
Automated Front Panel Testing for
Tektronix

By: Kevin Ho, Ryan Christensen,

Felipe Orrico Scognamiglio, Dennis Kichatov

Oregon State University
ECE 44x: Senior Capstone

1

Legal Notice
All intellectual property (including patents, copyrights, and trade secrets) present henceforth in
this document belong to Tektronix, Inc.

2

Table of Contents
Legal Notice 1

Table of Contents 2

1. Overview 8
1.1. Executive Summary 8
1.2. Team Communications Protocols and Standards 8
1.3. Gap Analysis 10
1.4. Timeline/Proposed Timeline 11
1.5. References and File links 13

1.5.1. References (IEEE) 13
1.5.2. File Links 13

1.6. Revision Table 13

2. Requirements Impact and Risks 14
2.1. Requirements 14

2.1.1. Project Requirement 1: The system will press a button 14
2.1.2. Project Requirement 2: The system turns multiple sized knobs 14
2.1.3. Project Requirement 3: The system will have autonomous operation. 14
2.1.4. Project Requirement 4: The system will allow a user to manually control the
device. 15
2.1.5. Project Requirement 5: The system will be able to toggle power to the stepper
motors through the GUI. 15
2.1.6. Project Requirement 6: The system will produce a video feed 15
2.1.7. Project Requirement 7: Fits in a defined size 15
2.1.8. Project Requirement 8: The system will display commands on screen during video
playback 16

2.2. Design Impact Statement 16
2.2.1 Public Safety 16

2.2.1.1 Impacts 16
2.2.1.2 References IEEE 17
2.2.1.3 Revision Table 17

2.2.2 Welfare Impacts 17
2.2.2.1 Impacts 17
2.2.2.2 References IEEE 18
2.2.2.3 Revision Table 18

2.2.3 Cultural and Social Impacts 18
2.2.3.1 Impacts 18
2.2.3.2 References IEEE 18
2.2.3.3 Revision Table 18

2.2.4 Environmental Impacts 18

3

2.2.4.1 Impacts 18
2.2.4.2 References IEEE 19
2.2.4.3 Revision Table 20

2.2.5 Economic Impacts 20
2.2.5.1 Impacts 20
2.2.5.2 References IEEE 21
2.2.5.3 Revision table 21

2.3. Risks 22
2.4. References and File Links 24

2.4.1. References 24
2.4.2. File Links 24

2.5. Revision Table 24

3. Top-Level Architecture 25
3.1. Block Diagram 25
3.2. Block Descriptions 26

3.2.1 User Interface: 26
3.2.2 Power Supply: 27
3.2.3 Hardware Control API: 27
3.2.4 Motor Control: 28
3.2.5 Interrupts 29
3.2.6 Mechanical Structure: 29
3.2.7 Enclosure: 30
3.2.8 Stepper Motors: 30

3.3. Interface Definitions 31
3.3.1 User Interface 31
3.3.2 Hardware Control API 33
3.3.3 Mechanical Structure 35
3.3.4 Stepper Motors 36
3.3.5 Interrupts 37
3.3.6 Motor Control 38
3.3.7 Enclosure 41
3.3.8 Power Supply 41

3.4. References and File Links 43
3.4.1. References (IEEE) 43
3.4.2. File Links 43

3.5. Revision Table 43

4. Block Validations 44
4.1. Mechanical Frame - Ryan Christensen 44

4.1.1. Block Overview 44
4.1.2. Block Design 44

4

4.1.3. Block General Validation 44
4.1.4 Interface Validation 45
4.1.5. Block Testing Process 45
4.1.6. References and File Links 46

4.1.6.1. References (IEEE) 46
4.1.6.2. File Links 46

4.1.7. Revision Table 46
4.2. Stepper Drivers - Ryan Christensen 46

4.2.1. Block Overview 46
4.2.2. Block Design 46
4.2.3. Block General Validation 46
4.2.4 Interface Validation 47
4.2.5. Block Testing Process 48
4.2.6. References and File Links 49

4.2.6.1. References (IEEE) 49
4.2.6.2. File Links 49

4.2.7. Revision Table 49
4.3. Interrupts - Kevin Ho 49

4.3.1. Block Overview 49
4.3.2. Block Design 50
4.1.3. Block General Validation 51
4.3.4. Block Interface Validation 51
4.3.5. Block Testing Process 52
4.3.6. References and File Links 53

4.3.6.1. References (IEEE) 53
4.3.6.2. File Links 53

4.3.7. Revision Table 53
4.4. Motor Control - Kevin Ho 53

4.4.1. Block Overview 53
4.4.2. Block Design 54
4.4.3. Block General Validation 55
4.4.4. Block Interface Validation 55
4.4.5. Block Testing Process 58
4.4.6. References and File Links 59

4.4.6.1. References (IEEE) 59
4.4.6.2. File Links 59

4.4.7. Revision Table 59
4.5. Power Supply - Dennis Kichatov 60

4.5.1. Block Overview 60
4.5.2. Block Design 60
4.5.3. Block General Validation 63

5

4.5.4 Block Interface Validation 64
4.5.5. Block Testing Process 65
4.5.7. References and File Links 66

4.5.7.1. References (IEEE) 66
4.5.7.2. File Links 66

4.5.7. Revision Table 66
4.6. Enclosure - Dennis Kichatov 67

4.6.1. Block Overview 67
4.6.2. Block Design 67
4.6.3. Block General Validation 69
4.6.4 Block Interface Validation 70
4.6.5. Block Testing Process 70
4.6.6. References and File Links 70
4.6.7. Revision Table 70

4.7. Hardware Control API - Felipe Orrico Scognamiglio 71
4.7.1. Block Overview 71
4.7.2. Block Design 71
4.7.3. Block General Validation 73
4.7.4. Block Interface Validation 73
4.7.5. Block Testing Process 76
4.7.6. References and File Links 76

4.7.6.1. References (IEEE) 76
4.7.6.2. File Links 76

4.7.7. Revision Table 76
4.8. Graphical User Interface - Felipe Orrico Scognamiglio 78

4.8.1. Block Overview 78
4.8.2. Block Design 78
4.8.3. Block General Validation 80
4.8.4. Block Interface Validation 81
4.8.5. Block Testing Process 83
4.8.6. References and File Links 83

4.8.6.1. References (IEEE) 83
4.8.6.2. File Links 83

4.8.7. Revision Table 83

5. System Verification Evidence 84
5.1. Universal Constraints 84

5.1.1. The system may not include a breadboard 84
5.1.2. The final system must contain both of the following: a student designed PCB and
a custom Android/PC/Cloud application 84
5.1.3. If an enclosure is present, the contents must be ruggedly enclosed/mounted 84

6

5.1.4. If present, all wire connections to PCBs and going through an enclosure (entering
or leaving) must use a connector 84
5.1.5. All power supplies in the system must be at least 65% efficient 85
5.1.6. The system may be no more than 50% built from purchased modules 85

5.2. The system will press a button. 85
5.2.1. Requirement 85
5.2.2. Testing Process 85
5.2.3. Testing Evidence 85

5.3. The system turns multiple sized knobs. 85
5.3.1. Requirement 85
5.3.2. Testing Process 86
5.3.3. Testing Evidence 86

5.4. The system will have autonomous operation. 86
5.4.1. Requirement 86
5.4.2. Testing Process 86
5.4.3. Testing Evidence 86

5.5. The system will allow a user to manually control the device. 86
5.5.1. Requirement 86
5.5.2. Testing Process 86
5.5.3. Testing Evidence 87

5.6. The system will be able to toggle power to the stepper motors through the GUI.87
5.6.1. Requirement 87
5.6.2. Testing Process 87
5.6.3. Testing Evidence 87

5.7. The system will produce a video feed 87
5.7.1. Requirement 87
5.7.2. Testing Process 87
5.7.3. Testing Evidence 87

5.8. The Gantry System fits within a defined size 88
5.8.1. Requirement 88
5.8.2. Testing Process 88

5.9 The system will display commands on screen during video playback 88
5.9.1. Requirement 88
5.9.2 Testing Process 88
5.9.3. Testing Evidence 88

5.10. References and File Links 88
5.10.1. References (IEEE) 88
5.10.2. File Links 89

5.11. Revision Table 89

6. Project Closing 89
6.1. Future Recommendations 89

7

6.1.1. Technical recommendations 89
6.1.2. Global impact Recommendations 90
6.1.3. Teamwork Recommendations 90

6.2. Project Artifact Summary With Links 91
6.2.1 PCB and Schematic Diagrams 91
6.2.2 Mechanical Structure Fusion360 Designs 91
6.2.3 GRBL HAL file for Black Pill 91
6.2.4 Enclosure Models 91
6.2.5 User Interface / Hardware Control API Source Code 91
6.3. Presentation Materials 91

6.4. References and File Links 91
6.4.1. References (IEEE) 91
6.4.2. File Links 91

6.5. Revision Table 91

A. Appendix 92

8

1. Overview

1.1. Executive Summary

To help Tektronix both test their devices as well as offer remote operations for engineers
working at home, they have requested a device which can be used both in a laboratory setting
and remotely accessed. Our team has designed a gantry-style oscilloscope validation robot for
Tektronix. This robot is able to push buttons and turn the knobs of many different types of
Tektronix oscilloscopes and aims to allow remote testing and validation. Similar to a 3D printer
our robot will be able to autonomously test and run validation from scripts provided by Tektronix
engineers. The device also allows manual operators to work with the device on-site. With this
approach, we can program the robot to interface with any type of oscilloscope Tektronix may
use, and whatever testing procedure they need. This document serves to give people a better
understanding of the system at large and the technical aspects of it, with unique challenges
across multiple disciplines, including mechanical, electrical and computer engineering, and
computer science.

The team for the Automated Front Panel Testing consists of four individuals. Kevin Ho,
Dennis Kichatov, Felipe Orrico Scognamiglio, and Ryan M Christensen. All of the members
major in Electrical and Computer engineering and we are all very excited to tackle this project
and all its challenges. Since this is a partner project, the team will be working closely with our
partner, Tektronix. Tektronix is a company that specializes in creation and manufacturing of
electrical testing equipment. During this project’s lifetime our team of four will be working with a
team of staff members from Tektronix, under Ancil Tucker, to assist along the way.

1.2. Team Communications Protocols and Standards
Each member of the team can be contacted at their individual emails:

Ryan Christensen: chrisrya@oregonstate.edu
- Point of contact

Kevin Ho: hoke@oregonstate.edu
Dennis Kichatov: kichatod@oregonstate.edu
Felipe Orrico Scognamiglio: orricosf@oregonstate.edu

Project Partner contact information:
Ancil Tucker: ancil.tucker@tektronix.com

mailto:chrisrya@oregonstate.edu
mailto:hoke@oregonstate.edu
mailto:kichatod@oregonstate.edu
mailto:orricosf@oregonstate.edu
mailto:ancil.tucker@tektronix.com

9

Topic Protocol Standard

Due dates for deliverables The assigned work, either the
block or design, must be
completed before the assigned
dead-line. This gives the team
time to discuss and revise the
work if needed.

The work is completed and
the requirement that is set is
fully filled. The format is
based off of Canvas or set by
the team.

Task management The team will use Asuna to keep
track of progress and tasks.

Each individual member is
required to update their
progress on Asuna every
week.

Issue occurrence When an issue that can’t be
solved occurs, contact the team
through Discord to discuss the
problem. If the problem is still
not solved, the team will
schedule a meeting time.

Every team member must be
honest and open to listening
to each other. Every member
will try to help solve the
problem.

Requirement List Requirements for each block are
set and written down on a
shared Google Doc that all
members have access to.

Each member is responsible
to check and make sure their
block meets the requirement
set before the deadline.

Team Google Drive All documents, designs and
schematics are uploaded to the
shared Google drive. The drive
is also formatted with folders for
organization.

Each member is responsible
to upload their own work on
the shared drive and into the
correct folder.

Absence Team members must give notice
to other team members if they
cannot make a meeting.

The team members have to
be responsible to reach out
and catch up with what
happened during the
meeting.

Table 1: Team Standards

10

Project Partner Communication Analysis
● The purpose for this project is to automate the front panel testing and give employees a

remote way to access oscilloscope testing. The project partners are to give advice,
review the functionality, and provide additional knowledge to complete tasks.

● The project partners consist of a general project manager, and 4 other software/electrical
engineers from Tektronix.

● The project partners would like to know progress on the project and any questions that
the team has about the requirements.

● The project partners have not spent too much time on the implementation of the goal.
● The team will contact through email either to the project manager or directly to one of the

Tektronix team members once or twice a week. The team can also schedule team video
meetings done on microsoft teams.

Keeping the project partner and teammates informed is important to complete the task.
To keep the project partner informed, the team will email the partner on Mondays and Fridays.
Monday reports will go over tasks the team is working on throughout the week. Friday reports
will tell the project partner what progress has been made within the tasks. Within the team, team
members will update progress done on tasks in a group chat, discord. Team members must be
honest with their progress. When there is an issue the team member will first message the
team. If the issue can not be resolved through messages, the team will schedule a meeting to
discuss the problem. Team members also must listen to each other to create an inclusive
environment where everyone can ask questions and share ideas.

Blocks must have clear and concise requirements to avoid future confusion and error.
These requirements are written down on a document that all team members have access to.
This helps the project partner understand the function of the block. Having clear requirements
helps team members know what the block should or should not do. Block requirements also
have to be within the scope of the project. Requirements cannot be unrealistic for the project.

1.3. Gap Analysis
This project exists as a quality of life improvement to the Tektronix product validation and

development team. It will allow Tektronix team members to manipulate the physical panels
(buttons and knobs) of their oscilloscopes and to read data remotely. Tektronix is interested in
this project because it is a way to have their engineers test products from home. During the
current global pandemic, Tektronix employees either decided to work from home or had to work
from home due to laws and regulations set out by the state. This exposed a gap within their
current workflow that if engineers needed to work with hardware, they needed a way to access
the oscilloscopes without being able to work in their labs. Tektronix also believes that our design
could be used to validate and test the limit of their oscilloscopes. By having an automated robot
doing repetitive testing, the engineers are free to work on more important tasks. For this design
project, we were given freedom to choose whatever solutions we deem fit for the problem as
long as we properly fulfill the requirements proposed by Tektronix. More information about
project requirements and needs can be found in section 2 of this report.

11

1.4. Timeline/Proposed Timeline

Figure 1: Timeline

The project will be divided into three main phases. Drafting Phase (current phase),
Implementation and Testing phase, and Presentation and Project Closing phase. Each phase
has a different length and some overlapping is expected as we reach the end of the project
development and implementation.

The Drafting Phase is about sixty five days long (from October first to December fifth). During
this phase, the project is in the drafting stage, meaning that it is focused on the development of
ideas and methods.

The Implementation and Testing phase is about four and a half months long and focuses on the
implementation and testing of the design created during the initial phase. During this time,
production and assembly of all necessary components and code will take place. Changes to the
design get increasingly more difficult to accomplish, and therefore must be avoided.

The Presentation and Project Closing phase focuses on the finalization of development and
testing, the preparation of a presentation about the project, and the finalization of the project
documentation. This phase is about one month long, and is the last phase of the project before
it is delivered to Tektronix as a finished product.

12

Goals Current
States

Future States Gap(difference
between states)

Challenges Solutions

Meet the
Tektronix
team/partner

Introductions
Made

Meeting on
10.26.21

Not meet team
yet

Virtual
meeting on
microsoft
teams.

Wait till
Tuesday
10.26.21

Rough sketch
of diagram

Not started
yet

Block
diagram for
every aspect
of project

No blocks have
been sketched

Need to
know
parameters
and function
of project

Need to
know
parameters
and
function of
project

Set a timeline finished
rough
timeline

Completed
timeline

Timeline is in
the works

Need to
know
parameters
and function
of project

Need to
know
parameters
and
function of
project

Research for
project

Started Understand
what blocks
are needed
and how to
implement
them.

Not sure what
blocks we need.

Need to
know
parameters
and function
of project

Need to
know
parameters
and
function of
project

Bill of
Materials

Not started Finish
complete
B.O.M for
project

Have not
started on
B.O.M yet

Need to
know
parameters
and function
of project

Need to
know
parameters
and
function of
project

Impact and
risk report

Not Started Finish Impact
and risk
report for
project

Not started on
impact and risk
report yet.

