
Universal Chip Programmer Project
Document

May 14th, 2023

By:
Bryson Flint

Elizabeth Lindsay
Darius Salagean

1

Table of Contents

1. Overview 6
1.1. Executive Summary 6
1.2. Team Contacts and Protocols 6
1.3. Gap Analysis 7
1.4. Timeline 8
1.5. References and File Links 9
1.6. Revision Table 9

2. Impacts and Risks 10
2.1. Design Impact Statement 10
2.2. Risks 11
2.3. References and File Links 12

2.3.1. References 12
2.3.2. File Links 12

2.4. Revision Table 12
3. Top-Level Architecture 12

3.1. Block Diagram 12
3.2. Block Descriptions 13
3.3. Interface Definitions 16
3.4. References and File Links 17

3.4.1. References 17
3.4.2. File Links 17

3.5. Revision Table 17
4. Block Validations 18

4.1. Carrier 18
4.1.1. Description 18
4.1.2. Design 18
4.1.3. General Validation 19
4.1.4. Interface Validation 20
4.1.5. Verification Plan 20
4.1.6. References and File Links 20
4.1.7. Revision Table 21

4.2. Wave Inspection 21
4.2.1. Description 21
4.2.2. Design 21
4.2.3. General Validation 22
4.2.4. Interface Validation 23
4.2.5. Verification Plan 24
4.2.6. References and File Links 25
4.2.7. Revision table 25

2

4.3. Jupyter 26
4.3.1. Description 26
4.3.2. Design 26
4.3.3. General Validation 27
4.3.4. Interface Validation 28
4.3.5. Verification Plan 30
4.3.6. References and File Links 31
4.3.7. Revision Table 31

4.4. Library 32
4.4.1. Description 32
4.4.2. Design 32
4.4.3. General Validation 33
4.4.4. Interface Validation 33
4.4.5. Verification Plan 34
4.4.6. References and File Links 34
4.4.7. Revision Table 35

4.5. Glasgow 35
4.5.1. Description 35
4.5.2. Design 35
4.5.3. General Validation 36
4.5.4. Interface Validation 37
4.5.5. Verification Plan 39
4.5.6. References and File Links 39
4.5.7. Revision Table 40

4.6. HDL Configuration 40
4.6.1. Description 40
4.6.2. Design 40
4.6.3. General Validation 41
4.6.4. Interface Validation 42
4.6.5. Verification Plan 43
4.6.6. References and File Links 45
4.6.7. Revision Table 45

5. System Verification Evidence 46
5.1. Universal Constraints 46

5.1.1. The system may not include a breadboard 46
5.1.2. The final system must contain a student designed PCB. 46
5.1.3. All connections to PCBs must use connectors. 47
5.1.4. All power supplies in the system must be at least 65% efficient. 47
5.1.5. The system may be no more than 50% built from purchased modules. 47

5.2. Requirements 49
5.2.1. Save Data 49

3

5.2.1.1. Project Partner Requirement: 49
5.2.1.2. Engineering Requirement: 49
5.2.1.3. Testing Method: 49
5.2.1.4. Verification Process: 49
5.2.1.5. Testing Evidence: 49

5.2.2. Stable Interface 50
5.2.2.1. Project Partner Requirement: 50
5.2.2.2. Engineering Requirement: 50
5.2.2.3. Testing Method: 50
5.2.2.4. Verification Process: 50
5.2.2.5. Testing Evidence: 50

5.2.3. Commands 50
5.2.3.1. Project Partner Requirement: 50
5.2.3.2. Engineering Requirement: 50
5.2.3.3. Testing Method: 50
5.2.3.4. Verification Process: 51
5.2.3.5. Testing Evidence: 51

5.2.4. Connection 54
5.2.4.1. Project Partner Requirement: 54
5.2.4.2. Engineering Requirement: 54
5.2.4.3. Testing Method: 54
5.2.4.4. Verification Process: 54
5.2.4.5. Testing Evidence: 54

5.2.5. GUI 54
5.2.5.1. Project Partner Requirement: 54
5.2.5.2. Engineering Requirement: 54
5.2.5.3. Testing Method: 55
5.2.5.4. Verification Process: 55
5.2.5.5. Testing Evidence: 55

5.2.6. Reading 55
5.2.6.1. Project Partner Requirement: 55
5.2.6.2. Engineering Requirement: 55
5.2.6.3. Testing Method: 56
5.2.6.4. Verification Process: 56
5.2.6.5. Testing Evidence: 56

5.2.7. Speed 56
5.2.7.1. Project Partner Requirement: 56
5.2.7.2. Engineering Requirement: 56
5.2.7.3. Testing Method: 56
5.2.7.4. Verification Process: 57
5.2.7.5. Testing Evidence: 57

4

5.2.8. Visualize data 57
5.2.8.1. Project Partner Requirement: 57
5.2.8.2. Engineering Requirement: 57
5.2.8.3. Testing Method: 57
5.2.8.4. Verification Process: 57
5.2.8.5. Testing Evidence: 57

5.3. References and File Links 58
5.4. Revision Table 58

6. Project Closing 58
6.1. Future recommendations 58

6.1.1. Technical recommendations 58
6.1.2. Global Impact recommendations 59
6.1.3. Teamwork recommendations 59

6.2. Project Artifact Summary with Links 60
6.2.1. User Sign off form for Data Save 60
6.2.2. User Sign off form for GUI 60
6.2.3. User Sign off form for Visualize Data 60
6.2.4. PCB KiCad project zip file link 60
6.2.5. PCB layout 61
6.2.6. PCB Schematic 61
6.2.7. Excel spreadsheet of gathered data 62
6.2.8. PIC applet code for initializing Glasgow Interface commands and building applet62
6.2.9. PIC gateware code for hardware implementation 62
6.2.10. Jupyter code for GUI 62
6.2.11. Jupyter Library code for functions 62

6.3. Presentation Materials 62
6.4. References and File Links 63
6.5. Revision Table 64

A. Appendix 64

5

1. Overview
1.1. Executive Summary

Based on the Glasgow Explorer hardware platform, a universal chip programmer
that is able to leverage existing chip-level debug weaknesses will be delivered, in
addition to investigating new chips of related chip families. The project is
currently in the completed phase. A Jupyter Notebook GUI connects to the
Glasgow Explorer and gateware/applet code written in Amaranth HDL is used to
build the system. Using a 48 Hz clock, the system is able to write and read
program memory from a PIC16F1615 microcontroller which is connected to the
system using a custom PCB breakout board. Data that is read is saved to a text
file.

1.2. Team Contacts and Protocols

Table 1: Team Member Roles

Name Contact Role Contributions

Elizabeth Lindsay lindsael@oregons
tate.edu

Note taker
Leader

Designing GUI
and save
functionality in
Jupyter Notebook

Bryson Flint flintbr@oregonsta
te.edu

Devil’s advocate
Time Manager

Recording
Waveforms,
decoding
commands, and
PCB

Darius Salagean salageda@orego
nstate.edu

Facilitator
Coordinator

Coding applet for
Glasgow in
Amaranth HDL

Table 2: Team Protocols

Protocol Assessment Parameters

Weekly progress reports Each member must attend weekly
group meetings, and participate by
reporting any progress that they have
made.

