all individual blocks of the system and the
interfaces used for communication.

Interface Name Interface Type Specifics

TIME_BUTTON1_USRIN User input Input state 1: Logic HIGH
Input state 2: Logic LOW

TIME_BUTTON2_USRIN User input Input state 1: Logic HIGH
Input state 2: Logic LOW

BUTTON_DSIG Digital Signal Input state 1: Logic HIGH
Input state 2: Logic LOW
PHOTOSENSOR_ENVIN Environmental Input Resistance: 1-10k Ohms
Length: 4.46mm/0.18in
PHOTOSENSOR_ASIG Analog Signal Brightness Reading:
0-10,000 lux
USB_DCPWR DC power Vmax: 5V
Imax: 0.5A
ARDUINO_CODE Code C language

Page 5

BUZZER_USROUT User output Frequency: 440 +/- 1 Hz
Voltage: 3-10V

SEVEN_SEG_USROUT User output Wavelength Peak: 565-660nm
Power Dissipation: (Max)
75-105mW

Table 2: Interface Data Table

Electrical Schematic

3
SDA.
21 scL
1 GND
3V3
DITX [PR
DORX | , . [GND2
RESETI | < [[RESET2
GNDL | § 1 v
Dz | . 2 2
D3 | ¢ 5 A6
D4 | - 7 A3 Seven Segment Display
D3 | o g A%
D6 A3
—— 9 9
D7 A2
10 10
D& |5 1 AL
D9 | |5 12 A0
DI0 | 13 | _AREF
DIIMOSIT | 7 | N
DI2MISO | ;. : [DI3/SCK
== s 15 =
Ardume ARDUINO NANO 30
Y3
L 1 Byl
R? R?
b maRa o 5
2 e I 2 | e)
swilch T switeh e
phatacel] 1 photacell 2
X2
R1 R2 R3 R4
10K 10K 10K 10K
buzzer o
GND

Figure 3: Electrical Schematic of System

The schematic shows the connections made between the arduino nano, seven segment display,
and individual components of the system. The arduino nano uses three digital pins, four analog
pins, the 3.3V pin, and ground pin.

Page 6

3D Model and Dimensions

Figure 4: 3D Model of Enclosure (Side View)

Figure 5: 3D Model of Enclosure (Front View)

Page 7

o
—_———— .
7 P o e\
B = ===
= e L \
Frodb innec ~iext
[/‘7 e -
f s1 ‘_f, -]a ‘ 2,
-] L " »1‘(\:77 Tk
‘ S N
— \
— |
[s i
| |
‘ ‘ 53 |
| | %3
~ N
| ‘ l6 | ‘
| 2 [t ¢
| . | +
|1 “ | EN
' |
| | :
a2 em— 1 3 15d Fronk Nend
- ey -
A H
b 2
Lid top vie

Figure 6: Dimensions of 3D Enclosure Model

TinkerCad was used for creating 3D models for the enclosure of the system. The container is
made to house the arduino and user input components while the lid houses the seven segment
display and photosensors. For this project, the 3D printed model was not manufactured and a
cardboard enclosure was constructed instead.

Page 8

Qdure

A

E‘(\L"

L)} mMmensions (cm7

= < | |
= |6 =
,¢|}|_yu Ulbr
1T =
| N \ 8
N : 211 Is
2ol (e B2
< Ll
| LT °
— | a
w b -
(o) Ia |
|
=
i
¢/ |
. |
3l |
T
el
ol |
CW
1 53
<o) T¢7
_NH, |o
©
e

Figure 7: Dimensions of Cardboard Enclosure Model

PCB Layout

Figure 8: PCB Layout of System

Page 9

The PCB layout shows the connections between the individual components, seven segment

display, and the arduino nano. The PCB is 60 by 60 mm.

Parts List

Description Product Quantity Cost per Unit Cost Total Manufacturer
Number

Mini Nano V3.0 Atmega 328P G41892005 | 1.0 $9.99 $9.99 Elisona
Microcontroller Board 6
Adafruit 0.56” 7-Segment 3106 1.0 $11.95 $11.95 Adafruit Industries
FeatherWing Display
Photo cell (CdS Photoresistor) 161 2.0 $0.95 $0.95 Digi-Key Electronics
Piezo Buzzer & Audio Indicators Round | SD160701 1.0 $1.03 $1.03 TDK
16mmx7mm 4096Hz Vin = 1-5V
Through-Hole Resistors - 10k ohm 5% 2780 1.0 $0.03 $0.75 Mouser Electronics

1/4W (Pack of 25)

Arduino Code

Table 3: Bill of Materials

The code used for the arduino is shown below. The main loop function is used for running the

timer and displaying it on the seven segment display. The other functions are used to run

different routines based on the state of the phone and light levels of the environment. Areas of

improvement for the code is to reduce the number of functions used for the different routines

Page 10

as well as simplifying the timer routine by combining the two functions called that check the

light levels of the environment.

/* Project: Pomodoro Timer
Class: ECE 342 Junior Design II
* Group: Timer 04 (2d)
* Name: Sean Lee
*/
#include <Wire.h>
#include "Adafruit_LEDBackpack.h"
#include "Adafruit_GFX.h"

Adafruit_7segment matrix = Adafruit_7segment();
const int buttonl = 4;
5

const int button2 =

const int buzzerPin

]
(o]

uintl16_t counter_0;

digit value of each counter
uintl6_t counter_1;
uintl6_t counter_3;

uintl16_t counter_4;

int buttonStatel = 0;
keeping track
int buttonState2 = 0;

int photocellPin = AO;
int photocellPin2 = Al;

int sensorReading;

void setup() {

#ifndef __AVR_ATtiny85__
Serial.begin(115200);

#endif
matrix.beqin(0x70);
pinMode(buttonl, INPUT);
pinMode(button2, INPUT);
pinMode(buzzerPin, OUTPUT);

/* Name: loop

/1

/1

/1

/1

/1

/1

/1
/1

button pins from 4-8

variables for storing the

button state variable for

pin AQ for photocell

sensor reading

serial communication

seven segment display matrix

set pins as input

* Function: This is the main loop function that will run the seven segment display routine

while calling

Page 11

* other functions for different scenarios. Once the timer is up, it will call the timer_end
function before

* returning to the top of the loop to run the routine all over again.