Need to
know
parameters
and function
of project

Need to
know
parameters
and
function of
project

Table 2: Project Status

13

1.5. References and File links

1.5.1. References (IEEE)
[References to for Block Diagrams]

1.5.2. File Links
[Datasheets]

1.6. Revision Table

11/12/2021 Felipe: Updated Executive summary to reflect current design of the
project

11/12 Ryan: Section 1 Writing and Structure based on peer review and
instructor notes. Expanded Gap Analysis section.

11/12/2021 Felipe: Updated Timeline Description paragraphs

10/29/2021 Kevin: Added in table and bullet point list for team communications

10/29/2021 Felipe: New timeline

10/29/2021 Dennis: Reviewed document and worked on gap analysis

10/29/2021 Felipe: Include project partner contact information, move table from GAP
analysis to timeline and add explanation in GAP analysis

10/21/2021 Felipe Orrico Scognamiglio: Proofreading and final touches (1.1 and 1.2),
Section 1.4 (explanation of phases)

10/21/2021 Kevin Ho: Team Communications Protocols and Standards

10/21/2021 Dennis Kichatov: Executive summary (Intro) draft

10/21/2021 Ryan Christensen: Executive summary draft

10/20/2021 Kevin Ho: Initial draft of Timeline

10/20/2021 Dennis Kichatov: Initial draft Gap analysis

10/17/2021 Kevin Ho: Created document and outline

Table 3: Revision Table Section 1

14

2. Requirements Impact and Risks

2.1. Requirements
Tektronix has provided a requirements writeup divided in five different priority groups, 1 being
the most important and 5 the least important.

2.1.1. Project Requirement 1: The system will press a button
Engineering Requirement: The tool head will be able to interact and activate the buttons on the
front of the oscilloscope, and properly trigger the buttons without touching the other buttons on
the device.

Validation Process:
1. The command to push a certain button is sent by the user by selecting a saved button

and pressing the designated button on the GUI to send the command.
2. The tool head will move to the correct button that is sent by the user.
3. The tool head will push the button.

2.1.2. Project Requirement 2: The system turns multiple sized knobs
Engineering Requirement: The tool head will be able to grip and turn a knob on the front of the
oscilloscope, without touching the other knobs on the device.

Validation Process:
1. The command to turn a knob is sent by the user by selecting a saved knob and pressing

the designated button on the GUI to send the turn command.
2. The tool head will move to the correct knob that is sent by the user.
3. The tool head will grip the corresponding knob.
4. The tool head will turn the knob.

2.1.3. Project Requirement 3: The system will have autonomous operation.
Engineering Requirement: The user will use the GUI to request movement to a label location or
a button press and the system will move the toolhead accordingly.

Validation Process:
1. The user will send a command to move the device along the X, Y, or Z axis, using a

saved label location by selecting a label location or button location and pressing the
corresponding button in the GUI to send the command.

2. The user interface will interpret the commands and send the gcode.
3. The motor controller will follow the g-code received and move the mechanical frame to

the designated positions.

15

2.1.4. Project Requirement 4: The system will allow a user to manually
control the device.
The user will be able to manually control the system over a GUI and move the toolhead to its
location, similar to jogging on a CNC Machine.

Validation Process:
1. The user will send a command to the system to move the device along the X, Y, or Z

axis, by typing the gcode into the terminal on the GUI.
2. The user interface will relay the commands the the motor control block.
3. The motor controller will follow the gcode received and move the mechanical frame to

the designated positions.

2.1.5. Project Requirement 5: The system will be able to toggle power to
the stepper motors through the GUI.
Engineering Requirement: The user is able to toggle the relay powering the stepper motors of
the mechanical structure by pressing the power button on the GUI.

Validation Process:
1. The user presses the power button located on the top left portion of the GUI.
2. The system will turn ON or OFF the relay powering the stepper motors.
3. The current state of the relay can be seen updated on the GUI

2.1.6. Project Requirement 6: The system will produce a video feed
Engineering Requirement: The system will collect a video feed from a device attached to the
Raspberry Pi 4. The video feed will be accessible to the user in the user interface. The video
feed can be recorded for future use.

Validation Process:
1. Inside the User Interface, the user will click on the toggle video feed button.
2. The user starts recording the video by typing in a file name on the text field and toggling

the record video button.
3. Video starts being recorded to the desired filename.
4. The user stops the video recording by toggling the video recording button.
5. Videos are saved to the filename given by the user on the user interface folder.

2.1.7. Project Requirement 7: Fits in a defined size
Engineering Requirement: The mechanical system will fit inside a 22in height x 34in width x 20in
depth space. This is to ensure that Tektronix will be able to fit the device on either a shelf or a
desk with easy access.

Validation Process:

16

1. Using a measuring tape, the system width will be shown to be no greater than 34in.
2. Using a measuring tape, the system depth will be shown to be no greater than 20in.
3. Using a measuring tape, the system height will be shown to be no greater than 22in

2.1.8. Project Requirement 8: The system will display commands on screen
during video playback
Engineering Requirement: The system will display the currently being executed command in the
video feed as well as recordings.

Validation Process:
1. The user will press the toggle video button
2. The user will start a recording
3. The user will issue a command to the system
4. Upon completion of the command, the user will stop the recording
5. The user will check the recording for executed command

2.2. Design Impact Statement

2.2.1 Public Safety

2.2.1.1 Impacts
This project addresses the need to increase productivity in Tektronix. The product cannot

be a threat to anyone who is near or working with it. As technology improves, the products will
be faster and more efficient. This can sometimes overshadow the thought of safety measures.
Our project could be operating alongside an employee, it cannot pose a threat to them or any
other machinery around it. The requirements also stated that the machine can be automated.
With automation a bug can occur and the machine can behave differently from what was
expected.

To reduce the damage of the bug an emergency stop button can be implemented or the
device can be isolated during use. Thomas Arnold and Matthias Scheutz stated in The “big red
button” is too late: an alternative model for the ethical evaluation of AI systems, that a button
can give human control over the AI interface [1]. Even though our machine does not run full by
itself, it could have a chance of malfunctioning during a command. A malfunction can cause
damage to machines around it or people. A button will give the operator control over it, just in
case any issues occur [1]. Another solution of this would be to have the project inside an
enclosure, from Ken Meyers [2]. The main idea is to isolate the issue within a contained space
where any damage is contained [2]. This will keep out any person to interact with the project
while it is running. If a malfunction occurs it will contain the damage to the device inside the
enclosure. Harming another machine would be bad but not as bad as hurting a human. The
button to stop the machine would be the best solution because it gives the user a direct sense
of control over the product. The button ideally would be a physical button that is on our project

17

that is in an easy spot for the user to reach and use. Another step forward is to design the
button to have a virtual accessibility so the machine can run remotely and the user can stop it
remotely.

2.2.1.2 References IEEE
[1] Thomas Arnold, Matthias Scheutz, “The “big red button” is too late: an alternative model for
the ethical evaluation of AI systems”, springerlink.com. [Online] Available:
https://link.springer.com/article/10.1007/s10676-018-9447-7 [Accessed Oct. 27, 2021]

[2] Ken Meyers, “Faster, High Tech Machines Demand Enhanced Safety Precautions”,
proquest.com. [Online] Available: https://www.proquest.com/openview/
77c1a249ec43d3639c62d742aec23359/1?pq-origsite=gscholar&cbl=35812 [Accessed Oct 27,
2021]

2.2.1.3 Revision Table

05/06/2022 Kevin: Added section 2.2.1

2.2.2 Welfare Impacts

2.2.2.1 Impacts
This automated solution can assist human testing of some of Tektronix’s products.

During the COVID-19 pandemic, the need for ways to interact remotely greatly increased.
According to BBC News, the robotization of work that was previously done by humans can help
with social distancing and quality of life. “People will prefer to go to a place that has fewer
workers and more machines” [1].

Automation can also come with some safety concerns. If the solution is not properly
validated for safety, it can cause problems for human operators that could lead to injuries or
worse. For that reason, the American National Standards Institute, the International
Organization for Standardization, and others created safety requirements for all industrial robots
and robot systems [2]. Since Tektronix plans to employ this solution as an alternative to testing
the equipment in person, the implications of safety are greatly reduced. Of course, there are still
minimum operating standards that must be met so that handling the equipment is safe and
effortless.

As evidenced in section 2.2.4.1 of this report (Environmental Impacts), electronic waste
is highly toxic to humans, plants, and livestock. Those toxins may cause problems with the
brain, liver, and other organs. It could also lead to birth defects and congenital diseases. The
particles released from the burning of electronic waste will also eventually settle on the soil and
may contaminate causing a large range of undesirable outcomes such as altering pH levels of
soil and water and temperature changes. Heavy metals, such as lithium, lead, and barium can

https://link.springer.com/article/10.1007/s10676-018-9447-7
https://www.proquest.com/openview/77c1a249ec43d3639c62d742aec23359/1?pq-origsite=gscholar&cbl=35812
https://www.proquest.com/openview/77c1a249ec43d3639c62d742aec23359/1?pq-origsite=gscholar&cbl=35812

18

pollute the groundwater beneath the deposits and ultimately damage ecosystems. Recovery
from this is highly unlikely. In order to mitigate the risks of this environmental impact, and
consequently mitigate the health, safety, and welfare impacts, this project will avoid
unnecessary use of potentially toxic materials and try to reduce the amount of materials (such
as plastics on PCBs and 3D printed enclosures, toxic metals in PCBs, and materials that are
environmentally expensive to produce such as the Aluminum used for the frame of the gantry)
needed across all areas of the project.

2.2.2.2 References IEEE
[1] Z. Thomas, “Coronavirus: Will covid-19 speed up the use of robots to replace human
workers?,” BBC News, 18-Apr-2020. [Online]. Available:
https://www.bbc.com/news/technology-52340651. [Accessed: 29-Oct-2021].

[2] “Robotics Standards,” Robotics - Standards | Occupational Safety and Health Administration.
[Online]. Available: https://www.osha.gov/robotics/standards. [Accessed: 29-Oct-2021].

2.2.2.3 Revision Table

05/06/2022 Felipe: Added Sections 2.2.2.1, 2.2.2.2, and 2.2.2.3

2.2.3 Cultural and Social Impacts

2.2.3.1 Impacts
The number one concern about automation is the effect it will have on jobs and what it

means for low-skilled workers. But the impacts of automation are much broader than simply job
stability. Automation has an impact within workplace culture, human machine relationships, and
workplace effectiveness.

A report by the International Federation of Automatic Control, a collection of engineers
and scientific societies put forth a report of the social and human-centered approach that
automation has currently. [1] They argue that with the focus and strength being put into
computer and technical-centric research, that we lose sight of the human-centric areas. “There
is a too large polarisation between technically-oriented reasoning on one hand, and
socially-oriented reasoning on the other in order to efficiently apply manufacturing technologies
such as enterprise resource planning systems in less automated areas such as heath-care” [1].
Because of the technology currently in use, automated systems currently only serve the
technical-centric workplace and research, often leaving behind the human aspect of machines.
The methods and technologies developed for engineers, factories, and power plants, cannot be
used within areas such as health-care, retail, or government, as the nature of work is so vastly
different that trying to use the same autonomous system from one to another, doesn’t work. This

19

creates a problem that needs to be addressed, one where automated and machine systems are
built to work with humans in what the paper calls “Human-Machines” [1].

But while the social issues, such as policy, labor, and workforce can be clearly defined
and understood, the cultural aspect is a bit more invisibile, which can be a serious misstep.
“There is sharpened global competition in business, where technology in itself is less seen as
the prime weapon. It is rather the way it is being utilized, which depends on human resources:
skills, creativity, values, commitment etc. that gives the (competitive) edge. Such factors have a
cultural background and we thus have to start to look at culture as a competitive advantage.” [2]
People are not just defined by the company they work for or the degree they have but through
the culmination of their background and experiences. This is a key factor to working effectively,
and is often why workplace culture is a major factor on an employees performance. Automated
systems are no less affected by this, their implementation, and the way they integrate with a
workplace needs to be carefully considered.

Being able to reach out and talk with the Tektronix engineers and get to know them has
been a great way to understand the Tektronix work culture and the way they would interact with
our tools. With the goal of building a system that supplements the Tektronix Engineers, creating
a system that is accessible for a variety of engineers and offering thorough documentation, we
hope that anyone who works with the system has the ability to learn our device.

2.2.3.2 References IEEE
[3] Mayer, Frederique. ‘Social impact of automation trends and issues: an human centred
systems engineering perspective” Sciencedirect.com. July 2008. Web. [Accessed Nov,
30.]
https://www.sciencedirect.com/science/article/pii/S1474667016397762

[4] Cernetic, Et. Al. “Revisiting the social impact of automation” IFAC 2002. Web.
[Accessed Dec, 1.]
https://folk.ntnu.no/skoge/prost/proceedings/ifac2002/data/content/02899/2899.pdf

2.2.3.3 Revision Table

05/06/2022 Ryan Christensen: Added Sections 2.2.3.1 - 2.2.3.3

2.2.4 Environmental Impacts

2.2.4.1 Impacts
Just like any other electric or electronic solution, this project is bound to have some

environmental impacts. This project may or will impact the environment in the following ways
(not limited to): Generation of electronic waste and energy consumption.
Energy consumption is a very important impact. With the increase of electronic devices across
the globe, the impacts of energy generation are increasingly more evident. It is estimated that

https://www.sciencedirect.com/science/article/pii/S1474667016397762
https://folk.ntnu.no/skoge/prost/proceedings/ifac2002/data/content/02899/2899.pdf

20

by 2035, energy generation, will contribute to over 76% of global greenhouse gas emissions [1].
The environmental impacts of energy generation are not limited to just greenhouse gas
emissions, there is also water usage that can be over one thousand one hundred gallons per
kilowatt-hour for coal power plants or four thousand for geothermal power. And it does not stop
there. When burning biofuels, there is a consumption of over nine hundred and seventy-three
thousand liters per kilowatt-hour (Biofuels: soybean) of energy generated [2]. It is estimated that
the costs of changing the way energy is produced are much higher than building more efficient
products [1]. Knowing those factors, and also knowing that there is a high likelihood that this
solution will stay effectively online for an average of twenty-four hours a day and seven days a
week, will affect the design of this project so that it is the most efficient possible solution (based
on the member’s current knowledge and experience) for the sole purpose of avoiding wasteful
use of energy.

The generation of electronic waste is a very important point to consider when designing
a solution to a problem. Just like any other product, this solution has a limited lifecycle.
“Unbeknownst to many consumers, electronics actually contain toxic substances - therefore
they must be handled with care when no longer wanted or needed” [3]. It is bound by the
physical constraints of the design and unavoidably will produce waste. In the next few
paragraphs, I will explain the negative effects of electronic waste on the air, soil, water, and
humans.

It is possible to see contamination in the air when the electronic waste is dismantled,
shredded, or melted, this way releasing dust and or toxins, such as dioxins [3] (group of
chemical compounds that are persistent organic pollutants in the environment), into the
environment and not only pollute the air, but can cause health problems. One of the most
decisive problems that the burn of electronic waste brings is the release of very small particles
that can travel thousands of miles and pose health risks to humans or animals.
Soil contamination is also a very important topic when talking about the negative effects of
electrical waste. The improper disposal of electronic waste to landfills can cause both heavy
metals and flame retardants [3] to contaminate the soil and ultimately contaminate the
underlying underground water, this way contaminating crops or animals that may use that water
later on which can cause illness and even death. The particles released from the burning of
electronic waste will also eventually settle on the soil and may contaminate causing a large
range of undesirable outcomes such as altering pH levels of soil and water and temperature
changes [3].

Just like evidenced before, the impacts of electronic waste in water are not small. Heavy
metals, such as lithium, lead, and barium can pollute the groundwater beneath the deposits and
ultimately damage ecosystems. Recovery from this is highly unlikely.
Lastly, as humans are inherently selfish, the negative impacts of electronic waste on humans.
As evidenced in the paragraphs above, electronic waste is highly toxic to humans, plants, and
livestock. Those toxins may cause problems with the brain, liver, and other organs. It could also
lead to birth defects and congenital diseases.
For those reasons listed above and others, this project will aim to be the most efficient possible
with the use of non-renewable resources such as heavy metals and plastics. This can be
accomplished by reducing the size of PCBs and other components of the project that contain

21

those substances and materials, or even replacing them whenever possible for other less
impactful or renewable materials.
With this policy, this team aims to try to prevent the contamination of the air, water, and soil by
effectively reducing the sources of contamination that are present in the design and constructing
the possible parts of the solution with renewable materials (such as biodegradable filament for
all 3D printed portions of the project) and, if available, recycled ones (such as recycled
aluminum for the frame, or refurbished/used components like Stepper Motor Drivers, or the
Stepper Motors themselves).