Project partner meeting Attend bi-weekly meeting with a
project partner that will last upwards
of two hours.

6

mailto:lindsael@oregonstate.edu
mailto:lindsael@oregonstate.edu
mailto:flintbr@oregonstate.edu
mailto:flintbr@oregonstate.edu
mailto:salageda@oregonstate.edu
mailto:salageda@oregonstate.edu

Late/Absent If a group member is to be late, the
group member must notify the group
in advance, and if they are going to be
absent, they must give the group one
day's notice.

Comments and clear communication
in code

Code should be commented neatly,
functions should have headers with
purposeful explanations, and
variables and file names should have
clear names.

Meeting notes Group note taker will take notes
during project partner meetings. Notes
will be uploaded to the team google
drive.

Team google drive Information related to the project will
be stored in the team drive.
Information will be sorted in folders,
and there will be no loose files.

Respectful communication Team members are expected to be
respectful of each other’s ideas, and
listen to group member
communication in a respectful
manner.

1.3. Gap Analysis

The Purpose of this project is to research the firmware of microcontrollers and
data chips to help develop the security of these devices. The reason this is being
done is to lower the odds of a data chip being hacked into and the data being
stolen. The ultimate goal is to find a solution to prevent any data chip from being
broken into.

Assumptions that can be made for this project is to aim for a result that works
universally but this is likely to not to be accomplished. The research being done
is to make it apply to the data chips accessible but won't be able to make it
completely universal. It can also be assumed that the Glasgow explorer will be
used along with the Jupyter notebook. This will require using the code Amaranth.

The project starts by referencing the documents provided by the project partner
[1], [2]. These documents go over how to extract the firmware and different
methods of trying to prevent this.

7

1.4. Timeline

Table 3: Project Timeline

Task Expected
Completion

Responsible
Member

Completed
(y/n)

Attend first group
meeting

Week 1 Monday
9/26/2022

All group
members

Yes

Meet with project partner End of Week 2
10/2/2022

All group
members

Yes

Choose project option
and goals

End of Week 3
10/14/2022

All group
members

Yes

Complete Project
Document Section 1
Draft

End of Week 3
10/14/2022

All group
members

Yes

Communication
Evaluation

Week 4 Friday
10/21/2022

All group
members

Yes

Complete Project
Document Section 2
Draft

Week 6 Friday
11/4/2022

All group
members

Yes

Complete Design Impact
Assessment Draft

Week 6 Friday
11/4/2022

All group
members

Yes

Record PIC commands Week 9 Monday
11/21/2022

Bryson Flint Yes

Make Amaranth test
code

Week 9 Monday
11/21/2022

Darius Salagean Yes

Instal and learn Jupyter
Notebook

Week 9 Monday
11/21/2022

Elizabeth Lindsay Yes

Final System Design End of Week 10
12/2/2022

All group
members

Yes

Glasgow Explorer
Expected Arrival

End of Week 12
1/20/2023

All group
members

Yes

Submit PCB for
Manufacturing

End of Week 15
2/10/2023

Bryson Yes

Glasgow Training
Meeting 1

End of Week 18
3/3/2023

All group
members

Yes

System Verification 1 Wednesday of All group Yes

8

Week 20
3/15/2023

members

Glasgow Training
Meeting 2

End of Week 20
3/17/2023

All group
members

Yes

Glasgow Training
Meeting 3

End of Spring
Break
3/31/2023

Darius Salagean Yes

Final Implementation End of Week 25
5/5/2023

All group
members

Yes

Final System Checkoff Wednesday of
Week 26
5/10/2023

All group
members

Yes

Presentation and Poster End of Week 30
6/9/2023

All group
members

No

1.5. References and File Links

[1] M.Schink and J.Obermaier, “Exception(al) Failure - Breaking the STM32F1 Read-out
Protection,” 17 March 2020, Accessed: 11 October 2022. [Online]. Available:
https://blog.zapb.de/stm32f1-exceptional-failure/

[2] J.Obermaier and S. Tatschner, “ Shedding too much Light on a Microcontroller’s
Firmware Protection,” Accessed: 11 October 2022. [Online]. Available:
https://www.usenix.org/system/files/conference/woot17/woot17-paper-obermaier.pdf

1.6. Revision Table

Table 4: Revision Table Section 1

5/14/2023 Elizabeth Lindsay: Added to timeline and updated completion
status

5/10/2023 Elizabeth Lindsay: Updated executive summary to match
project status

11/18/2022 Darius Salagean: Added to timeline and updated executive
summary.

10/31/2022 Bryson Flint: Addressed comments for section one
Darius Salagean: Addressed comments for section one,
added to timeline.
Elizabeth Lindsay: Formatted table of contents

9

https://blog.zapb.de/stm32f1-exceptional-failure/
https://www.usenix.org/system/files/conference/woot17/woot17-paper-obermaier.pdf

10/10/2022 Bryson Flint: Initial document creation. Set up section
outlines. Initial content for 1.3
Darius Salagean: Initial content for 1.4
Elizabeth Lindsay: Initial content for 1.1, 1.2

2. Impacts and Risks
2.1. Design Impact Statement

One public, health, and safety impact that the universal programmer has is related to
reducing the number of programmers manufactured and the reducing the risk of dangers
during chip production. The chemicals that workers are exposed to during production are
extremely dangerous, as well as all the radiation and electrostatic particles that their
suits protect them from [1]. Workers wear protective PPE to protect themselves, but
incidents still happen, so lowering the amount of chips needing to be produced, by
creating a universal chip would minimize the risk.

Related to health and safety impacts, there could be a positive environmental impact
associated with this project, due to the production of a universal programmer, where less
programmers need to be made later, since there's just one programmer. Taiwan
Semiconductor Manufacturing Company, the largest manufacturer in the world, produced
15 million tons of carbon emissions in 2020 [2]. Therefore using one universal
programmer, instead of multiple programmers would have a positive impact in this area.

One cultural and social impact of the universal programmer relates to exploiting data
gathered by a microcontroller. For example, the STM32F1 series of microcontrollers was
discovered to allow for around 90% of its firmware to be downloaded [3]. STM32
microcontrollers are used in a variety of applications such as printers and vehicle
electronics. By downloading firmware, an experienced programmer would be able to see
exactly how the microcontroller is controlling the device it is in and gain access to
industry-secret data that they could leverage to cause harm. With the creation of a
universal programer we would be enabling more people to be able to recreate or
discover security flaws who would be able to take the responsible course of action and
report their findings to the manufacturer.

The primary economic factor of the Universal chip programmer is the chips themselves.
The project can use different forms of debuggers, FPGA boards, data analyzers, and
chips. All of these come in different ranges of prices, but the reason chips are more
expensive is because of the current chip shortage caused by COVID 19. According to
Bain & Company [4], the chip shortage is said to end in roughly 2024. The reason this is
impactful is because our project is trying to expose chips on their security flaws and the
research could impact the shortage by making debuggers lower in value by replicating

10

their use with a basic FPGA board, therefore changing the security approach on these
chips.