*/

void loop() {

set_timer();

matrix.drawColon(true); // display the colon
delay(1000); // delay for one second

for (counter_0; counter_0 < 3; counter_0--) { // loop for the first digit on
display

matrix.writeDigitNum(®, counter_0);
matrix.writeDisplay();
read_light();
read_light2();
for(counter_1; counter_1 < 10; counter_1--) { // loop for the second digit on
display
matrix.writeDigitNum(1l, counter_1);
matrix.writeDisplay();
read_light();
read_light2();
for(counter_3 = 5; counter_3 < 6; counter_3--) { // loop for the third digit on
display
matrix.writeDigitNum(3, counter_3);
matrix.writeDisplay();
read_light();
read_light2();
for(counter_4 = 9; counter_4 < 10; counter_4--) { /] loop for the fourth digit on
display
matrix.writeDigitNum(4, counter_4);
matrix.writeDisplay();
read_light();
read_light2();
delay(1000); /! delay for one second

1
counter_1 = 9; /] set second digit restart
number to 9
1
timer_end();

return;

/* Name: set_timer
* Function: Waits for user to first select 5 or 25 minute timer, then waits for user to

select

Page 12

* one of the three brightness levels for the display
*/
void set_timer() {
matrix.print(0000);
matrix.writeDisplay();
Serial.println(" Please select timer option™);
Serial.println(" Button [1] for 5 minutes™);
Serial.println(" Button [2] for 25 minutes");
do{
buttonStatel = digitalRead(buttoni);
if (buttonStatel == HIGH)
{
matrix.print(500, DEC);
matrix.drawColon(true);
matrix.writeDisplay();
Serial.println("™ Button 1 pressed");
counter_0 = 0O;
counter_1 = 4;
Serial.println(" Timer set for 5 minutes”);
delay(1000);

buttonState2 = digitalRead(button2);
if (buttonState2 == HIGH)
{
matrix.print(2500, DEC);
matrix.drawColon(true);
matrix.writeDisplay();
Serial.println(" Button 2 pressed");
counter_0 = 2;
values
counter_1 = 4;
Serial.println(" Timer set for 25 minutes”);
delay(1000);

lwhile((buttonStatel != HIGH) && (buttonState2 != HIGH)):
pressed

check_phone();

/* Name: read_light

// reset the counter

// display options on serial

// read button
// button input condition

// display the colon

/] set appropriate timer values

// read button

// button input condition

// display the colon

// set appropriate timer

// check when button is

* Function: Reads the sensor value and if it exceeds the given value, call the function

* phone_removed, otherwise return to loop function
*/
void read_light() {

Page 13

int sensorReading = analogRead(photocellPin);

Serial.println(sensorReading);

analog

if (sensorReading < 100) {
threshold

//Serial.println(" Phone Stationary");

else if (sensorReading > 200) {
threshold

//Serial.println(" Phone Removed");

phone_removed();

void read_light2() {

int sensorReading = analogRead(photocellPin2);

Serial.println(sensorReading);

analog

if (sensorReading < 150) {
threshold
matrix.setBrightness(15);
matrix.writeDisplay();

Serial.println(" highest brightness™);

if ((sensorReading > 150) && (sensorReading < 600)) {
if reading exceeds threshold
matrix.setBrightness(5);
matrix.writeDisplay();
Serial.println(" normal brightness");
1
else if (sensorReading > 600) {
threshold
matrix.setBrightness(0);
matrix.writeDisplay();

Serial.println(" lowest brightness”);

// read sensor

// print the sensor reading in

/] check if reading is within

// check if reading exceeds

// read sensor

// print the sensor reading in

// check if reading is within

// set brightness

// check

// set brightness

// check if reading exceeds

/] set brightness

Page 14

/* Name: check_phone

* Function: Reads the sensor value until it is less than 300.
*/

void check_phone() {

int sensorReading = 0;

dof

sensorReading = analogRead(photocellPin); // read sensor

//Serial.println(sensorReading); // print the sensor reading
in analog

//Serial.println(" Phone is not placed yet");
delay(1000);
lwhile(sensorReading > 100);

/* Name: phone_removed
* Function: Reads sensor and plays a buzzer tone until the reading value is less than 300
*/
void phone_removed() {
int sensorReading = 0;

int buzzerReadings = 0;

dof

sensorReading = analogRead(photocellPin); /] read sensor

//Serial.println(sensorReading); // print the sensor reading
in analog

//Serial.println(" Phone is not placed yet");
tone(buzzerPin, 440, 100);

delay(1000);

lwhile(sensorReading > 100);

/* Name: timer_end
* Function: Reads sensor value and plays a buzzer tone until the reading value is greater
than 200
*/
void timer_end() {
int sensorReading = 0;

do{

sensorReading = analogRead(photocellPin); // read sensor

//Serial.println(sensorReading); // print the sensor reading
in analog

//Serial.println(" Phone is not removed yet");

tone(buzzerPin, 440, 100); // play tone through buzzer at
440Hz

delay(1000);

lwhile(sensorReading < 100);

Page 15

Page 16