2.2.4.2 References IEEE

[1] J. Sandwood, “Climate change is pushing electrical engineers to focus on the environment,”
EEWeb, 07-Jan-2019. [Online]. Available:
https://www.eeweb.com/climate-change-is-pushing-electrical-engineers-to-focus-on-the-environ
ment/. [Accessed: 29-Oct-2021].

[2] “Environmental impact of electricity generation,” Wikipedia, 28-Oct-2021. [Online]. Available:
https://en.wikipedia.org/wiki/Environmental_impact_of_electricity_generation. [Accessed:
29-Oct-2021].

[3] “Waste & its negative effects on the environment,” E. [Online]. Available:
https://elytus.com/blog/e-waste-and-its-negative-effects-on-the-environment.html. [Accessed:
29-Oct-2021].

2.2.4.3 Revision Table

05/06/2022 Felipe: Added section 2.2.4

2.2.5 Economic Impacts

2.2.5.1 Impacts
The team’s project would be very beneficial for the economy of Tektronix and smaller
companies. The reason for this is because our design will improve the speed of testing for
smaller circuits and oscilloscopes. By using our system to automate the routine process of
setting up the oscilloscope for testing we save a lot of time the engineers would spend not
working on their circuit. Our system can even be used to stress test oscilloscopes and their
buttons and knobs by having it autonomously push a button thousands of times until it breaks.
This means that limit tests don't have to be tested by a person saving the company time and
money. The problem with this lies in the article [6]. By implementing our system this way our
design would essentially be replacing a person in their job.This would mean new personnel
would have to be educated in our system, how it works and how to fix it. This will save the
company money in the long run but initially production would slow down. The downside to this
approach would be that some people would lose their current job or have to change jobs. This is

22

because our device removes the need for specialized people to test equipment. With the robot
any person will be able to run a preloaded script for any oscilloscope without needing prior
knowledge. This means companies can save money by laying off their tech tester occupations.

Another downside to using our system would be the break factor. According to tektronix[7] their
new series 5 oscilloscopes cost $20,000-$30,000 and they want to use our system on these
devices. Since we are taking the human factor away from the oscilloscope there is always a
chance that our system can break the scope. The device could break the scope by pushing too
hard on the buttons or by over rotating the knobs. Some knobs on an oscilloscope don't rotate
360 degrees and by mixing up the knobs the machine could break one. Another way an
oscilloscope could be broken is by falling. From Tektronix, we know that they store some of their
oscilloscopes in high places and when testing with the device, the machine could push too hard
and thus knocking a scope over. This will be a costly replacement for Tektronix and would take a
lot of time to get a new replacement.

2.2.5.2 References IEEE
[6] Edgepoint Learning. What's The Real Cost of Training New Employees? Micheal Hanso.
10.29.2021.[Online]. Available:
https://www.edgepointlearning.com/blog/cost-of-training-new-employees/.

[7] Tektronix. 5 Series MSO Mixed Signal Oscilloscope. 10.29.2021. [Online].
Available:https://www.tek.com/oscilloscope/5-series-mso-mixed-signal-oscilloscope.

2.2.5.3 Revision table

05/06/2022 Dennis: Added Economic Impact section 2.2.5

https://www.edgepointlearning.com/blog/cost-of-training-new-employees/
https://www.tek.com/oscilloscope/5-series-mso-mixed-signal-oscilloscope

23

2.3. Risks

Risk
ID

Risk
Description

Risk
Category

Risk
Probability

Risk
Impact

Performance
indicator

Responsible party Action Plan

R1 Vendor
Delay

Time Medium H Shipping
times

Anyone who needs to
order parts/components

- Ryan
- Dennis
- Kevin

To reduce the risk the team will plan
ahead (order needed parts early.)

R2 PCB
schematic
do not work

Technical Low H Working
PCB

Anyone who orders a
PCB

- Ryan
- Dennis
- Kevin

To reduce the risk the team will
verify PCB design and schematic
with other group members before
ordering.

R3 Over budget Cost Low M-L Budget
spreadsheet

Anyone who needs to
purchase something for
the project

- Ryan
- Dennis
- Kevin

To retain the problem the team will
revise and change designs if
needed to fit the budget.

R4 Incompatible
blocks

Technical Low H Block
combination

People whose block
interfaces with another

- Ryan
- Kevin
- Dennis
- Felipe

To reduce the risk the group will
decide during the design phase how
blocks interface as a requirement for
that block. Also
communications/updates with other
group members whose block is
connected.

R5 Project
Partner
Approval

Time Low M Project
Partner
Updates

Group members who are
assigned to check off
blocks.

Get the schematic and design done
early to send to the project partner
this will reduce the likelihood for this

24

- Ryan
- Kevin
- Dennis
- Felipe

risk to happen.

R6 Block
Completion

Technical Low H Group
meetings

Every group member To retain the problem the team will
ask for help and advice if a problem
occurs that the one member can’t
solve.

Table 4: Risk Analysis

25

2.4. References and File Links

2.4.1. References

2.4.2. File Links

2.5. Revision Table

05/06/2022 Kevin: Added section 2.2.1

05/06/2022 Dennis: Updated Section 2.2.5

05/06/2022 Felipe: Updated Sections 2.2.4 and 2.2.2

05/03/2022 Ryan: Updated Project Requirements Section 2.1 to match Section 5

05/03/2022 Felipe: Updated Project Requirements Section 2.1 to match Section 5

12/03/2021 Felipe: Update Project Requirement 2.1.6

12/03/2021 Ryan: Update priorities to fit the format needed & peer reviews

12/03/2021 Dennis: Update priorities to fit the format needed

12/03/2021 Kevin: Update priorities to fit the format needed

11/12/2021 Kevin: Update Priority 2, Risk action plan update

11/12/2021 Dennis: Peer review edits

11/12/2021 Ryan: Peer Review Edits to System Requirements

11/12/2021 Felipe: Update Priority 1 Requirements

11/12/2021 Felipe: Replaced percentages to Low/Medium/High in section 2.3 Risks

10/29/2021 Felipe: Included requirements checklist

10/29/2021 Kevin: Risk analysis draft, verification for checklist

Table 5: Revision Table Section 2

26

3. Top-Level Architecture

3.1. Block Diagram

27

3.2. Block Descriptions

3.2.1 User Interface:

Figure 3: User Interface Block
The user interface receives user input through direct interaction with the user interface

The user interface interacts with the Hardware Control API by translating the user inputs into
usable data that is then sent to Hardware Control API for translation and serial forwarding. The
user input can be considered as raw or sanitized input based on the source. The user is able to
use preset commands by pressing a button in the User Interface, typing commands in the
terminal, loading a script file, and loading a labels file. The user interface receives information
from the user or the Hardware Control API (henceforth regarded as HCAPI). The input from the
HCAPI consists of positional data, values returned from the microcontroller and other
information that is available. The user input consists of keyboard input through a command-line
interface available within the User interface, mouse clicks in buttons available within the User
interface, Files containing positional data for buttons and knobs as well as knob height and
diameter, and GCode scripts.

28

3.2.2 Power Supply:

Figure 4: Power Supply Block
Using 120 AC Voltage power supplied from a wall outlet. The team will use a switching

power supply from Stepperonline to regulate the AC voltage into usable 12V DC voltage. The
switching power supply takes in 120VAC from the wall outlet and outputs 12VDC. From there
the team will use custom DC to DC converters to regulate the voltage down and to be able to
adjust the output current and power. The converters will need to lower the 12V into a workable
3.3-5 Volts, 3.5 Amps and 18 Watts to power the Raspberry Pi and microcontroller. Coming from
the power supply and straight to the stepper motors is 12-16 Volts to power the stepper motors.
A relay will act like a gate on the microcontroller and when there is no signal the power supply
will be cut off from the microcontroller. The relay will form a digital kill switch to turn off the
system. The block champion for the power supply is Dennis Kichatov.

3.2.3 Hardware Control API:

Figure 4: Motor Control API Black Box Diagram

29

The Hardware Control API receives the encoded user interface commands. The user
data is then translated into GCode and put into a transmission queue. The Hardware Control
API then goes through the transmission queue and sends the data packet to the motor control
block. Upon receiving and completing the task, the motor control block will send a confirmation
code back to the Hardware Control API announcing that it is ready to receive another data
packet. The Hardware Control API allows the abstraction of the connection between the User
Interface (or another program that uses this API) and the Motor Control block that runs a version
of GRBL HAL. Usually, when interfacing with GRBL the user would need to directly send GCode
or other configuration commands to the microcontroller, instead, with this API, the user is able to
easily set up and move the payload of the gantry system with a simple custom implementation
in python.

3.2.4 Motor Control:

Figure 5: Motor Control Block
The motor control block receives data from the Raspberry Pi. The data received will be

in gcode. It will use the data with GRBL HAL to send data to the motor drivers within the block to
move the stepper motors to a xyz coordinate. The Motor controller will also route the voltage
needed for each motor driver. The motor driver will also receive updates of the status of the
motors through a digital signal. This signal is then passed on to the raspberry pi to update the
user interface. This will be used to keep track of the state of the motors. The interrupts will send
a digital signal to the motor controller. This signal will be from limit switches so the motor
controller will know the limits of the mechanical structure. The block champion for Motor Control
is Kevin Ho.

30

3.2.5 Interrupts

Figure 6: Interrupts Block
The interrupts block will be limit switches that will send a digital signal to the motor

controller. The limit switches will act as boundaries for the motors and system. When the
mechanical structure hits the limit switch, the switch will send a 1 to the motor controller to
signal the bounds of the structure. The block champion for Interrupts is Kevin Ho.

3.2.6 Mechanical Structure:

Figure 7: Mechanical Structure Block
The mechanical structure is the physical device that interacts with the oscilloscope. The

mechanical structure will take the rotational movement of the stepper drivers on each axis and
turn it into linear motion on linear rails. Through a series of belts and rails, the turning of each
stepper motor will move the tool head in 3D space allowing the robot to move in each direction.
The movement on each axis, including the toolhead, will be monitored by limit switches which
will be used to notify the motor controller if the tool has been moved too far in either of the 4
directions. The champion for the Mechanical Structure is Ryan Christensen.

31

3.2.7 Enclosure:

Figure 8: Enclosure Block
The enclosure for the system will keep all the circuitry and wiring together This enclosure

will make sure that if the structure has to be moved all the wiring and PCB boards won't break or
move. This enclosure will make the wiring easy to follow and will make the project look more
presentable. The block champion for the Enclosure is Dennis Kichatov.

3.2.8 Stepper Motors:

Figure 9: Stepper Motors Block
The Stepper Motors block includes both the Stepper Motor Drivers on the Motor Control

PCB and their corresponding motors on the mechanical device. Taking in 12V DC Power, the
drivers will convert the digital signal received from the Motor Controller board and convert it into
pulses and current inside the motors. These currents and pulses operate the stepper motors on
the gantry, which will in turn move in the corresponding axis in the direction and amount as
directed by the driver. The champion for the Stepper Motors is Ryan Christensen.

32

3.3. Interface Definitions

3.3.1 User Interface

Interface
Property

Why is this interface this value? Why do you know that your
design details for this block
above meet or exceed each

property?

otsd_usr_ntrfc_usrin : Input

Other: User click
on button or write
GCode in User
Interface.

The Mouse and Keyboard are
connected to the Raspberry Pi.
Naturally, any GUI that is running
on the Raspberry Pi is able to
receive inputs from the keyboard
and mouse.

The Raspberry Pi is able to read
the information sent from the
mouse and keyboard. The GUI
should be able to receive this data
whenever is selected as a window.
The GUI has multiple buttons. Each
button is clickable. The GUI also
has a text box that will serve as a
terminal that will accept written
commands.

Other: Script File User is able to load a script file
containing a list of GCode
commands to be sent to the
microcontroller.

The GUI is able to load and run the
script. Information about execution
is added to the terminal.

Other: Labels File User is able to load a file containing
a list of Labels (.csv format) to be
used as macros.

The GUI is able to load and
interpret the list of labels and move
the payload when requested.

hrdwr_cntrl_p_usr_ntrfc_data : Input

Messages:
Hardware
Confirmation and
Location Data

After receiving a request, the API
will return send back the requested
data to the user.

The API is able to receive the string
from the microcontroller, parse the
necessary values from it, and return
it to the user.

33

Other: List of
character arrays
for x, y, z position

The work position, and machine
positions are reported as x, y, and z
positions.

The positional data is parsed by the
GST and returned to the API as a
list of strings, each containing the x,
y, and z coordinates.

Other: Character
array containing
machine status

The machine status is reported as
“Idle”, “Run”, among other values.
All those values are strings sent by
the microcontroller.

The machine status data is parsed
by the GST and returned to the API
as a single string to the User.

usr_ntrfc_hrdwr_cntrl_p_data : Output

Messages:
Translated input
from the user
interface to
Hardware Control
API (button
pushes)

After the user interfaces with the
GUI, sanitized data is sent to the
API to be interpreted and
transmitted to the Motor Control
block. The API is capable of
translating raw positional data such
as x, y, and z and feed rate F to
Gcode commands that are queued
in the GST.

Received data is understood and
an appropriate response is
triggered. If, for example, the data
informs that the payload should
move, relative to the current
position, 3 cm on the X-axis, the
API translates it to GCode and
adds it to the broadcast queue.

Other: Sends
request to set
text over video
stream, and take
frame captures

The API is capable of setting text
over the video stream or taking
snapshots. Text is automatic, but
frame captures require the user to
name the file and press a button.

The API is able to request the VST
to capture the current frame as a
jpeg image or add text over the
streaming video. (this should be a
simple function call)

Other: Raw
GCode
commands to be
sent to
microcontroller
(input from the
terminal, script,
or labels)

The API is capable of translating
raw positional data such as x, y,
and z and feed rate F to Gcode
commands (labels).
Terminal and Script commands are
sent without checking (unsanitized).

The API is able to generate
commands to grblHAL that accept
incremental or absolute coordinates
and feed rate (from labels).
The API is capable of receiving
Gcode commands from the terminal
or script to send to the
microcontroller.

34

3.3.2 Hardware Control API
hrdwr_cntrl_p_mtr_cntrl_data : Output

Other: Sends one
GCode command
at a time

The API is expected to send only
GCode commands and other GRBL
HAL specific commands to the
microcontroller. As per the design,
the API will send only one GCode
command at a time while waiting for
a response from grblHAL.

The microcontroller receives the
transmission and sends back a
confirmation. If data was requested,
data is sent back as well.

Other: Data
Character Arrays

The API will send strings to the
microcontroller that are essentially
character arrays through serial.

Both grblHAL and the API expect
the use of strings to communicate
with each other. The API can
generate and send, through serial,
messages to the microcontroller.

Protocol: USB The microcontroller is connected to
the raspberry pi through USB
(serial)

The raspberry pi has multiple USB
ports and is able to connect to the
microcontroller without a problem.
With the use of the pyserial library,
the API is able to interact with the
USB connection and send and
receive commands to the
microcontroller.

hrdwr_cntrl_p_usr_ntrfc_data : Output

Messages:
Hardware
Confirmation and
Location Data

After receiving a request, the API
will return send back the requested
data to the user. At this point, the
data is limited to Status
confirmations and Locational data.

The API is able to receive the string
from the microcontroller, parse the
necessary values from it, and return
it to the user.

Other: List of
character arrays
for x, y, z position

The work position and machine
position are reported as x, y, and z
positions.

The positional data is parsed by the
GST and returned to the API as a
list of strings, each containing the x,
y, and z coordinates.

35

Other: Character
array containing
machine status

The machine status is reported as
“Idle”, “Busy”, among other values.
All those values are strings sent by
the microcontroller.

The machine status data is parsed
by the GST and returned to the API
as a single string.

mtr_cntrl_hrdwr_cntrl_p_data : Input

Other: Sends one
GCode command
at a time

The motor controller is expected to
send only confirmations and
positional data to the Raspberry Pi.

The API receives the transmission
and is able to process the data. If,
for example, positional data is
expected to be received, it will
properly process and return to the
user.