2.2. Risks

Table 5: Risk Table

Risk
ID

Risk
Description

Risk
Category

Risk
Probability

Risk
Impact

Performance
Indicator

Action Plan

R1 Project
Catches Fire

Hardware Low High Project is engulfed
in flames.

Take out fire
and replace
needed parts.

R2 Lose/Stolen
Hardware

Hardware Low Med Parts are missing
and can not be
found between
members.

Replace the
missing parts.

R3 Hardware
doesn’t
arrive on
time

Timeline Med High Shipping delays on
hardware, or the
package gets lost
in transit.

Check
shipping links
and then meet
with a project
partner about
using existing
hardware.

R4 Teammate
has
emergency

Organizati
on

Low High Teammate doesn’t
show up to
meeting
unexpectedly

Teammate lets
the rest of the
team know
24hrs in
advance.

R5 Faulty
Hardware

Technical Med High Hardware behaves
unexpectedly and
a cause can not be
determined

Test with a
multimeter,
refer to the
product
datasheet, talk
with the project
partner about
getting new
hardware.

R6 Not meeting
original goals

Organizati
onal

Med Med Technical goals are
not completed on
time, or
assignments are
missing.

Find out why
the goal wasn’t
meant and
adjust
accordingly.

R7 Go over Cost Med Med Needed Finances Find equivalent

11

300$ budget exceed $300. hardware that
is cheaper, talk
to the project
partner about
sponsorship.

2.3. References and File Links
2.3.1. References

[1] “StackPath,” www.ehstoday.com.
https://www.ehstoday.com/industrial-hygiene/article/21917701/safety-in-the-semi
conductor-industry

[2] S. Shead, “The global chip industry has a colossal problem with carbon
emissions,”CNBC, 03 Nov. 2021. [Online]. Available:
https://www.cnbc.com/2021/11/03/tsmc-samsung-and-intel-have-a-huge-carbon-f
ootprint.html

[3] M.Schink and J.Obermaier, “Exception(al) Failure - Breaking the STM32F1
Read-out Protection,” 17 March 2020, Accessed: 11 October 2022. [Online].
Available: https://blog.zapb.de/stm32f1-exceptional-failure/

[4] P. hanbury, A. Hoecker and M. Schallehn, “A chip shortage recovery guide,”
Bain.com, 25 March 2022, Accessed: 04 Nov 2022. [Online]. Available:
https://www.bain.com/insights/a-chip-shortage-recovery-guide/#:~:text=The%20a
utomation%2 and%20 industrial%20sectors,2023%20(see%20 Figure%201).

2.3.2. File Links
2.4. Revision Table

Table 6: Revision Table Section 2

10/24/2022 Bryson Flint: Initial content for 2.2 R1 and R2.
Darius Salagean: Initial section outline, content for 2.2 R5 and
R6.
Elizabeth Lindsay: Initial table creation for 2.2, content for 2.2
R3, R4, and R7.

4/26/2023 Elizabeth Lindsay: Added content for impact statement from
impact design assessment.

3. Top-Level Architecture
3.1. Block Diagram

12

https://www.ehstoday.com/industrial-hygiene/article/21917701/safety-in-the-semiconductor-industry
https://www.ehstoday.com/industrial-hygiene/article/21917701/safety-in-the-semiconductor-industry
https://www.cnbc.com/2021/11/03/tsmc-samsung-and-intel-have-a-huge-carbon-footprint.html
https://www.cnbc.com/2021/11/03/tsmc-samsung-and-intel-have-a-huge-carbon-footprint.html
https://blog.zapb.de/stm32f1-exceptional-failure/
https://www.bain.com/insights/a-chip-shortage-recovery-guide/#:~:text=The%20automotive%20and%20industrial%20sectors,2023%20(see%20Figure%201)
https://www.bain.com/insights/a-chip-shortage-recovery-guide/#:~:text=The%20automotive%20and%20industrial%20sectors,2023%20(see%20Figure%201)

Fig. 1. Black Box Diagram for Universal Programmer

Fig. 2. Block Diagram for Universal Programmer

3.2. Block Descriptions

Table 7: Block Description Table

Name Description

13

Carrier
Champion:
Bryson Flint

A PCB that will connect the Glasgow explorer to the PIC microcontroller.
The connection will be made using 2 JTAG connections. There will also
be pins attached to help read the signals being sent to the Glasgow from
the microcontroller, as well as a connector to allow programming from the
PICKit 3. The ultimate purpose of this block is to allow a stable
connection between the microcontroller and the Glasgow.

Glasgow
Champion: Darius
Salagean

This will be the hardware to act as the universal programmer. A Glasgow
Interface Explorer will be used to create signals that will mimic
programming commands that will be sent to the device under test. The
HDL Configuration code will be uploaded to the Glasgow to configure the
internal FPGA. The Jupyter block would connect to the Glasgow and use
the Library to send instructions for which command should be executed.
The Glasgow would also transmit data received from the PIC15F1615 to
Jupyter.

Jupyter
Champion: Beth
Lindsay

This will be where a Jupyter notebook program will be implemented to
analyze the signals received from the universal programmer. The
universal programmer will be implemented using a Glasgow Explorer,
which will be what the Jupyter Notebook is receiving signals from.
Through this connection, the Jupyter notebook will read data from the
Glasgow Explorer pertaining to each of the 5 commands that the
universal programmer will be running on the microcontroller. These
commands include: load configuration, load data from program memory,
read from program memory, increment address, and reset address. The
purpose of the Jupyter Notebook receiving these signals is to organize
the signals received into a readable graph for users to analyze. This will
be accomplished by writing code that takes the received signals as inputs
and then organizes the data into each of the different commands and
plots the signals to a graph. The code contained in the Jupyter Notebook
will leverage functions from the library that will allow the output from the
Glasgow Explorer to be viewed by the user to determine that each of the
commands ran as intended, and allows for verification that each of the
programmed commands are successful in execution.

14

Library
Champion: Beth
Lindsay

The library contains the specific functions that the Jupyter Notebook calls.
These functions are based on the HDL code that is run on the
microcontroller, as well as data gathered from using a logic analyzer in
sync with a programmer for the pic16. The functions included in the
library are of the five commands that the Glasgow will run which includes:
Load Configuration, Load data from program memory, Read data from
load memory, Read data increment address, and Read data reset. The
purpose of the library is to have a block that deals with creating each
function, and handling the bulk of actually executing each command. This
is managed by calling the functions included in the library within the
Jupyter notebook, and having the return of each of the functions
displayed within the Jupyter notebook. This block is necessary to the
system design and system requirements by satisfying the conditions that
the universal programmer will be able to program a microcontroller, that
the system will Load Configuration, Load data from program memory,
Read data from load memory, Read data increment address, and Read
data reset, and that the system will be able to record data.