Other: Data
Character Arrays
From and to the
µController to the
Raspberry Pi 4

The microcontroller will send
positional data and confirmations to
the API. That information is sent as
a string that is essentially a
character array through serial.

Both grblHAL and the API expect
the use of strings to communicate
with each other. The API can
generate and send serial messages
to the microcontroller.

Protocol: USB The microcontroller is connected to
the raspberry pi through USB
(serial)

The raspberry pi has multiple USB
ports and is able to connect to the
microcontroller without a problem.
With the use of the pyserial library,
the API is able to interact with the
USB connection and send and
receive commands to the
microcontroller.

usr_ntrfc_hrdwr_cntrl_p_data : Input

Messages:
Translated input
from user
interface to
Hardware Control
API

After the user interfaces with the
GUI, sanitized data is sent to the
API to be interpreted and
transmitted to the Motor Control
block.

Received data is understood and
an appropriate response is
triggered. If, for example, the data
informs that the payload should
move, relative to the current
position, 3 cm on the X-axis, the
API translates it to GCode and
adds it to the broadcast queue.

36

Other: Receives
usable user input
to request video
frames, take
snapshots, or set
text over video
feed

The API is capable of sending back
to the user raw video frames
(usually as a NumPy array), set text
over the video stream, or taking
snapshots.

The API is able to request the VST
to send the latest frame as a pixel
array, capture that frame as a jpeg
image or add text over the
streaming video.

Other: Receives
usable user input
information to
translate to
GCode
commands and
add to daemon
queue

The API is capable of translating
raw positional data such as x, y,
and z and feed rate F to Gcode
commands that are queued in the
GST.

The API is able to generate
Jogging commands to grblHAL that
accept incremental or absolute
coordinates and feed rate. The
command is then added to the
send queue.

3.3.3 Mechanical Structure
MCHNCL_STRCTR_INTRRPTS_ENVIN (X, Y, Z) : Output

Description: Axis
limit switch, used
to home device
and alarm status
for Motor
Controller

The limit switches will be
used to check if the
system is at the
boundaries where we can
use that information to
alarm the system and
home it.

The limit switches will be secured at the
boundaries of the system. When the switch is
closed the signal will go to the microcontroller
to either stop the machine or home it.

Logic
Level:0.3-0.0V,
5-4.7V

The limit switch will
produce a signal logic
high or low, 5V or 0V,
depending if the structure
hits the limit switch.

The common port on the limit switch will be
connected to ground. The internal pull up
resistor will be on to produce a 5-4.7B signal
when the switch is hit. The switches are daisy
chained in a way where ground will be going
through the switches unless a switch is hit.

Data: CLOSED
in normal state,
OPEN when limit
switch is active

The limit switch should be
active when there is no
physical contact on the
switch. When the switch
is pushed down the
normal state should occur
to produce the 5V signal.

The limit switch can be hooked up to be
normally closed. This will create the needed
interaction.

STPPR_MTRS_MCHNL_STRCTR_MECH: Input

Minimum Linear The system needs to The default setting for GRBLHal was

37

Speed: 1in/Sec respond to an input in
a timely manner, while
retaining precision.
Using a controlled
speed like this helps to
avoid unnecessary
Jerk or Acceleration
which may cause
missed steps.

about 6in/sec. By staying at the default
we give ourselves headroom of
4-5in/second in case reliability or
precision becomes an issue.

Minimum
Precision +/- .5in

The system will be
working with

Using a direct belt system we can
directly control the distance traveled by
the motor through the number of
rotations. A single step is equal to about
.15mm of travel in the linear direction.
Well below the .5in minimum.

Minimum Force
Output; 20oz

The motor needs to be
strong enough to move
the device.

Previous testing has shown that the
gantry required 6-10ozs to pull the
gantry back and forth along the X axis.

3.3.4 Stepper Motors
MTR_CNTRL_STPPR_MTRS_COMM: Input

Protocol:
Step-Direction

The stepper driver
chosen uses step and
direction to interface
with it [2].

GRBL HAL[1] sends the step and
direction signals given the G code
where the output pins are connected to
the stepper driver.

Logic Level: 3.3V,
0V

The stepper driver
uses 3.3V and 0V for
the direction [2]. The
output pin from the
µController does not
provide 3.3V exactly
so it should fall around
it.

The stepper driver will need 3v3 for
going one direction and 0 going the
other. The µController outputs 3v3 for
logic high from the datasheet.

Messages:
Direction to spin
motor - Step or
Hold motor
direction

There will be 4 stepper
motors and stepper
drivers and each will
be routed to a specific
pin on the µController.
One motor for each

Step and direction pins for each stepper
are mapped for different axes in grbl
HAL[1]. The µController produces a
voltage on the step pin depending on
the speed. If there is 0 voltage the
motors will stop.

https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

38

axis and one for the
toolhead. The step will
change, increase or
stay zero to tell the
stepper to move
forward or stop.

STPPR_MTRS_MCHNL_STRCTR_MECH: Output

Minimum Linear
Speed: 1in/Sec

The system needs to
respond to an input in
a timely manner, while
retaining precision.
Using a controlled
speed like this helps to
avoid unnecessary
Jerk or Acceleration
which may cause
missed steps.

The default setting for GRBLHal was
about 6in/sec. By staying at the default
we give ourselves headroom of
4-5in/second in case reliability or
precision becomes an issue.

Minimum
Precision +/- .5in

The system will be
working with

Using a direct belt system we can
directly control the distance traveled by
the motor through the number of
rotations. A single step is equal to about
.15mm of travel in the linear direction.
Well below the .5in minimum.

Minimum Force
Output; 20oz

The motor needs to be
strong enough to move
the device.

Previous testing has shown that the
gantry required 6-10ozs to pull the
gantry back and forth along the X axis.

3.3.5 Interrupts
INTRRPS_MTR_CTRL_DSIG: Output

Protocol: Digital
Input

Each pair of limit switches
will be hooked up to a
digital pin on the
microcontroller

The switches will produce a logic level
high or low which a digital pin can take in.

Logic Level:
5-4.7V, 0.3-0.0V

The signal that is needed
for the microcontroller is
5V for logic 1.

The common port on the limit switch will
be connected to ground. The internal pull
up resistor will be on to produce a 5-4.7B
signal when the switch is hit. The
switches are daisy chained in a way
where ground will be going through the
switches unless a switch is hit.

39

Data: Limit
Switch,
depending on
which axis
switch is
activated.

Since there will be more
than one limit switch the
data of each limit switch
will be sent to the
microcontroller.

The motor controller will be able to
differentiate which limit switch is hit
though digital input by knowing which
way the tool head is moving.

MCHNCL_STRCTR_INTRRPTS_ENVIN (X, Y, Z) : Input

Description: Axis
limit switch, used
to home device
and alarm status
for Motor
Controller

The limit switches will be
used to check if the
system is at the
boundaries where we can
use that information to
alarm the system and
home it.

The limit switches will be secured at the
boundaries of the system. When the
switch is closed the signal will go to the
microcontroller to either stop the machine
or home it.

Logic
Level:0.3-0.0V,
5-4.7V

The limit switch will
produce a signal logic
high or low, 5V or 0V,
depending if the structure
hits the limit switch.

The common port on the limit switch will
be connected to ground. The internal pull
up resistor will be on to produce a 5-4.7B
signal when the switch is hit. The switches
are daisy chained in a way where ground
will be going through the switches unless
a switch is hit.

Data: CLOSED
in normal state,
OPEN when limit
switch is active

The limit switch should be
active when there is no
physical contact on the
switch. When the switch
is pushed down the
normal state should occur
to produce the 5V signal.

The limit switch can be hooked up to be
normally closed. This will create the
needed interaction.

3.3.6 Motor Control
MTR_CNTRL_HRDWR_CNTRL_P_DATA : Output

Protocol:USB The connection
between the raspberry
pi and µController is
serial.

The raspberry pi can communicate
through usb using the terminal and the
black pill or the STM32F4 can as well
from the datasheet section 3.27.

Other:Data
Character Arrays
From and to the

Grbl [1] will accept a
string or a character
array and decode that

When using the serial monitor the
µController can receive arrays and send
arrays through serial.

https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

40

µController to the
Raspberry Pi 4

for g code and other
commands.

Other:Send one
array of character
containing
current states

Grbl can receive a
command that reports
the current state of the
process and gives
feedback that
commands are
received [1].

Grbl HAL sends updates through serial or
usb [1]. These messages are put into one
array. Grbl HAL will send feedback
messages to acknowledge a command is
sent and will send its status if asked for.

HRDWR_CNTRL_P_MTR_CNTRL_DATA: Input

Protocol:USB The connection
between the raspberry
pi and µController is
serial.

The raspberry pi can communicate
through usb using the terminal and the
black pill or the STM32F4 can as well
from the datasheet section 3.27.

Other: Data
Character Arrays

Grbl [1] will accept a
string or a character
array and decode that
for g code and other
commands.

When using the serial monitor the
µController can receive arrays and send
arrays

Other:Sends one
GCode command
at a time

Grbl [1] can decode
one g code per
command.

GRBL HAL[1] can receive one GCode
and send the right signal to the drivers.

MTR_CNTRL_STPPR_MTRS_COMM: Output

Protocol:
Step-Direction

The stepper driver
chosen uses step and
direction to interface
with it [2].

GRBL HAL[1] sends the step and
direction signals given the G code
where the output pins are connected to
the stepper driver.

Logic Level: 3.3V,
0V

The stepper driver
uses 3.3V and 0V for
the direction [2]. The
output pin from the
µController does not

The stepper driver will need 3v3 for
going one direction and 0 going the
other. The µController outputs 3v3 for
logic high from the datasheet.

https://www.st.com/resource/en/datasheet/stm32f411ce.pdf
https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

41

provide 3.3V exactly
so it should fall around
it.

Messages:
Direction to spin
motor - Step or
Hold motor
direction

There will be 4 stepper
motors and stepper
drivers and each will
be routed to a specific
pin on the µController.
One motor for each
axis and one for the
toolhead. The step will
change, increase or
stay zero to tell the
stepper to move
forward or stop.

Step and direction pins for each stepper
are mapped for different axes in grbl
HAL[1]. The µController produces a
voltage on the step pin depending on
the speed. If there is 0 voltage the
motors will stop.

INTRRPS_MTR_CTRL_DSIG: Input

Protocol:
Digital Input

Each pair of limit
switches will be hooked
up to a digital pin on the
microcontroller

The switches will produce a logic level
high or low which a digital pin can take in.

Logic Level:
5-4.7V,
0.3-0.0V

The signal that is
needed for the
microcontroller is 5V for
logic 1.

The common port on the limit switch will be
connected to ground. The internal pull up
resistor will be on to produce a 5-4.7B
signal when the switch is hit. The switches
are daisy chained in a way where ground
will be going through the switches unless a
switch is hit.

Data: Limit
Switch,
depending on
which axis
switch is
activated.

Since there will be
more than one limit
switch the data of each
limit switch will be sent
to the microcontroller.

The motor controller will be able to
differentiate which limit switch is hit though
digital input by knowing which way the tool
head is moving.

42

3.3.7 Enclosure
otsd_enclsr_other

Dimensions The enclosure will be large
enough to fit all electronics
and leave room for wiring.

Took dimensions of
Raspberry Pi 4, Black Pill and
switching power supply.

Inside The enclosure will
encompass the Raspberry Pi
4, Black Pill, step down
voltage converter and stepper
PCB. In a separate enclosure
the switching power supply
will be stored.

There will be stand offs for
each component.

Enclosed and attached to the
frame.

Both enclosures will be
sealed from the top and
PCBs bolted to the enclosure.

The lid will fit the enclosure
and nuts and bolts will be
used to attach the enclosure
to the frame.

3.3.8 Power Supply
Otsd_pwr_spply_acpwr

Inominal: 8.0A This value is based on the
description of the switching
power supply.

From the description of the
switching power supply.

Ipeak: 8.5A This value is based on the
description of the switching
power supply.

From the description of the
switching power supply.

Max Power:100W This value is based on the
description of the switching
power supply.

From the description of the
switching power supply.

Vnominal: 12V DC The team needs 12 DC Volt
output for the motor drivers.

From the description of the
switching power supply.

Voltage Input: 84-264 VAC This value is based on the
description of the switching
power supply. The power
supply will use 120VAC from
the wall socket.

From the description of the
switching power supply.

https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html

43

pwr_spply_rspbrry_p_dcpwr

Inominal: 3.0A This is the current needed to
help power the Raspberry Pi.

This is the current needed to
power the Raspberry Pi. The
inductor will help output 3
Amps

Ipeak: 3.5A This is the peak of the
current that is outputted from
the 5 Volt converter. The
Raspberry Pi 4 needs about
18 Watts of power.

The USB-C is able to handle
around 3.0 Amps. So 3.2A
will be the max current input.

Output Connection: USB-C The converter will connect to
the Raspberry Pi using one
of these connections.

This is the required
connection for the Raspberry
Pi.

Vmax: 5.5V This will be the maximum
voltage that will be input to
the Raspberry Pi.

The Raspberry Pi is able to
withstand 5.5 Volts in case
the voltage fluxuates. 5.5 Volt
will be the max.

Vmin: 5V This will be the minimum
voltage requirement. Going
lower than 5 Volts will
dampen results.

The Raspberry Pi takes in 5
Volts of current.

mtr_cntrl_pwr_spply_dsig

Imax: 100mA This is the maximum current
that flows through the relay.

This is the maximum current
that flows through the relay.

Microcontroller connection This is a wire that connects to
the input of the
microcontroller

The datasheet for the relay
explains how to connect it.

Motor driver connection This is a wire that connects to
the input of the motor driver

The datasheet for the relay
explains how to connect it.

Signal Pin: pulled high The signal pin will connect to
a port on the Raspberry Pi 4.
When the signal is pulled
high the microcontroller or
motor drivers will disconnect
from the power supply.

The Raspberry Pi 4 port will
send a signal to switch and
turn the microcontroller or
motor divers “on” or “off”.

https://www.mouser.com/datasheet/2/87/eaton_sdcl1v40_semi_shielded_smt_power_inductor_da-2326222.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-power-relay-featherwing.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-power-relay-featherwing.pdf

44

3.4. References and File Links

3.4.1. References (IEEE)
[1] “grblHAL/STM32F4xx”Github. 18 Feb, 2022. [Online]

https://github.com/grblHAL/STM32F4xx [Date Accessed 18, Feb 2022]
[2] “DRV8825 Stepper Motor Driver Carrier, High Current” Pololu. 18 Feb, 2022.

[Online] https://www.pololu.com/product/2133 [Date Accessed 18, Feb
2022]

3.4.2. File Links
[3] STM32 Datasheet

https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

3.5. Revision Table

04/22/22 Updated Block Diagram

03/06/22 Ryan Updated Sections 3.3.3 and 3.3.4

03/06/22 Felipe: Removed old information, updated sections 3.3.1 and 3.3.2, and
created headers for other blocks

12/03/21 Felipe: Updated and reviewed block interface

12/03/21 Kevin: Updated name scheme and reviewed block interface

12/03/21 Dennis: Updated and reviewed block interface

12/03/21 Ryan: Reviewed peer review edits and cleaned up definitions

11/19/21 Felipe Orrico: Interface Definitions and Block Descriptions

11/19/21 Ryan Christensen: Interface Definitions formatting and filling in, block
diagram revision. Mechanical and Stepper block definitions.

11/19/21 Kevin: Interface definition and block descriptions

11/19/21 Dennis: Worked on Block Definitions and Block Interface

Table 3: Revision table for section 3

https://github.com/grblHAL/STM32F4xx
https://www.pololu.com/product/2133
https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

45

4. Block Validations

4.1. Mechanical Frame - Ryan Christensen

4.1.1. Block Overview
The mechanical frame is the physical structure of the device. The purpose of this block is

to translate the rotational of the stepper motors, in the Stepper Drive block, into movement to
manipulate the oscilloscopes under test. To achieve this, we have created the following design,
inspired by a Core-XY 3d-Printer, which uses two motors in conjunction to move the toolhead in
the XY Direction. This “Core-ZY” has the advantage of lowering the center of gravity along the
gantry. Improved precision over cartesian style devices which use three motors independent of
each other. Reduced weight by moving the stepper from the Z rail, onto the gantry frame.
Although this introduces more complexity within the design, we believe that the benefits of using
a Core-ZY will yield improved results and higher precision necessitated for this project.

4.1.2. Block Design

Figure 1. Black Box and Block Interface

4.1.3. Block General Validation
The most significant design consideration was how we would be able to interact with an

oscilloscope’s button and knobs, with a high level of precision to make sure that when the
device is active we get accurate measurement and tool placement. The second design
consideration given to us by Tektrnoix is the capability to work around oscilloscopes of differing
sizes as given to us by Tektronix. The largest Oscope size we will need was given to us, 7.5in
depth x 12in height x 17.5in width. Our final design consideration for this block was how much
space was available for the device itself. While we needed to fit different sized devices, it
needed to be done while still retaining a compact form factor to fit on Tektronix shelves or desks.

46

Tektrnoix offered us a shelf size that would fit a device no larger than, in inches, 20in depth x
22in height x 34in width.

To fulfill these requirements the team chose between two approaches. The first was a
robotic arm and the second was a gantry system. We decided to use a gantry as it would
require the least amount of space on a desk when working with an oscilloscope, was much
easier to design and order and could be built much faster than what was required for an arm.
While the arm typically has higher possible precision, its main advantage of rotational
movement and6 Degrees of Freedom would be lost on our device. We believe a Gantry system,
as described as a “Core-ZY” in this project, offered to be a much simpler solution. By treating
the front of the oscope like a 2.5 Dimensional surface, we can easily and accurately move our
toolhead to manipulate and work with whatever devices Tektronix puts inside. Programming this
device is also much easier than an arm, which would need to use inverse kinematics something
none of our team has experience with.

4.1.4 Interface Validation
MTR_CNTRL_STPPR_MTRS_COMM: Input

4.1.5. Block Testing Process
Testing Physical Dimensions of the Device

1. Measure the exterior dimensions of the device and should be no larger than 20in depth x
22in height x 34in width.

2. Measure the interior dimensions of the device and should be at minimum 7.5in depth x
12in height x 17.5in width.

Testing for the input interface STPR_MTRS_MCHNCL_STRCTR_MECH (X, Y, Z, Toolhead)
1. Using a fish scale (Lbs. Oz.), attach the device to the lower beam of the gantry.
2. Pull with the device in hand from the front of the device to the rear.
3. The Maximum force required should not exceed 20Oz.

Testing for the output interface MCHNCL_STRCTR_INTRRPTS_ENVIN
1. Wire each axis limit switch
2. Connect a DMM to the ends of the limit switch, and set in continuity mode.

a. When the switch is not pressed the DMM should report continuity.
b. When the switch is pressed the DMM should report a break in continuity.

3. Repeat for each of the X, Y and Z axes.

47

4.1.6. References and File Links

4.1.6.1. References (IEEE)

4.1.6.2. File Links

4.1.7. Revision Table

Ryan Christensen 04/22/2022 Added Section 4.1

4.2. Stepper Drivers - Ryan Christensen

4.2.1. Block Overview
The stepper driver works in conjunction with the Mechanical Structure. The mechanical

structure of the previous block provides the frame with physical structure while the Stepper
Drivers give the frame motion, allowing the toolhead to move, and moving the linear rails along
each of the axes. This can be referred to as a “Core-ZY” system, where the ZY Axis are
controlled by two motors operating in parallel while the x-axis is controlled by a single motor.
The X-axis uses a direct driven belt system to move the gantry either closer or further away from
the oscilloscope.

4.2.2. Block Design

Figure 1. Black Box and Block Interface

4.2.3. Block General Validation
This block will give the system motion, allowing the mechanical structure to interface and

operate the oscilloscope. Each of the stepper motors will operate along a belt driven system,

48

moving each of the axes in its necessary direction. On the circuit board we will be using the
DRV8825 breakout board from pololu [1] to translate the direction and steps into the current and
voltage along the motor wires. Each axis has its individual driver which can handle up to
1.5Amps continuous with 2.2Amps peak [1].

4.2.4 Interface Validation
STPPR_MTRS_MCHNL_STRCTR_MECH: Output

Minimum Linear
Speed: 1in/Sec

The system needs to
respond to an input in
a timely manner, while
retaining precision.
Using a controlled
speed like this helps to
avoid unnecessary
Jerk or Acceleration
which may cause
missed steps.

The default setting for GRBLHal was
about 6in/sec. By staying at the default
we give ourselves headroom of
4-5in/second in case reliability or
precision becomes an issue.

Minimum
Precision +/- .5in

The system will be
working with

Using a direct belt system we can
directly control the distance traveled by
the motor through the number of
rotations. A single step is equal to about
.15mm of travel in the linear direction.
Well below the .5in minimum.

Minimum Force
Output; 20oz

The motor needs to be
strong enough to move
the device.

Previous testing has shown that the
gantry required 6-10ozs to pull the
gantry back and forth along the X axis.

MTR_CNTRL_STPPR_MTRS_COMM: Input

Protocol:
Step-Direction

The stepper driver
chosen uses step and
direction to interface
with it [2].

GRBL HAL[1] sends the step and
direction signals given the G code
where the output pins are connected to
the stepper driver.

Logic Level: 3.3V,
0V

The stepper driver
uses 3.3V and 0V for
the direction [2]. The
output pin from the
µController does not
provide 3.3V exactly
so it should fall around
it.

The stepper driver will need 3v3 for
going one direction and 0 going the
other. The µController outputs 3v3 for
logic high from the datasheet.

https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

49

Messages:
Direction to spin
motor - Step or
Hold motor
direction

There will be 4 stepper
motors and stepper
drivers and each will
be routed to a specific
pin on the µController.
One motor for each
axis and one for the
toolhead. The step will
change, increase or
stay zero to tell the
stepper to move
forward or stop.

Step and direction pins for each stepper
are mapped for different axes in grbl
HAL[1]. The µController produces a
voltage on the step pin depending on
the speed. If there is 0 voltage the
motors will stop.

4.2.5. Block Testing Process
1. Testing stppr_mtrs_mchncl_strctr_mech

a. Minimum Precision +/- .5in
i. Each axis will start with it’s zero position.
ii. Send the proper GCode to move the device to the midpoint of its axis.

(I.E. 150mm on the X Axis)
iii. The carriage of the axis should be within .5in of the mid-point.

b. Minimum linear Speed: 1in/Sec
i. Each Axis will start with it’s zero position
ii. Send the proper GCode to move the device from its zero to it’s maximum
iii. The carriage of the axis should reach its maximum distance within the

amount of time to reach the rate of 1in per second. (I.E 15in should be
15seconds.)

c. Motor Force Test
i. Each Axis will be tested to confirm that it can pull more than 20 Oz.
ii. Attach a Hanging Scale to the Axis to test, applying resistance manually
iii. Move the axis in one direction, measuring that the motor can provide

more than 20 Oz of force.
2. Testing stppr_mtrs_mtr_cntrl_comm

a. Message Status
i. Set the Sleep Pin low to turn the driver off
ii. Change the value of step and direction of the corresponding motor
iii. The motor should not respond to any change in it’s Step or Direction.

b. Vmin: 0V - Motor is Sleep
i.

c. Nominal: 3.3V - Motor is Active

3. Testing mtr_cntrl_stppr_mtrs_comm
a. Logic-Level: 3.3V

i. The logic level needs to be verified to be 3v3

50

ii. Verify that 3.V Volts is being supplied to the Vin of the Motor Drivers
iii. Verify during operation that Step and Direction inputs do not exceed 3.3V

b. Messages: Direction to spin motor - Step or Hold motor direction
i. Using a DMM, Validate that when the Direction Pin is 3.3V.

That the corresponding motor spins in direction 1
ii. Using a DMM, Validate that when the Direction Pin is 0V.

That the corresponding motor spins in direction 2
iii. Simulating a step, Validate that when given one step, the motor moves

1.8* in rotation.
c. Protocol: Step-Direction

i. Using a DMM, validate the Direction pin only has 3.3V or 0V during
operation.

ii. Using a DMM, validate the Step pin should only have 3.3V when moving
or 0V when stationary.

4.2.6. References and File Links

4.2.6.1. References (IEEE)
[1] DRV8825 Stepper Motor Driver Carrier

https://www.pololu.com/product/2133
[2] Stepperonline NEMA17 17HS15-1504S-X1 Full Datasheet

https://www.omc-stepperonline.com/download/17HS15-1504S-X1.pdf

4.2.6.2. File Links

4.2.7. Revision Table

4/22/2022 Ryan Christensen: Added Section 4.2

4.3. Interrupts - Kevin Ho

4.3.1. Block Overview
This block stops the system during runtime if the system reaches the bounds of the

mechanical structure or before the tool head can push into the oscilloscope. This block contains
6 limit switches attached to the ends of the 3 axis of the system. The switches will be connected
to the motor controller. When the switches open the signal will be sent to stop the axis from
moving.

https://www.pololu.com/product/2133
https://www.omc-stepperonline.com/download/17HS15-1504S-X1.pdf

51

4.3.2. Block Design

Figure 1: Black Box Diagram

Figure 2: Connection Schematic

52

Pseudo Code

Set digital pin to input with internal pull up enabled
Loop{

Read in the digital pin
if(digital pin)
Serial print(Limit Hit)

}

4.1.3. Block General Validation
This design works because if a limit switch is hit, it will produce a digital signal of 1 to the
microcontroller. To produce the 5V-4.7V the internal pull up resistor will be on. The blackpill will
step down to a 3.3V pull up if there is more load on the microcontroller [1]. If any limit switch is
hit the microcontroller should stop the whole system in case more boundaries are pushed
unless the device is homing. The limit switches should be available with a lot of options of
manufacturers. These connectors will make sure that the GND will go to the C and the output
will go into the digital pin. The limit switches will be attached to both sides of each axis on the
mechanical structure.

Two limit switches are wired together for each axis shown in Figure 2. This will decrease the
amount of pins needed for the limit switches. The limit switches will be wired normally closed
through ground in case a switch is detached by accident and the machine will stop.

This block will make sure that the device won’t push over the oscilloscope when the system is
operating. This will help prevent any damage done from the system to the oscilloscope. The
limit switches will also be used for homing in case the device turns on not in the home position.

4.3.4. Block Interface Validation

Interface
Property

Why is this interface
this value?

Why do you know that your design
details for this block

above meet or exceed each property?

INTRRPS_MTR_CTRL_DSIG

Protocol: Digital
Input

Each pair of limit switches
will be hooked up to a
digital pin on the
microcontroller

The switches will produce a logic level
high or low which a digital pin can take in.

53

Logic Level:
5-4.7V, 0.3-0.0V

The signal that is needed
for the microcontroller is
5V for logic 1.

The common port on the limit switch will
be connected to ground. The internal pull
up resistor will be on to produce a 5-4.7B
signal when the switch is hit. The
switches are daisy chained in a way
where ground will be going through the
switches unless a switch is hit.

Data: Limit
Switch,
depending on
which axis
switch is
activated.

Since there will be more
than one limit switch the
data of each limit switch
will be sent to the
microcontroller.

The motor controller will be able to
differentiate which limit switch is hit
though digital input by knowing which
way the tool head is moving.

MCHNCL_STRCTR_INTRRPTS_ENVIN (X, Y, Z, Toolhead)

Description: Axis
limit switch, used
to home device
and alarm status
for Motor
Controller

The limit switches will be
used to check if the
system is at the
boundaries where we can
use that information to
alarm the system and
home it.

The limit switches will be secured at the
boundaries of the system. When the
switch is closed the signal will go to the
microcontroller to either stop the machine
or home it.

Logic
Level:0.3-0.0V,
5-4.7V

The limit switch will
produce a signal logic
high or low, 5V or 0V,
depending if the structure
hits the limit switch.

The common port on the limit switch will
be connected to ground. The internal pull
up resistor will be on to produce a 5-4.7B
signal when the switch is hit. The switches
are daisy chained in a way where ground
will be going through the switches unless
a switch is hit.

Data: CLOSED
in normal state,
OPEN when limit
switch is active

The limit switch should be
active when there is no
physical contact on the
switch. When the switch
is pushed down the
normal state should occur
to produce the 5V signal.

The limit switch can be hooked up to be
normally closed. This will create the
needed interaction.

4.3.5. Block Testing Process
1. Wire up a pair limit switches as shown above.

a. To save resources only one pair is needed for testing
2. Connect the output of the limit switch to the digital pin.
3. Flash the testing code on to the arduino (the microcontroller used for testing)
4. Open the serial monitor to see the logic levels

54

a. If the switch is pressed, a message will appear.
5. Measure the voltage at the pin with a DMM

a. When the switch is not pressed the DMM should read 0.3V-0V.
b. When the switch is pressed the DMM should read 5V-4.7V.

6. Repeat for the different digital pins.

4.3.6. References and File Links

4.3.6.1. References (IEEE)

4.3.6.2. File Links
[1] STM32 Datasheet https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

4.3.7. Revision Table

05/06/2022 Kevin: Added section 4.3.

01/21/2022 Kevin: Revised general description

01/20/2022 Kevin: Revision of Interface Definition/testing process/schematic

01/7/2022 Kevin: Rough Draft of interrupt block validation

4.4. Motor Control - Kevin Ho

4.4.1. Block Overview
The motor control block receives data from the Raspberry Pi. The data received will be

in gcode. It will use the data with GRBL HAL to send data to the motor drivers within the block to
move the stepper motors to a xyz coordinate. The motor driver will also receive updates of the
status of the motors through a digital signal. This signal is then passed on to the raspberry pi to
update the user interface. The signal to is sent through serial between the raspberry pi and
microcontroller. This will be used to keep track of the state of the motors. The interrupts will
send a digital signal to the motor controller. This signal will be from limit switches so the motor
controller will know the limits of the mechanical structure.

https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

55

4.4.2. Block Design

Figure 1: Black Box Diagram

Figure 2: How pins are assigned for the microcontroller

56

4.4.3. Block General Validation
The STM32F411CE integrated circuit is sold out. So the plan is to use the development board,
the Black Pill, instead. The development board was found using Adafruit. There are two options
in this case where one the development board will be put on to the pcb, or the microcontroller
from the development board can be harvested and put on a custom pcb. In case both options
fall through, a backup microcontroller is planned to take its place, the RP2040. The options for
the STM32 and the RP2040 were decided from the support that grblHAL had. The STM32 was
chosen over the RP2040 because of the support that grblHAL had for the STM32 over the
RP2040.

This block will work with the firmware grblHAL [1]. grblHAL is a g code decoder for a wide
variety of microcontrollers. It is based on the g code decoder grbl which is for arduino
microcontrollers. grblHAL is open sourced and is maintained well by active contributors. grblHAL
enabled the group to add more reliable functionalities given the timeline of the project. The g
code will be communicated through serial communication. Also any errors or status updates
would also be communicated through the same serial communication. The serial connection is
through a USB-A to USB-C cable which provides power for the blackpill.

The blackpill or microcontroller will be used to take in g code and send the correct signals to
move the tool head and the stepper motor drivers. The blackpill will also take in the interrupt and
fault signals in case any limits or high current draw happens. The connections for each stepper
driver will be the direction and step pins. These connections will be a digital signal with either
logic level high or low.

4.4.4. Block Interface Validation

Interface
Property

Why is this interface
this value?

Why do you know that your design
details for this block

above meet or exceed each property?

MTR_CNTRL_HRDWR_CNTRL_P_DATA (Motor Controller)

Protocol:USB The connection between
the raspberry pi and
µController is serial.

The raspberry pi can communicate through
usb using the terminal and the black pill or
the STM32F4 can as well from the datasheet
section 3.27.

Other:Data Grbl [1] will accept a When using the serial monitor the µController

https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

57

Character Arrays
From and to the
µController to the
Raspberry Pi 4

string or a character
array and decode that
for g code and other
commands.

can receive arrays and send arrays through
serial.

Other:Send one
array of character
containing current
states

Grbl can receive a
command that reports
the current state of the
process and gives
feedback that
commands are received
[1].

Grbl HAL sends updates through serial or
usb [1]. These messages are put into one
array. Grbl HAL will send feedback messages
to acknowledge a command is sent and will
send its status if asked for.

HRDWR_CNTRL_P_MTR_CNTRL_DATA

Protocol:USB The connection between
the raspberry pi and
µController is serial.

The raspberry pi can communicate through
usb using the terminal and the black pill or
the STM32F4 can as well from the
datasheet section 3.27.

Other: Data
Character Arrays

Grbl [1] will accept a
string or a character
array and decode that for
g code and other
commands.