Wave Inspection
Champion:
Bryson Flint

This block is the pre operation to the project. Using a programmer and
data analyzer with our selected Microcontroller (PIC16), this will show
waves of commands performed by the microcontroller. The logic analyzer
will read the function waves from inputting a command to the PIC16
microcontroller. Then the function waves will be outputted to the Data
Receiver (Saleae Software). Checking off this block will be verifying the
input values active high and active low are correct and the output waves
contain the expected function readings that will be replicated in a later
part of the project. Specifically, the waves will be used to show that an
FPGA/Glasgow explorer can replicate this data. The command it receives
and the responses it gives will be recorded by the logic analyzer. The
programmer will supply the commands to the microcontroller.

HDL
Configuration
Champion: Darius
Salagean

This will be the code responsible for configuring the hardware within the
Universal Programmer block. The Universal Programmer block will be a
Glasgow Explorer FPGA which will send data to a chosen microcontroller.
The code will configure the Glasgow Explorer to replicate the digital
signals for programming commands needed to read and write data to a
PIC16F1615 (PIC) microcontroller. Commands replicated will be Load
Configuration, Load Data for Program Memory, Read Data from Program
Memory, Increment Address, and Reset address. The code will be written
using the Amaranth HDL language and uploaded directly onto the
Glasgow Explorer.

15

3.3. Interface Definitions

Table 8: Interface Table

Name Properties

otsd_wv_nspctn_dsig ● Logic-Level: 2.64V (high) Minimum high reading
● Logic-Level: 0.66V (low) Maximum low reading
● Max Frequency: 5MHz

otsd_crrr_other ● Other: Configured for PIC16F1615 carrier board
● Other: Design in KiCad 6.0
● Other: Based on reference PCB for NXP chip

jpytr_otsd_usrout ● Type: Data will be saved to a file
● Type: Data will be displayed to the user as printed text
● Usability: This output needs to be used intuitively by

9/10 users who report that the output is
understandable..

lbrry_jpytr_data ● Messages:When a command is run from the library,
data is passed from the jupyter notebook, into the
library, and then provides a return to the Jupyter
notebook.

● Messages: Each of the commands run on the
Glasgow corresponds to a function in the library
including: Load Configuration, Load data from program
memory, Read data from load memory, Read data
increment address, and Read data reset.

● Other: The library code will be imported into the
Jupyter notebook code for use within the Jupyter
block..

wv_nspctn_otsd_data ● Messages: Increment Address 6 bit opcode followed
by delay(1us min.).

● Messages: Load Data 6 bit opcode followed by
delay(1 us min.) and then 16 bits of data.

● Messages: Read Data 6 bit opcode followed by
delay(1 us min.) and then 16 bits of data

● Messages: Load Config 6 bit opcode followed by
delay(1us min.) and then 16 bits of data.

16

hdl_cnfgrtn_glsgw_data ● Messages: Data to be read from memory, 16 bits wide
● Other: Needs to configure a 3.3V and Ground pin.
● Other: Needs to set a variable clock signal, max of

5MHz

crrr_glsgw_other ● Other: Printed PCB
● Other: Connects to Glasgow Explorer
● Other: Final schematic of design

glsgw_jpytr_data ● Messages: The Jupyter Notebook will send 6 bit
opcodes to the Glasgow

● Messages: The Jupyter Notebook will send 14 bit
data to the Glasgow

● Messages: The Jupyter Notebook will receive 14 bit
data from the Glasgow.

glsgw_hdl_cnfgrtn_data ● Messages: Data to be loaded into memory, 16 bits
wide

● Messages: Program code to be sent, 6 bits wide.
● Other: Internal clock signal, 10 MHz max

3.4. References and File Links
3.4.1. References
3.4.2. File Links

3.5. Revision Table

Table 9: Revision Table Section 3

5/14/2023 Bryson Flint: Updated Block Diagram to contain interface
names.

3/10/2023 Darius Salagean: Block Description table and Interface Table
added.

3/6/2023 Darius Salagean: Initial section creation and Block Diagram
figures added.

17

4. Block Validations
4.1. Carrier

4.1.1. Description

A PCB that will connect the Glasgow explorer to the PIC microcontroller. The connection
will be made using 2 JTAG connections. There will also be pins attached to help read the
signals being sent to the Glasgow from the microcontroller, as well as a connector to
allow programming from the PICKit 3. The ultimate purpose of this block is to allow a
stable connection between the microcontroller and the Glasgow.

4.1.2. Design

The design of the PCB is to sit on top of the Glasgow explorer and allow the
microcontroller to attach right in the middle of the PCB. This will allow minimal wiring and
a secure connection to be made. In figure 3, J5 and J7 will be pins that will allow the
data being sent to the glasgow to be read while programming.

Fig. 3. PCB Schematic

18

Fig. 4. Schematic of Design

4.1.3. General Validation

The first choice when designing the PCB was choosing the software. KiCad was chosen
to develop this software because the design courses at Oregon State University teach
KiCad, which definitely makes it a more convenient option. An alternative program could
have been Altium, which has a lot more options for users. The options can be seen here
[1], the reason this isn’t worth using this program is because it is not free and the team
does not have training to use this software. The project partner also supplied us with a
file that was already using KiCad, it made the most sense to continue using this program
to develop the PCB for the project.

The other notable choices made was the actual PCB itself. There are no surface mount
parts on the PCB and it uses entirely Jtags and pins. This is mainly because the PCB
acts mostly as a “Carrier” hence the name of the block. The pins will solder to the
Glasgow and the PIC16, this will allow a secure connection and remove possibility of the
parts coming apart unintentionally. The PIC16 comes on its own board with pin holes,
this allows the design to get away from using surface mounts. The alternative to the
design we chose would be to just put a bunch of pins onto a board and then connect
them using jumpers and wires instead of using traces. However, this would be messy
looking and not be as efficient as just using traces to connect everything.

19

4.1.4. Interface Validation

Table 10: Interface Validation table for Carrier

otsd_crrr_other : Input

Other: Design in
KiCad 6.0

Learned how to use this tool and
was used to develop the
previous model.

PCB was drafted and confirmed
in KiCad 6.0.

Other: Based on
reference PCB for
NXP chip

This will allow a similar protocol
to be made from a different chip
to the chip we are using.

Old file will be referenced to the
current file showing the changes
that were made.

Other: Configured for
PIC16F1615 carrier
board

This will allow the chip we chose
to work with the Glasgow and fit
the PCB.

The pins on the PCB were
measured to the pin layout of the
PIC16F1615.

crrr_glsgw_other : Output

Other: Connects to
Glasgow Explorer

This is the chosen FPGA and
requires connection.

The pins on the PCB were
measured to the pin layout of the
Glasgow Explorer.

Other: Final schematic
of design

Showing the connections that
are being made in a simple form.

Final schematic is presented with
the PCB.

Other: Printed PCB Actually having the PCB. PCB is in person and presented
with the PIC16 and Glasgow
Explorer.