When using the serial monitor the
µController can receive arrays and send
arrays

Other:Sends one
GCode command
at a time

Grbl [1] can decode one
g code per command.

GRBL HAL[1] can receive one GCode and
send the right signal to the drivers.

MTR_CNTRL_STPPR_MTRS_COMM

Protocol:
Step-Direction

The stepper driver
chosen uses step and
direction to interface with
it [2].

GRBL HAL[1] sends the step and direction
signals given the G code where the output
pins are connected to the stepper driver.

Logic Level: 3.3V,
0V

The stepper driver uses
3.3V and 0V for the
direction [2]. The output
pin from the µController
does not provide 3.3V
exactly so it should fall
around it.

The stepper driver will need 3v3 for going
one direction and 0 going the other. The
µController outputs 3v3 for logic high from
the datasheet.

Messages:
Direction to spin
motor - Step or Hold
motor direction

There will be 4 stepper
motors and stepper
drivers and each will be
routed to a specific pin
on the µController. One
motor for each axis and

Step and direction pins for each stepper are
mapped for different axes in grbl HAL[1].
The µController produces a voltage on the
step pin depending on the speed. If there is
0 voltage the motors will stop.

https://www.st.com/resource/en/datasheet/stm32f411ce.pdf
https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

58

one for the toolhead. The
step will change,
increase or stay zero to
tell the stepper to move
forward or stop.

STPPR_MTRS_MTR_CNTRL_COMM

Nominal: 3.3V
- Motor is
Active

The logic pin ranges from
5.25V-2.5V which is tied to
the fault pin [2].

The pin will be connected to a gpio pin on
the µController. There the microcontroller
can detect whether the fault pin is high or
low.

Vmin: 0V -
Motor is Sleep

The fault pin is tied to the
sleep pin [2]. Both the pins
are active low so if the pin is
low the motors are at fault.

The pin will be connected to a gpio pin on
the µController. There the microcontroller
can detect whether the fault pin is high or
low.

Messages:
Status

If this pin is pulled low the
µController will know that the
steppers faulted and will stop
the command.

The motor drivers will produce the signal
when the motors are pulling too much
current. This will be done through firmware
and alteration of grblHAL.

INTRRPS_MTR_CTRL_DSIG

Protocol: Digital
Input

Each pair of limit switches
will be hooked up to a
digital pin on the
microcontroller

The switches will produce a logic level
high or low which a digital pin can take in.

Logic Level:
5-4.7V, 0.3-0.0V

The signal that is needed
for the microcontroller is
5V for logic 1.

The common port on the limit switch will
be connected to ground. The internal pull
up resistor will be on to produce a 5-4.7B
signal when the switch is hit. The
switches are daisy chained in a way
where ground will be going through the
switches unless a switch is hit.

Data: Limit
Switch,
depending on
which axis
switch is
activated.

Since there will be more
than one limit switch the
data of each limit switch
will be sent to the
microcontroller.

The motor controller will be able to
differentiate which limit switch is hit
though digital input by knowing which
way the tool head is moving.

59

4.4.5. Block Testing Process
1. Flash in the GRBL HAL to the black pill.
2. Ground the limit pins to simulate the limit switches.
3. Put 3.3V to the fault pins to simulate the stepper driver connections.
4. Connect to the black pill using the arduino serial monitor.

a. This will act as the raspberry pi usb communication.
b. Make sure that the settings are set

i. Send in the serial monitor $14 = 1
1. This disables the door lock and cycle safety

ii. Send in the serial monitor $X
1. This unlocks the machine

iii. Send in the serial monitor $21 = 1
1. This enables hard limit

5. Send the g code g0 x30 to the black pill through the serial monitor
6. Using a DMM measure from the X direction and ground. (the X step voltage depends on

speed)
a. Should be 0V

7. Using a DMM measure from the X step and ground. (the X step voltage depends on
speed)

a. Should be around .6V
8. Send the g code g0 x0 to the black pill through the serial monitor
9. Using a DMM measure from the X direction and ground. (the X step voltage depends on

speed)
a. Should be 3.3-3.0V

10. Using a DMM measure from the X step and ground. (the X step voltage depends on
speed)

a. Should be around .6V
11. While the x axis is still “moving” unplug the ground to the Xlimit.

a. Measure the voltage between the X step and ground.
i. This should be 0V

b. Reground the x limit pin.
c. The microcontroller will need to be reset after the limit is hit.

i. Connect ground to the reset pin B6 then unconnect it.
ii. Send $X in the serial monitor.

12. Repeat steps 5-11, two more times changing the axis being tested.(change all X to Y, Z)
13. Unplug the 3.3V fault pin

a. The microcontroller will be in an alarm state (check in serial monitor) by sending
“?” in the serial monitor.

b. The microcontroller will need to be reset after the limit is hit.
i. Connect ground to the reset pin B6 then unconnect it.
ii. Send $X in the serial monitor.

14. Repeat step 13 for all axes.

60

15. To get the status of the command send “?”
a. In the serial monitor the status should be received by the arduino serial monitor.

4.4.6. References and File Links

4.4.6.1. References (IEEE)
[1] “grblHAL/STM32F4xx”Github. 18 Feb, 2022. [Online]

https://github.com/grblHAL/STM32F4xx [Date Accessed 18, Feb 2022]
[2] “DRV8825 Stepper Motor Driver Carrier, High Current” Pololu. 18 Feb, 2022. [Online]

https://www.pololu.com/product/2133 [Date Accessed 18, Feb 2022]

4.4.6.2. File Links
[3] STM32 Datasheet https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

4.4.7. Revision Table

05/06/2022 Kevin: Added to section 4.4

02/18/2022 Kevin: Revision of block validation from peer review comments.

02/01/2022 Kevin: Rough Draft of Motor Control block validation

https://github.com/grblHAL/STM32F4xx
https://www.pololu.com/product/2133
https://www.st.com/resource/en/datasheet/stm32f411ce.pdf

61

4.5. Power Supply - Dennis Kichatov

4.5.1. Block Overview
The power supply block will supply all the power needed to run every single piece of equipment
on the front panel project. The front panel will be able to plug into a wall socket using the AC
switching power supply. This will allow the front panel to be movable or stationary and never run
out of power. Since the motor drivers need 12 Volts they will be hooked up to the AC power
supply directly. The smaller unit that requires less voltage will be controlled by a custom PCB
that will regulate the voltage and current to a more required level.

Using 120 AC Voltage power supplied from a wall outlet. The team will use a switching power
supply from StepperOnline[1] to regulate the AC voltage into usable 12V DC voltage and 8.5A
current. From there the team will use custom DC to DC converters to regulate the voltage and
current down and to be able to adjust the output power. The converters will need to lower the
12V into a workable 5 Volts and 3 Amps for the Raspberry Pi 4. Unfortunately the main chip for
the 5 Volt converter broke, so the team will use a Raspberry Pi 4 power brick connected to
USBC to send 5 Volts into the system PCB. This 5 Volt will power the 3.3 Volt chip and the rest
of the PCB. The microcontroller will be powered from the Raspberry Pi 4. Coming from the
power supply and straight to the motor driver is 12 Volts needed to power the stepper motors. A
relay will act like a gate on the microcontroller and when there is no signal the power supply will
be cut off from the microcontroller. The relay will be connected to the 3.3 Volt converter and will
form a digital kill switch to turn off the motors.

4.5.2. Block Design

Figure 1: Top level block diagram

62

Figure 2: 120AC to 12DC switching power supply

Figure 3: PCB circuit for 5 Volt regulator at 6 Amps.

63

Figure 4: PCB circuit for 3.3 Volt regulator.

Figure 5:Top layer of system PCB. 5V reg is U7 and 3.3 reg is U6

64

Figure 6: 3D model of System PCB and regulators.

4.5.3. Block General Validation
This block works for the system because the 5 Volt is based on the TPS565208DDCT
Datasheet main chip which converts the 12 volts from the switching power supply to the
needed 5 Volts and 6 Amps to power the Raspberry Pi 4. The resistors, capacitors and inductor
components needed to build these PCBs are cheap and accessible through Resistore, Texbots
on the Oregon State campus and Mouser site. The inductor was chosen to help output the 6A
output. The main chip needed for the 5 volt converter is mostly out of stock, however the team
managed to snag two of these chips. The majority of the cost would be paid out of pocket since
going through tektronix would be too slow. The cost would be reimbursed by OSU at the end of

http://www.ti.com/general/docs/suppproductinfo.tsp?distId=26&gotoUrl=http%3A%2F%2Fwww.ti.com%2Flit%2Fds%2Fsymlink%2Ftps565208.pdf
http://www.ti.com/general/docs/suppproductinfo.tsp?distId=26&gotoUrl=http%3A%2F%2Fwww.ti.com%2Flit%2Fds%2Fsymlink%2Ftps565208.pdf
https://www.digikey.com/en/products/detail/murata-electronics/1217AS-H-3R3N-P3/5271430

65

the winter term.The size for these PCBs will be large and attached to the enclosure. They will be
able to fit inside the structure and since there are only input and output wires coming from the
PCB they won't take up a lot of space. Since the main chip for the 5 Volt regulator broke and the
team ran out of spares, I have decided to scrap the 5 Volt regulator and replace it with a
Raspberry Pi 4 power brick connected with USBC. The brick will supply the board with 5 Volts.

The project partner Textronix, asked to make the front panel portable. The problem the team
faces is by making the front panel portable the toolhead will have to calibrate every time
because of this the project will not be portable. Since the project isn't moving there is no need to
worry about the weight of the AC switching supply. For convenience the switching supply will be
attached to the front panel. By attaching the switching power supply to the front panel it will
prohibit the power supply from moving and causing problems. The two converters will also be in
an enclosure that is attached to the front panel. If the Tektronix team wants to move the front
panel they could.

4.5.4 Block Interface Validation

Interface Property Why is this interface
of this value?

Why do you know that your design
details for this block

above meet or exceed each
property?

Otsd_pwr_spply_acpwr

Inominal: 8.0A This value is based on the
description of the switching
power supply.

From the description of the
switching power supply.

Ipeak: 8.5A This value is based on the
description of the switching
power supply.

From the description of the
switching power supply.

Max Power:100W This value is based on the
description of the switching
power supply.

From the description of the
switching power supply.

Vnominal: 12V DC The team needs 12 DC Volt
output for the motor drivers.

From the description of the
switching power supply.

Voltage Input: 84-264 VAC This value is based on the
description of the switching
power supply. The power
supply will use 120VAC from
the wall socket.

From the description of the
switching power supply.

pwr_spply_rspbrry_p_dcpwr

https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html

66

Inominal: 3.0A This is the current needed to
help power the Raspberry Pi.

This is the current needed to
power the Raspberry Pi. The
inductor will help output 3
Amps

Ipeak: 3.5A This is the peak of the
current that is outputted from
the 5 Volt converter. The
Raspberry Pi 4 needs about
18 Watts of power.

The USB-C is able to handle
around 3.0 Amps. So 3.2A
will be the max current input.

Output Connection: USB-C The converter will connect to
the Raspberry Pi using one
of these connections.

This is the required
connection for the Raspberry
Pi.

Vmax: 5.5V This will be the maximum
voltage that will be input to
the Raspberry Pi.

The Raspberry Pi is able to
withstand 5.5 Volts in case
the voltage fluxuates. 5.5 Volt
will be the max.

Vmin: 5V This will be the minimum
voltage requirement. Going
lower than 5 Volts will
dampen results.

The Raspberry Pi takes in 5
Volts of current.

mtr_cntrl_pwr_spply_dsig

Imax: 100mA This is the maximum current
that flows through the relay.

This is the maximum current
that flows through the relay.

Microcontroller connection This is a wire that connects to
the input of the
microcontroller

The datasheet for the relay
explains how to connect it.

Motor driver connection This is a wire that connects to
the input of the motor driver

The datasheet for the relay
explains how to connect it.

Signal Pin: pulled high The signal pin will connect to
a port on the Raspberry Pi 4.
When the signal is pulled
high the microcontroller or
motor drivers will disconnect
from the power supply.

The Raspberry Pi 4 port will
send a signal to switch and
turn the microcontroller or
motor divers “on” or “off”.

4.5.5. Block Testing Process
pwr_spply_mtr_cntrl_dcpwr and pwr_spply_rspbrry_p_dcpwr

https://www.mouser.com/datasheet/2/87/eaton_sdcl1v40_semi_shielded_smt_power_inductor_da-2326222.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-power-relay-featherwing.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-power-relay-featherwing.pdf

67

1. Create a test PCB using test points.
2. Testing points and shunt resistors will be used to test the Vmax and Vmin for the input

and output.
3. A resistor will be used to test for the Inominal output.
4. Create system PCBs to test the connections for the Raspberry Pi 4.
5. The system PCB will test the relays for the microcontroller and motor drivers using a

signal from the Raspberry Pi 4.

4.5.7. References and File Links

4.5.7.1. References (IEEE)
[1] Stepperonline.”LRS-100-12 MEAN WELL 100W 12VDC 8.5A 115/230VAC Enclosed
Switching Power Supply”.[Online].Available
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-
12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html

4.5.7.2. File Links
[2] https://cdn-learn.adafruit.com/downloads/pdf/adafruit-power-relay-featherwing.pdf

[3]https://www.murata.com/~/media/webrenewal/products/inductor/chip/tokoproducts/wir
ewoundferritetypeforpl/m_dem8045c.ashx

[4]https://www.ti.com/lit/ds/symlink/tps565208.pdf?HQS=dis-mous-null-mousermode-dsf-
pf-null-wwe&DCM=yes&distId=26

4.5.7. Revision Table

05/05/2022 Worked on Power Supply Validation added
section 4.5

01/21/2022 Finialied block 1 validation for final
submission

01/07/2022 Worked on block validation draft

https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply.html
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-power-relay-featherwing.pdf
https://www.murata.com/~/media/webrenewal/products/inductor/chip/tokoproducts/wirewoundferritetypeforpl/m_dem8045c.ashx
https://www.murata.com/~/media/webrenewal/products/inductor/chip/tokoproducts/wirewoundferritetypeforpl/m_dem8045c.ashx
https://www.ti.com/lit/ds/symlink/tps565208.pdf?HQS=dis-mous-null-mousermode-dsf-pf-null-wwe&DCM=yes&distId=26
https://www.ti.com/lit/ds/symlink/tps565208.pdf?HQS=dis-mous-null-mousermode-dsf-pf-null-wwe&DCM=yes&distId=26

68

4.6. Enclosure - Dennis Kichatov

4.6.1. Block Overview
The enclosure for the system will keep all the circuitry and wiring together This enclosure will
make sure that if the structure has to be moved all the wiring and PCB boards won't break and
will be stable. This enclosure will make the wiring easy to follow and will make the project look
more presentable while keeping the circuity safe. The dimensions of the enclosure are
130X350x80mm and will allow all electrical components to fit with the enclosure. There will be
holes on the right and left sides to connect the enclosure to the mechanical structure. By
connecting the enclosure to the structure the project as a whole can be transported with ease.

4.6.2. Block Design

Figure 1: Top level block diagram

Figure 2: Enclosure with PCB, Power Supply and Raspberry Pi 4

69

Figure 3: Enclosure side view

Figure 4: Lid for enclosure.

70

Figure 5: Enclosure with Frame

4.6.3. Block General Validation
This block will work for the system because the Tektronix employees hoped that the design
would be portable and even if the team might not move the system we must design for
movement. This means all electronics, PCBs need to be able to move for transport. The best
way to ensure safety and that no movement comes to the PCBs is to enclose them in a shell.
The Raspberry Pi 4, switching power supply, Black Pill and voltage regulators will be connected
to a PCB to make wiring them together easier. As seen in figure 5 the enclosure will be
underneath the red box frame. The Oscilloscope will sit on top of the red elevated frame and the
enclosure will be underneath. Fans will be attached to the outside to cool down the Raspberry
Pi 4 and to receive airflow. The enclosure will be bolted to the side of the red frame using
T-nuts. The Enclosure will be created using Fusion360 and using the PCB measurements,
power supply measurements and the measurements of the Raspberry Pi 4. Considering the
enclosure is attached to the frame, the tool head will move up and down, left and right, forward
and backward. The enclosure needs to be close enough to not have the tool head pull the wires.

71

4.6.4 Block Interface Validation

Interface Property Why is this interface
of this value?

Why do you know that your design
details for this block

above meet or exceed each
property?

otsd_enclsr_other

Dimensions The enclosure will be large
enough to fit all electronics
and leave room for wiring.

Took dimensions of
Raspberry Pi 4, Black Pill and
switching power supply.

Inside The enclosure will
encompass the Raspberry Pi
4, Black Pill, step down
voltage converter and stepper
PCB. In a separate enclosure
the switching power supply
will be stored.

There will be stand offs for
each component.

Enclosed and attached to the
frame.

Both enclosures will be
sealed from the top and
PCBs bolted to the enclosure.

The lid will fit the enclosure
and nuts and bolts will be
used to attach the enclosure
to the frame.

4.6.5. Block Testing Process
1. Get correct measurements of Black Pill, Raspberry Pi 4 and switching power supply.
2. Create a 3D model in Fusion360.
3. Print out models.
4. Fit the models onto the Black Pill, Raspberry Pi 4 and switching power supply.
5. Sandpaper and make to fit the models.
6. Make sure all wiring fits and there is enough space for connections.
7. Use M2 bolts and nuts to attach PCBs and power supply to the enclosure.
8. Use T-Nuts to attach the enclosure to the frame.
9. Make sure the enclosure is stable and does not fall.

4.6.6. References and File Links

4.6.7. Revision Table

05/06/2022 Finalized enclosure validation

72

05/05/2022 Worked on enclosure validation added section 4.6

02/18/2022 Finished block validation 2

02/02/2022 Worked on block validation draft

4.7. Hardware Control API - Felipe Orrico Scognamiglio

4.7.1. Block Overview
The Hardware Control API receives the encoded user interface commands. The user

data is then translated into GCode and put into a transmission queue. The Hardware Control
API then goes through the transmission queue and sends the data packet to the motor control
block. Upon receiving and completing the task, the motor control block will send a confirmation
code back to the Hardware Control API announcing that it is ready to receive another data
packet.

The Hardware Control API allows the abstraction of the connection between the User
Interface (or another program that uses this API) and the Motor Control block that runs a version
of GRBL HAL. Usually, when interfacing with GRBL the user would need to directly send GCode
or other configuration commands to the microcontroller, instead, with this API, the user is able to
easily set up and move the payload of the gantry system with a simple custom implementation
in python.

4.7.2. Block Design

Figure 1: Motor Control API Black Box Diagram

73

User data is either collected by the User Interface Block or raw user input through the use of the
API without the User Interface. Meaning that the user can interface with this block by either
relying on the User Interface or directly calling the public methods of the API class.
This block also has the capability to send information back to the user based on user input. For
example, if the user wants to know the current location of the payload, the user may request it
by calling a method that interfaces with the Motor Control Block requesting positional data
before relaying it back to the user with specific formatting.

Figure 2: Hardware Control API as a part of the System.

Since this block is a layer of abstraction to the Motor Control, it has to be able to send
and receive data from it. The data sent to the Motor Control Block is comprised of GCode
commands or GRBL HAL-specific commands. The data received is comprised of Positional
Data and movement confirmation notifications (“OK”) from GRBL HAL.

The Hardware Control API runs two separate threads. One thread is responsible for
displaying live video from the Raspberry Pi camera, while the other is responsible for sending
and receiving information to and from the microcontroller running grblHAL.

GCode Sender Thread (GST) - Pseudocode
- The main thread (that is running the Hardware Control API) creates an object of the GST

class and requests the initialization of the GST.
- Upon receiving the list of GCode to be sent to the microcontroller, the GST appends the

list to a local buffer.
- The GST then iterates through the buffer sending the code and waiting for the response

from the microcontroller. At this point, the GST logs the command sent as well as the
response from the microcontroller and displays it on the command line.

- Returns to Step 2 and continues.

Video Streaming Thread (VST) - Pseudocode

74

- The main thread (that is running the Hardware Control API) creates an object of the VST
class and requests the initialization of the VST.

- At this point, the thread is running and at every frame, it updates a class-wide buffer with
the current frame.

- Upon receiving the enable command, the VST uses the opencv2 library to display the
video in a separate window. It continues to display video until it receives a disable
command that can either be accomplished through calling a function or selecting the
video window and pressing “Q”.

- Even when the video is not being displayed, the frames are being updated. Upon calling
the “video_capture_frame” function from the API or pressing “S” (while the video is being
displayed), the latest updated frame on the buffer will be converted to a jpeg image and
saved to the current working directory of the API.

4.7.3. Block General Validation
The Tektronix team requested an API that would be able to control the system without

the use of a GUI. By using the API as a Hardware Abstraction Layer for the GUI, it can also be
said that the same API can be used without the GUI, as the only true difference between the two
would be instead of receiving sanitized user input from the GUI, the API would receive raw
inputs.

The main requirement of this block is being able to create a bridge between the
hardware and software of the project. This API accomplishes that by allowing access to the
hardware as a library for python that works with or without the GUI.

There is the possibility that the continuous run of multiple threads degrades the overall
performance of the system. In that case, it may be required to implement restarting threads and
blocking behavior for both the GST and the VST.

4.7.4. Block Interface Validation

Interface
Property

Why is this interface this value? Why do you know that your
design details for this block
above meet or exceed each

property?

hrdwr_cntrl_p_mtr_cntrl_data : Output

Other: Sends one
GCode command
at a time

The API is expected to send only
GCode commands and other GRBL
HAL specific commands to the
microcontroller. As per the design,
the API will send only one GCode
command at a time while waiting for

The microcontroller receives the
transmission and sends back a
confirmation. If data was requested,
data is sent back as well.

75

a response from grblHAL.

Other: Data
Character Arrays

The API will send strings to the
microcontroller that are essentially
character arrays through serial.

Both grblHAL and the API expect
the use of strings to communicate
with each other. The API can
generate and send, through serial,
messages to the microcontroller.

Protocol: USB The microcontroller is connected to
the raspberry pi through USB
(serial)

The raspberry pi has multiple USB
ports and is able to connect to the
microcontroller without a problem.
With the use of the pyserial library,
the API is able to interact with the
USB connection and send and
receive commands to the
microcontroller.

hrdwr_cntrl_p_usr_ntrfc_data : Output

Messages:
Hardware
Confirmation and
Location Data

After receiving a request, the API
will return send back the requested
data to the user. At this point, the
data is limited to Status
confirmations and Locational data.

The API is able to receive the string
from the microcontroller, parse the
necessary values from it, and return
it to the user.

Other: List of
character arrays
for x, y, z position

The work position and machine
position are reported as x, y, and z
positions.

The positional data is parsed by the
GST and returned to the API as a
list of strings, each containing the x,
y, and z coordinates.

Other: Character
array containing
machine status

The machine status is reported as
“Idle”, “Busy”, among other values.
All those values are strings sent by
the microcontroller.

The machine status data is parsed
by the GST and returned to the API
as a single string.

mtr_cntrl_hrdwr_cntrl_p_data : Input

Other: Sends one
GCode command
at a time

The motor controller is expected to
send only confirmations and
positional data to the Raspberry Pi.

The API receives the transmission
and is able to process the data. If,
for example, positional data is
expected to be received, it will
properly process and return to the

76

user.

Other: Data
Character Arrays
From and to the
µController to the
Raspberry Pi 4

The microcontroller will send
positional data and confirmations to
the API. That information is sent as
a string that is essentially a
character array through serial.

Both grblHAL and the API expect
the use of strings to communicate
with each other. The API can
generate and send serial messages
to the microcontroller.

Protocol: USB The microcontroller is connected to
the raspberry pi through USB
(serial)

The raspberry pi has multiple USB
ports and is able to connect to the
microcontroller without a problem.
With the use of the pyserial library,
the API is able to interact with the
USB connection and send and
receive commands to the
microcontroller.

usr_ntrfc_hrdwr_cntrl_p_data : Input

Messages:
Translated input
from user
interface to
Hardware Control
API

After the user interfaces with the
GUI, sanitized data is sent to the
API to be interpreted and
transmitted to the Motor Control
block.

Received data is understood and
an appropriate response is
triggered. If, for example, the data
informs that the payload should
move, relative to the current
position, 3 cm on the X-axis, the
API translates it to GCode and
adds it to the broadcast queue.

Other: Receives
usable user input
to request video
frames, take
snapshots, or set
text over video
feed

The API is capable of sending back
to the user raw video frames
(usually as a NumPy array), set text
over the video stream, or taking
snapshots.

The API is able to request the VST
to send the latest frame as a pixel
array, capture that frame as a jpeg
image or add text over the
streaming video.

Other: Receives
usable user input
information to
translate to
GCode
commands and
add to daemon
queue

The API is capable of translating
raw positional data such as x, y,
and z and feed rate F to Gcode
commands that are queued in the
GST.

The API is able to generate
Jogging commands to grblHAL that
accept incremental or absolute
coordinates and feed rate. The
command is then added to the
send queue.

77

4.7.5. Block Testing Process

1. Create a simple testing script for the API. This includes flashing grblHAL to a
microcontroller and a testing python script for the API.

2. Test the API’s capabilities on sending and receiving data through serial to the
microcontroller

a. Test sending GCode and waiting for confirmation before sending another
command

b. Test sending grblHAL specific commands (?, $10=0) and processing received
data properly before sending to the user.

c. Test receiving an error message and logging it.

3. Test API’s capabilities on sending and receiving data to the user.

a. This will be done using a custom python test script. The script will simulate user
inputs through the GUI and make requests to the microcontroller through the API.

i. Test if the API sends raw text from the user as expected to the
microcontroller.

ii. Test if the API sends sanitized text from the user as expected to the
microcontroller by calling methods such that the gcode command is not
written by the user.

iii. Test if the API sends information received from the microcontroller back to
the user as expected (Machine Location, Work Location, Machine Status).

4. If available, Test API’s capabilities on loading GCode Lists as requested by the user and
send proper commands to the microcontroller (considered as raw/unsanitized inputs).

5. If available, test API’s capabilities on sending/displaying live video information to the
user.

78

4.7.6. References and File Links

4.7.6.1. References (IEEE)

4.7.6.2. File Links

4.7.7. Revision Table

03/06/2022 Felipe: Added to Section 4.7 from block validation

79

4.8. Graphical User Interface - Felipe Orrico Scognamiglio

4.8.1. Block Overview

The user interface receives user input through direct interaction with the user interface
The user interface interacts with the Hardware Control API by translating the user inputs into
usable data that is then sent to Hardware Control API for translation and serial forwarding. The
user input can be considered as raw or sanitized input based on the source.

The user is able to use preset commands by pressing a button in the User Interface,
typing commands in the terminal, loading a script file, and loading a labels file.

4.8.2. Block Design
The user interface receives information from the user or the Hardware Control API

(henceforth regarded as HCAPI). The input from the HCAPI consists of positional data, values
returned from the microcontroller and other information that is available. The user input consists
of keyboard input through a command-line interface available within the User interface, mouse
clicks in buttons available within the User interface, Files containing positional data for buttons
and knobs as well as knob height and diameter, and GCode scripts.

Figure 1: Black-Box Block Diagram

The user interface outputs data to the HCAPI. This data consists primarily of sanitized positional
data to be sent to the microcontroller (namely x, y, and z positions, and feed rate), and
unsanitized raw user input commands through a terminal within the user interface, the label
files, or the script file.

The User interface runs 2 different processes. The Parent process of the UI is responsible for
rendering the user interface (updating necessary values), catching interface events, and
communicating with the HCAPI. The Child process is forked from the Parent process and

80

executes a server loop for camera controls (This had to be done due to a conflict between GTK
and OpenCV2).

The GTK library handles all the events from the GUI. This happens in an inaccessible main
loop, for that reason, it is not possible to run anything else besides the GUI within the same
thread. In order to update values in the GUI, one needs to either be a part of the GUI thread or
request the update to happen in the next render loop (from a separate thread).

1. Parent Process - Main Thread Flow
a. Load configuration files.
b. Load HCAPI.
c. Fork HCAPI and Execute Video Server (go for 3 for more information on the

Video Server).
d. Create a thread to update machine position and status (go to 2 for more

information).
e. Build and show the main window for GUI.
f. Initiate infinite render loop.

i. Listen for events (button presses)
ii. If the main window is closed, exit the render loop, kill the child process,

and exit.
2. Parent Process - Position Update Thread Flow

a. Request position and status from the HCAPI.
b. Send update request to Main Thread to update the values on the GUI.
c. Go back to ‘a’.

3. Child Process - Video Server
a. Load Video Streaming Thread library.
b. Initiate library frame updater thread.
c. Enter Infinite main loop

i. Wait for command.
ii. Process command and call necessary methods.
iii. Go back to ‘i’.

81

Figure 2: User Interface

The figure above (2) shows the latest design of the GUI. The top menu allows the user to
interact with Labels and Scripts in the GUI. Labels can be loaded, saved, saved as, or cleared.
Scripts can be loaded and executed. Whenever a script is loaded, it will remain loaded until the
GUI is closed or the user loads another script.

The user is able to toggle the video window and capture the current frame. Later on, there are
plans to implement the recording of the video feed for later use.

4.8.3. Block General Validation
This block’s main function is to provide an easy-to-use interface to the user in a way that is able
to translate button pushes into usable data to the HCAPI. The design will conform to this
requirement by being able to demonstrate that the usability of the API is not restricted while
using the User Interface.

The user interface, in its current state, is able to communicate with the API to request
information from the microcontroller or carry out tasks. Currently, the main limitation of the
interactions between the API and the GUI is related to the incompatibility between the Video
Streamer API and the GUI library. For that reason, some changes had to be made and that
made it quite difficult for the API to send video-related data to the GUI. However, the API does

82

not need to receive any video information, so, in practice, there were essentially no drawbacks
to the changes, and validation overall will be maintained. The GUI is able to, however, through
the API, send commands to the Video Streamer to request it to take screenshots, toggle the
video stream, or add text over the video (used only when a preset command is executed). This
allows the GUI to maintain the necessary functionality.

The user interface interface works as intended. It allows the user to load files for both scripts
and labels and execute those commands. It is also able to receive typed user inputs through the
terminal available inside the GUI, or button clicks through the multiple available buttons (in order
to load scripts or labels the user must interact with the button menus available at the top of the
GUI).

4.8.4. Block Interface Validation

Interface
Property

Why is this interface this value? Why do you know that your
design details for this block
above meet or exceed each

property?

otsd_usr_ntrfc_usrin : Input

Other: User click
on button or write
GCode in User
Interface.

The Mouse and Keyboard are
connected to the Raspberry Pi.
Naturally, any GUI that is running
on the Raspberry Pi is able to
receive inputs from the keyboard
and mouse.

The Raspberry Pi is able to read
the information sent from the
mouse and keyboard. The GUI
should be able to receive this data
whenever is selected as a window.
The GUI has multiple buttons. Each
button is clickable. The GUI also
has a text box that will serve as a
terminal that will accept written
commands.

Other: Script File User is able to load a script file
containing a list of GCode
commands to be sent to the
microcontroller.

The GUI is able to load and run the
script. Information about execution
is added to the terminal.

Other: Labels File User is able to load a file containing
a list of Labels (.csv format) to be
used as macros.

The GUI is able to load and
interpret the list of labels and move
the payload when requested.

hrdwr_cntrl_p_usr_ntrfc_data : Input

83

Messages:
Hardware
Confirmation and
Location Data

After receiving a request, the API
will send back the requested data
to the user.

The API is able to receive the string
from the microcontroller, parse the
necessary values from it, and return
it to the user.

Other: List of
character arrays
for x, y, z position

The work position, and machine
positions are reported as x, y, and z
positions.

The positional data is parsed by the
GST and returned to the API as a
list of strings, each containing the x,
y, and z coordinates.

Other: Character
array containing
machine status

The machine status is reported as
“Idle”, “Run”, among other values.
All those values are strings sent by
the microcontroller.

The machine status data is parsed
by the GST and returned to the API
as a single string to the User.

usr_ntrfc_hrdwr_cntrl_p_data : Output

Messages:
Translated input
from the user
interface to
Hardware Control
API (button
pushes)

After the user interfaces with the
GUI, sanitized data is sent to the
API to be interpreted and
transmitted to the Motor Control
block. The API is capable of
translating raw positional data such
as x, y, and z and feed rate F to
Gcode commands that are queued
in the GST.

Received data is understood and
an appropriate response is
triggered. If, for example, the data
informs that the payload should
move, relative to the current
position, 3 cm on the X-axis, the
API translates it to GCode and
adds it to the broadcast queue.