4.1.5. Verification Plan

1. Present the printed PCB with the schematics ready to show and explain the
connections being made.

2. Show that the PCB fits the Glasgow Explorer and the PIC16 securely.

3. Show the old PCB provided by the project partner and compare it to the PIC16 PCB.

4.1.6. References and File Links

[1] https://www.altium.com/altium-designer/compare/kicad-eda

20

https://www.altium.com/altium-designer/compare/kicad-eda

4.1.7. Revision Table

Table 11: Revision Table for Carrier

3/10/2023 Bryson Flint: Section 4.1 Created and first draft made.

4.2. Wave Inspection
4.2.1. Description

This block is the pre operation to the project. Using a programmer and data analyzer
with our selected Microcontroller (PIC16), this will show waves of commands performed
by the microcontroller. The logic analyzer will read the function waves from inputting a
command to the PIC16 microcontroller. Then the function waves will be outputted to the
Data Receiver (Saleae Software). Checking off this block will be verifying the input
values active high and active low are correct and the output waves contain the expected
function readings that will be replicated in a later part of the project. Specifically, the
waves will be used to show that an FPGA/Glasgow explorer can replicate this data. The
command it receives and the responses it gives will be recorded by the logic analyzer.
The programmer will supply the commands to the microcontroller.

4.2.2. Design

The programmer comes with a USB cable that plugs into the laptop and allows the
commands to be inputted. The microcontroller comes with pins that connect to the
programmer. Additionally, a 3.3V power supply will also connect to the microcontroller.
Unfortunately the program that connects to the programmer from the PC is a bit
inconsistent and sometimes doesn't require the outside voltage source but this will be
supplied regardless. To see the signals being outputted from the microcontroller, The
data analyzer will connect with some clips and run its own software to show the signal
waves.Refer to figure number 4 to see how data analyzer is connected to the
programmer/microcontroller. There will also be a hex file uploaded to the programmer,
the actual data of the uploaded code isn’t actually important to finding the signal waves,
but it allows the data analyzer to see all of the commands being used to program the
code.

Looking at figure 5 below shows that this block is not exactly integrated into the main
portion of the project. However, the findings from this block is crucial in understanding
the commands that will be replicated in the finished product. The goal of this project is to
replicate the wave data that is given from the microcontroller onto the FPGA board,
which in this case is the Glasgow Explorer.

21

Fig. 5. Black Box Diagram

Fig. 6. Wiring Diagram and Connections

4.2.3. General Validation

The objective of the project is to expose security flaws in common chips, this design was
chosen because it’s simple. Having a simple design makes it easier to show the security
flaws and how easily accessible they can be. This block as shown in the block diagram
(figure 1) is pretty much separate from the final product of the project. The reason it's
important is because the project will be trying to recreate the results from the
programmer provided with the PIC16 microcontroller. In short, the programmer can
supply commands to the microcontroller and make it output specific data. The data
analyzer will pick up these signals and show us the results of the commands. One of the
first documentations provided to the team is by M.Schink and J.Obermaier [1], this is
relevant because they show how cheap and simple it can be done and it is important to
keep that pattern when presenting the possible flaws in different chips. Additionally,
since the project is trying to show that the security is vulnerable enough that anyone can
do it, it is important to use the most accessible chips to work with.

22

There is no need to complicate this process and waste time making it more automated or
official. This will actually do a good job showing how easy it is to pick up on signals that
are not usually meant to be seen. This will also allow the team to put their efforts into the
actual project of replicating the signals from the programmer into the glasgow explorer.
Since this is a pre operation to the project, none of the budget is not put into this, instead
everything needed to see the signals is provided by the Project Partner. Which also
means that this was pretty much the only option for inspecting the waves as we were
provided with this design and given a few tips on how to operate it. However, the team
was given the opportunity to choose between a few different microcontrollers to study for
this project. The PIC16 was chosen because it is far more simple and will require less
time than other chips. The more complicated chips can be used to test the universal
aspect of the project, but for the purpose of this block, using the simple one will allow
more data to be obtained early on and overall be more useful.

The alternative to the design we chose/were given would be to create a system that has
a better data analyzer and a different microcontroller with more functions. This would
allow more data to be obtained and create a more universal design for copying chips.
Any more changes than this would pretty much integrate this block with the rest of the
blocks which pretty much defeat the purpose of the project. The purpose is to show how
cheap it can be to obtain this data and implement it in a separate device. Additionally,
not enough was given in the project budget to afford more equipment for this portion of
the project. Due to the chip shortage P. Hanbury, A. Hoecker, and M. Schallehn talked
about the chip shortage that was relevant during COVID-19 [2]. This is relevant because
in deciding what microcontroller and parts to use for the project, this issue makes the
options limited. Therefore the provided and cheap options is clearly the design the
project has to go with.

4.2.4. Interface Validation

Table 12: Interface Validation table for Wave Inspection

otsd_wv_nspctn_dsig : Input (commands)

Max Frequency: 5MHz Section 8.0 page 31 is where
the timing (100 ns Tckl and Tckh
= 200ns = 5MHz) is specified of
the microcontroller data sheet.
[3]

The output from the data
analyzer will show the max
frequency being done.

Vmax: 2.64V (high)
Minimum high reading

2.64V is the specified value for
when the signal is at its active
high. [3] Section 8.0 page 31.

A voltage reader will be used to
verify roughly 2.64V is being read
when in active high.

Vmin: 0.66V (low)
maximum low reading

0.66V is the specified value for
when the signal is at its active

A voltage reader will be used to
verify 0.66V is being read when

23

low. [3] Section 8.0 page 31. in active low

wv_nspctn_otsd_data : Output (waves)

Messages: Load
Config. 6 bit opcode
followed by delay(1us
min.) and then 16 bits
of data.

Definition of command on
section 4.3 page 17 Figure 4-1.
[3]

The Saleae software will show
the waveform of the command
including the opcode, delay, and
data.

Messages: Load Data
6 bit opcode followed
by delay(1 us min.) and
then 16 bits of data.

Definition of command on
section 4.3 page 18 Figure 4-2.
[3]

The Saleae software will show
the waveform of the command
including the opcode, delay, and
data.

Messages: Read Data
6 bit opcode followed
by delay(1 us min.) and
then 16 bits of data.

Definition of command on
section 4.3 page 18 Figure 4-3 .
[3]

The Saleae software will show
the waveform of the command
including the opcode, delay, and
data.

Message: Increment
Address 6 bit opcode
followed by delay(1us
min.).

Definition of command on
section 4.3 page 19 Figure 4-4.
[3]

The Saleae software will show
the waveform of the command
including the opcode, delay, and
data.

4.2.5. Verification Plan

1. Demonstrate and assemble the microcontroller/programmer as seen in figure 6.

2. Demonstrate the IPE and IDE software required to load the hex file onto the
microcontroller from the programmer.

3. Connect an oscilloscope probe to demonstrate the input otsd_wv_nspctn_dsig.

4. Show that the Vmax for active high is 2.64V (minimum high reading), Vmin for active
low is 0.66V (maximum low reading), and the frequency maxes out at 5 MHz.

5. Disconnect oscilloscope and prepare connections to demonstrate output.

6. Connect the data analyzer to the existing assemble microcontroller/programmer. Use
the first three channels and ground. Channel 1 goes to VAP, Channel 2 goes to PGD,
Channel 3 goes to PGC, Ground goes to VCC. Does not need to connect in any
particular order.

7. Open the Saleae software to begin reading the output wv_nspctn_otsd_data.

24

8. Once the IPE software is ready to program and the Saleae software is ready to
record, start recording data and then proceed to program the microcontroller.

9. Stop the recording once the IPE Software finishes programming the microcontroller.

10. Locate the messages for the four outputs described in the interface table, Load
config., Load Data, Read Data, and Increment Address. Demonstrate that the values
they have specified match the expected waves.

4.2.6. References and File Links

[1] M.Schink and J.Obermaier, “Exception(al) Failure - Breaking the STM32F1 Read-out
Protection,” 17 March 2020, Accessed: 11 October 2022. [Online]. Available:
https://blog.zapb.de/stm32f1-exceptional-failure/

[2] P. Hanbury, A. Hoecker and M. Schallehn, “A chip shortage recovery guide,” Bain.com,
25 March 2022, Accessed: 04 Nov 2022. [Online]. Available:
https://www.bain.com/insights/a-chip-shortage-recovery-guide/#:~:text=The%20automati
on%2 and%20 industrial%20sectors,2023%20(see%20 Figure%201).

File Links:

MicroController Data Sheet:

[3] https://ww1.microchip.com/downloads/en/DeviceDoc/40001720C.pdf

4.2.7. Revision table

Table 13: Revision Table for Wave Inspection

3/6/23 Bryson Flint: Document imported into Project Document and
edited to match.

2/10/23 Bryson Flint: Description edited, Further detail in intro and
included wire diagram, added more information in general
validation and made design more clear, interfaces updated to
current project status, verification plan detailed further.
Revision statement added.

1/20/2023 Bryson Flint: Document Created and first draft made.

25

https://blog.zapb.de/stm32f1-exceptional-failure/
https://www.bain.com/insights/a-chip-shortage-recovery-guide/#:~:text=The%20automotive%20and%20industrial%20sectors,2023%20(see%20Figure%201)
https://www.bain.com/insights/a-chip-shortage-recovery-guide/#:~:text=The%20automotive%20and%20industrial%20sectors,2023%20(see%20Figure%201)
https://ww1.microchip.com/downloads/en/DeviceDoc/40001720C.pdf

4.3. Jupyter
4.3.1. Description

This will be where a Jupyter notebook program will be implemented to analyze the
signals received from the universal programmer. The universal programmer will be
implemented using a Glasgow Explorer, which will be what the Jupyter Notebook is
receiving signals from. Through this connection, the Jupyter notebook will read data from
the Glasgow Explorer pertaining to each of the 5 commands that the universal
programmer will be running on the microcontroller. These commands include: load
configuration, load data from program memory, read from program memory, increment
address, and reset address.

The purpose of the Jupyter Notebook receiving these signals is to organize the signals
received into a readable graph for users to analyze. This will be accomplished by writing
code that takes the received signals as inputs and then organizes the data into each of
the different commands and plots the signals to a graph. The code contained in the
Jupyter Notebook will leverage functions from the library that will allow the output from
the Glasgow Explorer to be viewed by the user to determine that each of the commands
ran as intended, and allows for verification that each of the programmed commands are
successful in execution. This block will satisfy system requirements through allowing the
universal programmer to connect to a user interface. It will also satisfy the requirement of
creating a user interface that is “clear” to 9/10 users which will be satisfied through the
block verification testing.

4.3.2. Design

The Jupyter notebook block will take inputs from the library, as well as the glasgow
explorer. The connection to the glasgow explorer will be bidirectional, so it will function
as an output as well, since one of the purposes of the Jupyter notebook is to send
program data to the FPGA, and in return receive data back from it.

26

Fig. 7. Black box diagram

Code outline:

Import library():Imports library functions for each of the commands

Run Commands()

Load configuration(): runs specific library command on the Glasgow Explorer.

Read data config(): receives data in return from the function.

Load data from program memory(): runs specific library command on the
Glasgow Explorer.

Read data load memory(): receives data in return from the function.

Read from program memory(): runs specific library command on the Glasgow
Explorer.

Read data read memory(): receives data in return from the function.

Increment address(): runs specific library command on the Glasgow Explorer.

Read data increment address(): receives data in return from the function.

Reset address(): runs specific library command on the Glasgow Explorer.

Read data reset(): receives data in return from the function.

Process data()

Create graphs(inputs from each of the read data functions): Outputs graphs for
each of the commands that are reasonable and intuitive to the user.

Graphs: The Jupyter Notebook interface allows for code to be run in block chunks, and
the final block will be a graph block instead of a code block, and it will display each of the
5 graphs that were generated.

4.3.3. General Validation

In order to meet the requirements given by the rest of the system, the Jupyter Notebook
block must receive data from the Glasgow Explorer about the results of each command
run, implement the commands using library functions, as well as provide a readable
output of the results of each of the functions for the user to analyze. All of this will be

27

implemented by writing code into a Jupyter Notebook application that sends and
receives data to the Glasgow Explorer universal programmer.

Jupyter Notebook was chosen to be the application used for this block because it is an
open source GUI that is programmable using python[1]. Using an open source
application is important, as the use of one has no cost to the group. The use of python
within the Jupyter notebook will allow for custom design and flexibility of how the
commands will be run, and how the data received from the commands will be presented
to the user. This application is also compatible with the Glasgow Explorer from which it
needs to be able to communicate with[2].

From the Jupyter Notebook, commands will be imported from the library block and then
run through the GUI onto the Glasgow Explorer. The library is separate from the Jupyter
Notebook block, since these commands are also needed when creating the HDL for the
Glasgow in another block, so this will allow for simpler implementation of the whole
system. Pulling out the library from the Jupyter Notebook is a design choice that is not
technically necessary to the success of the overall project or for the functionality of the
block, but it makes implementation of the block simpler, and more manageable. It
ensures that other blocks using the library will be using the same code as the Jupyter
Notebook to prevent any confusion, or mismatched commands.

Processing the data into graphs meets the needs of the block by providing the user with
a readable output from the commands. The creation of a readable and understandable
user output is also a project partner requirement, so it satisfies a whole requirement by
itself. Graphs are chosen to be the preferred output method, because the data received
will be in the form of signals, and when those signals are plotted, the user will be able to
compare the signals to those of the signals generated by a separate logic analyzer. This
will allow for verification that each of the commands worked correctly if they match the
signals generated by the logic analyzer, which also meets another engineering
requirement for the system.

Other ways to implement a GUI that could send and receive data to a universal
programmer would be to use LabView as a GUI instead of Jupyter Notebook[3]. This
alternative option was not chosen as it is not open source like Jupyter Notebook is, so
each of the team members would need to acquire a license for it. Not being open source
also means that learning the application would be more difficult as there would be less
online resources. Overall, Jupyter Notebook was chosen over LabView, as there was a
choice to implement Jupyter Notebook and the Glasgow in tandem, or use LabView for
everything. The team came to this decision because there is a learning curve for each
option, but the team had experience with Verilog and python, and learning LabView
wouldn’t be as accessible.