Other: Sends
request to set
text over video
stream, and take
frame captures

The API is capable of setting text
over the video stream or taking
snapshots. Text is automatic, but
frame captures require the user to
name the file and press a button.

The API is able to request the VST
to capture the current frame as a
jpeg image or add text over the
streaming video. (this should be a
simple function call)

Other: Raw
GCode
commands to be
sent to
microcontroller
(input from the
terminal, script,
or labels)

The API is capable of translating
raw positional data such as x, y,
and z and feed rate F to Gcode
commands (labels).
Terminal and Script commands are
sent without checking (unsanitized).

The API is able to generate
commands to grblHAL that accept
incremental or absolute coordinates
and feed rate (from labels).
The API is capable of receiving
Gcode commands from the terminal
or script to send to the
microcontroller.

84

4.8.5. Block Testing Process

In order to be able to verify the user interface, the interfaces that connect to the HCAPI need to
be available. For that reason, within the User Interface, an object of the HCAPI will be created
and serve as the interface test for this block.

Initially, to test the interface, the User Interface will call methods from the HCAPI while passing
sanitized (incremental movement by pressing available buttons in the UI) and unsanitized
(typing commands, loading a GCode script, or loading a labels CSV file) user data to the API,
this way, we can prove that the HCAPI can handle receiving the data from the user interface.
Next, the User Interface would wait for the response back from the HCAPI regarding the
information sent in the previous step. By being able to receive, interpret and display those
values, we can prove that the User Interface is able to receive information from the HCAPI.

In order to test the outside user input to the HCAPI, the User Interface that is running on the
raspberry pi is able to receive and interpret mouse clicks and keyboard commands translating
them into usable data for the HCAPI. Keyboard commands are restricted only to raw commands
to be sent to the HCAPI through the terminal present inside of the UI.

4.8.6. References and File Links

4.8.6.1. References (IEEE)
[1] GTK3 - Project Page (GUI Library)
[2] Glade - Project Page (GUI XML Builder)

4.8.6.2. File Links

4.8.7. Revision Table

03/06/2022 Felipe: Added 4.8 from block validation

https://www.gtk.org/
https://glade.gnome.org/

85

5. System Verification Evidence

5.1. Universal Constraints

5.1.1. The system may not include a breadboard
The team has created a system PCB where it holds all of the blocks that need to be connected
together. This reduces the amount of wires for connections and eliminates the need for a bread
board. The PCB also has XT-30s and JST connectors to connect to the power supply, interrupts
and stepper motors. The raspberry pi will be connected through a USB-C for power from the
PCB. The microcontroller interfaces with the raspberry pi through another USB connection. This
means that all the connectors can be used for interfaces between blocks and no bread boards
are needed for assembly.

5.1.2. The final system must contain both of the following: a student
designed PCB and a custom Android/PC/Cloud application
A PCB was designed to house the main electrical components. This reduced the wiring needed
between blocks and made our design more compact. Three members of the team contributed to
this PCB; Dennis, Kevin and Ryan. Felipe created the application that will run on the Raspberry
Pi 4. This can be used from the Raspberry Pi. The application will use the API created by Felipe
to send commands to the microcontroller block. This will be the main way that users will use this
product.

5.1.3. If an enclosure is present, the contents must be ruggedly
enclosed/mounted
An enclosure is designed for this project to house the PCB, Raspberry pi, relay and power
supply. Mounting holes for each component has been planned out to secure them to the
enclosure. The team decided to use M2 screws and standoffs to mount each component. The
lid will also be screwed on so everything will be secured. The enclosure will also be attached to
the mechanical structure underneath the oscilloscope to ensure that the enclosure will not move
during operation of the device. Since this enclosure is designed by Dennis, it will be 3D Printed.

5.1.4. If present, all wire connections to PCBs and going through an
enclosure (entering or leaving) must use a connector
As stated in 5.1.1 all connections from the PCB to other blocks are using connectors on the
PCB. The connectors used are composed of XT-30s, JSTs, and USB connectors. These are
connections already planned out on the PCB. The enclosure also accounts for the footprint of
the PCB, so all connectors can connect to the PCB.

86

5.1.5. All power supplies in the system must be at least 65% efficient
The switching power supply that is used on the project is 91 percent efficient [1]. The output of
the power supply is 12 volts where it is stepped down to 5 volts through a switching buck
converter. This was the original plan however because of chick shortages and PCB delivery
times the team decided to use a Raspberry Pi 4 power brick to supply the 5 Volts to the
board.This 5v is then stepped down to 3V3 volts by a voltage regulator. This will increase the
efficiency of the regulator since it does not have to heat up as much to step down the voltage.

5.1.6. The system may be no more than 50% built from purchased modules
Four of the eight blocks used purchased modules. The black pill, stepper motor drivers,
raspberry pi and switching power supply are all purchased. The black pill and stepper motor
driver daughter boards were purchased due to component shortages. The Raspberry Pi 4 was
purchased to be used as an interface which acts like a PC and an application. The blocks do not
include the tool head block which will be made, the designed portions of the stepper motor and
power step downs. This equates to around 44% of the project being purchased.

5.2. The system will press a button.

5.2.1. Requirement
The tool head will be able to interact and activate the buttons on the front of the oscilloscope,
and properly trigger the buttons without touching the other buttons on the device.

5.2.2. Testing Process
1. The command to push a certain button is sent by the user by selecting a saved button

and pressing the designated button on the GUI to send the command.
2. The tool head will move to the correct button that is sent by the user.
3. The tool head will push the button.

5.2.3. Testing Evidence
5.2.3.1 Testing Evidence

5.3. The system turns multiple sized knobs.

5.3.1. Requirement
The tool head will be able to grip and turn a knob on the front of the oscilloscope, without
touching the other knobs on the device.

https://drive.google.com/file/d/1f82wNdTupErVSfGCA9B1Y2TrtbUmeDeQ/view?usp=sharing

87

5.3.2. Testing Process
1. The command to turn a knob is sent by the user by selecting a saved knob and pressing

the designated button on the GUI to send the turn command.
2. The tool head will move to the correct knob that is sent by the user.
3. The tool head will grip the corresponding knob.
4. The tool head will turn the knob.

5.3.3. Testing Evidence

5.4. The system will have autonomous operation.

5.4.1. Requirement
Engineering Requirement: The user will use the GUI to request movement to a label location or
a button press and the system will move the toolhead accordingly.

5.4.2. Testing Process
1. The user will send a command to move the device along the X, Y, or Z axis, using a

saved label location by selecting a label location or button location and pressing the
corresponding button in the GUI to send the command.

2. The user interface will interpret the commands and send the gcode.
3. The motor controller will follow the g-code received and move the mechanical frame to

the designated positions.

5.4.3. Testing Evidence

5.5. The system will allow a user to manually control the device.

5.5.1. Requirement
The user will be able to manually control the system over a GUI and move the toolhead to its
location, similar to jogging on a CNC Machine.

5.5.2. Testing Process
1. The user will send a command to the system to move the device along the X, Y, or Z

axis, by typing the gcode into the terminal on the GUI.
2. The user interface will relay the commands the the motor control block.
3. The motor controller will follow the gcode received and move the mechanical frame to

the designated positions.

88

5.5.3. Testing Evidence
5.5.3.1 Testing Evidence

5.6. The system will be able to toggle power to the stepper
motors through the GUI.

5.6.1. Requirement
The user is able to toggle the relay powering the stepper motors of the mechanical structure by
pressing the power button on the GUI.

5.6.2. Testing Process
1. The user presses the power button located on the top left portion of the GUI.
2. The system will turn ON or OFF the relay powering the stepper motors.
3. The current state of the relay can be seen updated on the GUI

5.6.3. Testing Evidence

5.7. The system will produce a video feed

5.7.1. Requirement
The system will collect a video feed from a device attached to the Raspberry Pi 4. The video
feed will be accessible to the user in the user interface. The video feed can be recorded for
future use.

5.7.2. Testing Process
1. Inside the User Interface, the user will click on the toggle video feed button.
2. The user starts recording the video by typing in a file name on the text field and toggling

the record video button.
3. Video starts being recorded to the desired filename.
4. The user stops the video recording by toggling the video recording button.
5. Videos are saved to the filename given by the user on the user interface folder.

5.7.3. Testing Evidence
5.7.3.1 Testing Evidence

https://drive.google.com/file/d/1m59uRQB-9lzIOi6SuNOxcDRfbzUgMvOO/view?usp=sharing
https://drive.google.com/file/d/10003sXaO7cdC3nR42EESxHud6W0IVwqT/view?usp=sharing

89

5.8. The Gantry System fits within a defined size

5.8.1. Requirement
The mechanical system will fit inside a 22in height x 34in width x 20in depth space. This is to
ensure that Tektronix will be able to fit the device on either a shelf or a desk with easy access.

5.8.2. Testing Process
1. Using a measuring tape, the system width will be shown to be no greater than 34in.
2. Using a measuring tape, the system depth will be shown to be no greater than 20in.
3. Using a measuring tape, the system height will be shown to be no greater than 22in.

5.8.3. Testing Evidence

5.9 The system will display commands on screen during video
playback

5.9.1. Requirement
The system will display the currently being executed command in the video feed as well as
recordings.

5.9.2 Testing Process
1. The user will press the toggle video button
2. The user will start a recording
3. The user will issue a command to the system
4. Upon completion of the command, the user will stop the recording
5. The user will check the recording for executed command

5.9.3. Testing Evidence
5.9.3.1 Testing Evidence

5.10. References and File Links

5.10.1. References (IEEE)
[1]StepperOnline,LRS-100-12 MEAN WELL 100W 12VDC 8.5A 115/230VAC Enclosed
Switching Power Supply, 2022,Online,[Available].
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-
8-5a-115-230vac-enclosed-switching-power-supply-lrs-100-12

https://drive.google.com/file/d/10003sXaO7cdC3nR42EESxHud6W0IVwqT/view?usp=sharing
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply-lrs-100-12
https://www.omc-stepperonline.com/switching-power-supply/lrs-100-12-mean-well-100w-12vdc-8-5a-115-230vac-enclosed-switching-power-supply-lrs-100-12

90

5.10.2. File Links

5.11. Revision Table

05/03/2022 Dennis: Revised and edited section 5 and section 2.

05/03/2022 Kevin: Revised testing evidence

05/03/2022 Ryan: Clarified Testing requirements

05/03/2022 Felipe: Updated Sections 5.2-5.9

04/22/2022 Felipe: Updated system requirements (Section 2 and 5)

03/06/2022 Felipe: Updated section 5.6 - 5.8

03/06/2022 Dennis: Worked on editing and revising section 5, transferred
requirements from section 2

03/05/2022 Kevin: Wrote brief paragraphs for 5.1 and transferred requirements from
section 2.

6. Project Closing

6.1. Future Recommendations

6.1.1. Technical recommendations
6.1.1.1 The PWM signal for the tool head servo could have some signal integrity issues.
To resolve this issue the signal could be routed to a different location than the bottom of
the PCB. The signal route is next to the 5 volt route and ends at the 12 volt plane. So the
signal route can be moved to be more isolated and to a different position either to the left
or right. This will also help wire management since the PCB would not have connectors
on all four sides.

6.1.1.2 Our project began in the middle of the Covid19 pandemic. During this pandemic
many IC chips and tools needed were out of stock. Because of this the team had very
limited choices in microcontrollers and chips. Over time our black Pill microcontroller
started to get more inconsistent and in some cases not work. The team has only one of
them and if we had extras we would have less hardships. During tests with the 5 Volt
circuit the main chip was destroyed. Luckily the team has one more extra, which also
died. The 5 Volt regulator in use had internal regulation, so the diode was inside the
chip. We do not recommend this chip since its very hard to track the change in voltage

91

and to debug electrical errors. Both the Black Pill and 5 Volt regulator chips are now out
of stock. When shopping, the team did not buy enough extras and are now paying the
price. It is recommended to buy more than needed microcontrollers and IC chips in case
something breaks or malfunctions.

6.1.1.3 To allow for more customizability of the User Interface, using Glade is not
recommended since it locks features that may want to be used. Instead, it may be better,
for the long run, to write the xml by hand or to build the interface during run-time. It may
take longer initially, but it is much easier to change later on.

6.1.1.4 To further improve the machines rigidity and robustness, using a material that is
more durable would offer a large improvement in the mechanical structure. Due to the
fast turnaround times that are required for this project and the limited amount of
resources that we are able to access, most of the complex and specialized parts are 3D
printed, which are not always the most durable pieces. To improve that, using custom
machined materials such as aluminum or steel can fix mechanical problems that could
occur on the system.

6.1.2. Global impact Recommendations
6.1.2.1 To reduce pollution from e-wastes teams should be encouraged to do multiple
designs review for PCBs. Our group went through multiple iterations of PCBs which left
us with old PCBs boards that will not be used. Aslo wire runs should be planned out to
reduce the amount of wire that is used. The team made mistakes where wire runs were
too short or too long. This meant that some wires had to be remanufactured causing
more wastes. Another way to reduce wastes is to have the microcontroller and stepper
drivers on the PCB itself. Due to shortages this team was not able to accomplish that. As
a result, our PCB became a motherboard which increased the size of the PCB.

6.1.2.2 Designing the system to have an extended and serviceable operating life cycle
would help to keep as much waste out of landfills as possible. By using recyclable parts,
we can also reuse the parts that we make incase of failure or recycle them properly.

6.1.3. Teamwork Recommendations
6.1.3.1 When splitting the responsibility for blocks our team split the mechanical
structure and enclosure between two different members. This leads to lots of
communication problems where a block would change a little and the other block would
have to change as well. This would cause more confusion and work. To streamline this
process the team should have kept one person to mechanical structure and enclosure.
Doing so would have caused less confusion and a more efficiency to the time spent.

6.1.3.2 The project cannot be completed without communicating with teammates and
that includes our project partner. Throughout the project the team had a bit of trouble
scheduling online team meetings with our project partner, since Textronix could not meet

92

after 5:00pm. This caused the team to have meetings in the early morning or in between
classes. In the future it is best to leave more room open for scheduled meetings to better
time management for the whole team.

6.2. Project Artifact Summary With Links

6.2.1 PCB and Schematic Diagrams
6.2.1.1 PCB Schematic PDFs

6.2.2 Mechanical Structure Fusion360 Designs
6.2.2.1 Gantry and Motor designs
6.2.2.2 Bracket 3D Printing Models

6.2.3 GRBL HAL file for Black Pill
6.2.3.1 GRBL HAL Code

6.2.4 Enclosure Models
6.2.4.1 Enclosure
6.2.4.2 System PCB
6.2.4.3 Raspberry Pi 4

6.2.5 User Interface / Hardware Control API Source Code
6.2.5.1 User Interface and HCAPI Code (WIP)

6.3. Presentation Materials
6.3.1 Poster

6.4. References and File Links

6.4.1. References (IEEE)

6.4.2. File Links

6.5. Revision Table

https://drive.google.com/file/d/1Apt-QuqFH6dpYIeViL57iPaXclHYUz8J/view?usp=sharing
https://a360.co/3LTzy70
https://a360.co/3siilMV
https://drive.google.com/file/d/1Eh2E5MdRU5w6btCHDAsfr5ju-5Svy9UO/view?usp=sharing
https://drive.google.com/file/d/1j05vmcl4rFxCcDvI5V877XMGJNneRLWC/view?usp=sharing
https://drive.google.com/file/d/1A25IH3LWxUbSMVW9XBvdD0IQmFZ9kH9W/view?usp=sharing
https://drive.google.com/file/d/1P70wIm7qMzmhC_ol_q9YdrjnvKzFBKZ9/view?usp=sharing
https://drive.google.com/file/d/1rs7Ho47oOIVXrOusdZN1Xq9JzrBR0ltn/view?usp=sharing
https://docs.google.com/presentation/d/1WCfKAovkLTgJvMYHkp1Lxkiq29_QRpoM/edit?usp=sharing&ouid=109234505027789946408&rtpof=true&sd=true

93

05/06/2022 Dennis: Added artifacts and future recommendations

05/06/2022 Felipe: Updated Section 6.1.1.3 and 6.2.5.1

05/06/2022 Kevin: Added artifacts files

05/06/2022 Ryan: Added formatting, recommendations, and Artifact files

05/05/2022 Kevin: Wrote one recommendation per subtopic

A. Appendix