4.3.4. Interface Validation

Table 14: Interface Validation table for Jupyter

28

jpytr_otsd_usrout : Output

Type: Provides a user
with waveforms in the
form of a graph that
allow the user to see
that each of the
functions work correctly.

This output was chosen to be in
the form of graphs so that the
user would be able to compare
the graph generated from the
Jupyter Notebook with the one
generated from the logic
analyzer.

This property is met in the
design in the portion that
processes data and will
generate a graph for each of the
five commands that are run.

Usability: This output
needs to be used
intuitively by 9/10 users
who report that the
output is
understandable..

In order to prove intuitive
usability as required by the
project partner this property
was added. It allows for testing
by people who are not familiar
with the project to prove the
usability.

In order to meet this in the
design, the graphs generated in
the process data function will be
clearly labeled and have clear
formats for the user to
understand. All graphs will be
displayed in their own block
within the Jupyter Notebook for
further clarity. The functions in
read data will be easily
accessible for users to run
without needing extensive
knowledge of Python.

lbrry_jpytr_data : Input

Messages: Each of the
commands run on the
Glasgow corresponds to
a function in the library
including: Load
Configuration, Load
data from program
memory, Read data
from load memory,
Read data increment
address, and Read data
reset.

The Jupyter Notebook needs to
be able to access each of the 5
commands in order to run them
on the Glasgow explorer, so the
library must provide them to the
Jupyter Notebook.

This is implemented in the
design by using the imported
functions from the library in each
of their corresponding run
commands() calls so that the
command is run on the Glasgow
Explorer.

Other: The library code
will be imported into the
Jupyter notebook code
for use within the
Jupyter block.

For the sake of simplicity and to
not write duplicate code, a
library of common commands
including those run on the
Glasgow Explorer was pulled

The first section of code defined
in the Jupyter Notebook will be
importing the library of functions
for future use.

29

out of the Jupyter code. These
functions then need to be
imported to the Jupyter code so
that they can be used.

glsgw_jpytr_data : Input

Messages: The Jupyter
Notebook will receive 14
bit memory data from
the Glasgow Explorer.

This interface is necessary in
order to receive the correct data
from the Glasgow explorer
about the return of each
command function.

This is implemented in each of
the read data commands, where
the signals are received from the
correct bit of memory for each
signal.

Other: The Jupyter
Notebook will receive
data corresponding to
each of the five
commands.

The Jupyter Notebook must
receive data for each of the
commands so that each of the
commands that are run can be
plotted and analyzed, without
the signals from each command
crossing over each other and
getting combined.

This is implemented by creating
a read data() function for each of
the 5 commands instead of just
creating one read data function.

4.3.5. Verification Plan
1. Create Outline of Jupyter Notebook Python including all code blocks and graph

blocks.
2. Import Library block functions for each of the five commands.
3. Verify lbrry_jpytr_data by checking that there are 5 different commands - one for

each function, and that each command was properly imported by running the
command and checking that an output exists.

4. Create an api that will wrap the jupyter notebook allowing program data to be
sent and received.

5. Write Python code for creating graphs for each of the 5 functions and generate
graphs in correct graph block chunks.

6. Verify glsgw_jpytr_data by checking that there are 5 different inputs received
from the Glasgow Explorer that are independent of each other.

7. Verify glsgw_jpytr_data again by confirming that the generated graphs contain
expected data. If the data is not expected, then the functions need to be
changed, and re-tested so that the universal programmer can be confirmed as
replicating those 5 commands as required by the project partner.

8. Verify jpytr_otsd_usrout by collecting a group of 10 students to try out the GUI,
and ask their opinions on how intuitive the interface is.

9. Take input from the students and revise the GUI until the condition is met as
required by the project partner.

30

These steps are the best ways to verify the interfaces, as they test each of the interfaces
thoroughly and in a way that could be recreated. The steps also verify some of the
engineering and partner requirements for the whole system.

4.3.6. References and File Links

References

[1] M. Driscoll, “Jupyter Notebook: An Introduction”, Real Python [e-journal].
https://realpython.com/jupyter-notebook-introduction/#:~:text=The%20Jupyter%2
0Notebook%20is%20an,the%20people%20at%20Project%20Jupyter.

[2] “Glasgow”. Github: 2023. https://github.com/GlasgowEmbedded/glasgow

[3] “What is LabVIEW”, National Instruments [e-journal].
https://www.ni.com/en-us/shop/labview.html

File Links

Block Diagram P2

4.3.7. Revision Table

Table 15: Revision Table for Jupyter

2/11/23 Elizabeth Lindsay: Revised document based on instructor
comments and peer reviews. Content changes included
adding information to the description about how the block was
necessary to the project, and which system requirements it
satisfied. Other changes were adding a short description to
the block design, in order to further explain the block design
and reasoning behind it. More sources were added to the
validation in order to further prove why the design was
chosen; specifically sources related to explaining what the
glasgow explorer is/does were added. Finally the verification
plan was shortened in order to be more concise, so that it is
easier to read and follow. A short paragraph was also added
to the end to explain why this validation process would work
for the block.

1/20/23 Elizabeth Lindsay: Created and wrote remaining sections.
Edited and added content to sections 1 and 4.

1/12/23 Elizabeth Lindsay: Created interface properties for section 4.

11/30/22 Elizabeth Lindsay: Created description for section 1.

31

https://realpython.com/jupyter-notebook-introduction/#:~:text=The%20Jupyter%20Notebook%20is%20an,the%20people%20at%20Project%20Jupyter
https://realpython.com/jupyter-notebook-introduction/#:~:text=The%20Jupyter%20Notebook%20is%20an,the%20people%20at%20Project%20Jupyter
https://github.com/GlasgowEmbedded/glasgow
https://www.ni.com/en-us/shop/labview.html
https://docs.google.com/drawings/d/1BVtGBt2pWTNHZ0zULREqwEaxZ5nqLLbgjAOa3EC--ss/edit

4.4. Library
4.4.1. Description

The library contains the specific functions that the Jupyter Notebook calls. These
functions are based on the HDL code that is run on the microcontroller, as well as data
gathered from using a logic analyzer in sync with a programmer for the pic16. The
functions included in the library are of the five commands that Glasgow will run which
includes: Load Configuration, Load data from program memory, Read data from load
memory, Read data increment address, and Read data reset. The purpose of the library
is to have a block that deals with creating each function, and handling the bulk of
actually executing each command. This is managed by calling the functions included in
the library within the Jupyter notebook, and having the return of each of the functions
displayed within the Jupyter notebook. This block is necessary to the system design and
system requirements by satisfying the conditions that the universal programmer will be
able to program a microcontroller, that the system will Load Configuration, Load data
from program memory, Read data from load memory, Read data increment address, and
Read data reset, and that the system will be able to record data.

4.4.2. Design

The only connection that the library will have to other blocks will be to the Jupyter
Notebook, but the interface will be bidirectional. This means that the Library block will be
both receiving and sending data to the Jupyter notebook. This is essential, as the
commands that the Library houses include a write command which needs to send data,
and a read command that will need to receive data.

Fig. 8. Library block diagram

32

Code Outline:

Load Configuration(): sends the opcode for load configuration.
Load data(): sends the opcode for load data.
Read data(): sends the opcode for reading data. Then receives and saves the read data.
Increment address(): sends the opcode for increment address.
Reset(): sends the opcode for reset.

4.4.3. General Validation

In order to meet the requirements of the system, the Library must contain 5 different
functions, each of them corresponding to a specific command that the team intends to
run on the Glasgow Explorer. These five functions are: Load Configuration, Load data
from program memory, Read data from load memory, Read data increment address, and
Read data reset.

These five functions were chosen as they are the most basic programming commands to
send, and are necessary for reading data[1]. This was determined through reading
through the data sheet for our chosen chip. The data sheet also included the opcode
necessary to send the command to the Glasgow Explorer, so each of the functions that
are implemented are hard coded with the opcode that they are meant to send.

Some of the commands are more complex than others, specifically the read data
command. The read data command needs to not only send an opcode but it needs to
receive the data that it is requesting. The data that it receives is in the form of 14 bit
memory data [2]. So when running the read data command and receiving data back,
there needs to be a spot to store that 14 bit memory data, so that it can be saved. This
was implemented by creating a variable to save the data into, so that it could be printed
to the user, and saved to a file later, in order to satisfy system requirements.

4.4.4. Interface Validation

Table 16: Interface Validation table for Library

lbrry_jpytr_data : Output

Messages: When a
command is run from
the library, data is
passed from the
jupyter notebook, into
the library, and then
provides a return to the
Jupyter notebook.

The purpose of the Jupyter
Notebook is to run commands
on the Glasgow, so that means
that it needs to first retrieve
those commands from the
library and communicate in both
directions with it.

This is implemented in the
instantiation for the library within
the jupyter notebook code, as
well as when the commands from
the library are successfully called
on the jupyter notebook. These
commands are deemed
successful when they can

33

provide accurate inputs and
outputs.

Messages: Each of the
commands run on the
Glasgow corresponds
to a function in the
library including: Load
Configuration, Load
data from program
memory, Read data
from load memory,
Read data increment
address, and Read
data reset.

The Jupyter Notebook needs to
be able to access each of the 5
commands in order to run them
on the Glasgow explorer, so the
library must provide them to the
Jupyter Notebook.

This is implemented in the design
by using the imported functions
from the library in each of their
corresponding run commands()
calls so that the command is run
on the Glasgow Explorer.

Other: The library code
will be imported into
the Jupyter notebook
code for use within the
Jupyter block.

For the sake of simplicity and to
not write duplicate code, a
library of common commands
including those run on the
Glasgow Explorer was pulled
out of the Jupyter code. These
functions then need to be
imported to the Jupyter code so
that they can be used.

The first section of code defined
in the Jupyter Notebook will be
importing the library of functions
for future use.

4.4.5. Verification Plan
1. Create two different files for code- one for the library, one for the jupyter

notebook.
2. Instantiate functions for each of the five commands, where they send their

specific opcodes, and receive data when needed.
3. In the Jupyter Notebook, import Library block functions for each of the five

commands.
4. Verify lbrry_jpytr_data by checking that there are 5 different commands - one for

each function, and that each command was properly imported by running the
command and checking that an output exists. Verify that for the read data
function, there is data being printed to the screen and saved to a file

4.4.6. References and File Links

References:

[1] “PIC16(L)F1615/9”, Microchip,

34

https://ww1.microchip.com/downloads/en/DeviceDoc/40001770D.pdf

[2] “PIC16(L)F1615/9 Memory Programming”, Microchip,
https://ww1.microchip.com/downloads/en/DeviceDoc/40001720C.pdf

File links:

Block Diagram P2

4.4.7. Revision Table

Table 17: Revision Table for Library

3/10/23 Elizabeth Lindsay: Created content for each section including
copying over the description and interface property sections.

4.5. Glasgow
4.5.1. Description

This will be the hardware to act as the universal programmer. A Glasgow Interface
Explorer will be used to create signals that will mimic programming commands that will
be sent to the device under test. The HDL Configuration code will be uploaded to the
Glasgow to configure the internal FPGA. The Jupyter block would connect to the
Glasgow and use the Library to send instructions for which command should be
executed. The Glasgow would also transmit data received from the PIC15F1615 to
Jupyter.

4.5.2. Design

The universal programmer project is attempting to read and write memory from a PIC
microcontroller. The Glasgow Explorer hardware will be used for the Glasgow block. The
hdl_cnfgrth_glsgw_data from HDL Configuration will configure the FPGA on the
Glasgow Explorer. The glsgw_hdl_cnfgrtn_data interface describes the data that the
Glasgow Explorer will receive and the HDL Code will need to properly process the data
and set the Glasgow Explorer to perform the correct action. The glsgw_jpytr_data :
Output interface describes the data that the Jupyter Notebook will send and receive
from the Glasgow. Fig. 9 shows the black box diagram.

35

https://ww1.microchip.com/downloads/en/DeviceDoc/40001770D.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/40001720C.pdf
https://docs.google.com/drawings/d/1BVtGBt2pWTNHZ0zULREqwEaxZ5nqLLbgjAOa3EC--ss/edit

Fig. 9. Black box diagram of Glasgow block.

Glasgow Explorer has two ports, A and B, which have 8 GPIO pins that can supply
150mA of current and 1.8V - 5V. Each port also has a 5V power supply at the VIO_ pin.
The layout of the ports can be seen in Figure 10 below. GND and VIOA will be used as
power and ground for the PIC, while the clock signal will be sent on PAIO4 and data on
PAIO5.

Fig. 10. Port Layout for the Glasgow Explorer

4.5.3. General Validation

36

When we first met with our project partner we were given two options for hardware to
use to create the universal programmer. The first was the myRIO my National
Instruments and the second was the Glasgow Explorer, which is open source hardware.
We chose to use the Glasgow Explorer as it had the most flexibility. The price for the
Glasgow was also much better at 145$, compared to the myRIO at 592$ for the basic
academic version. This means that all 3 group members could have access to the
Glasgow hardware, vs. only 1 myRIO.

The Glasgow Explorer would require code to be written in Jupyter Notebook, which uses
Python. All of our group members are familiar with Python. The MyRIO would require
code to be written using LabView. LabView is a proprietary software that would require
all of our group members to learn an entirely new programming language to use.

Due to the connection between the PIC and Glasgow being a PCB board, the pins
PAIO4 and PAIO5 were chosen as they worked the best with the layout of the PIC
breakout board. Port A was chosen for this same reason, though Port B could have also
been used as they are interchangeable.

4.5.4. Interface Validation

Table 18: Interface Validation table

hdl_cnfgrtn_glsgw_data : Output

Messages: Data
to be read from
memory, 16 bits
wide

16 bits was chosen as data in the
microcontroller is 14 bits wide,
however 16 clock cycles are
needed to output data on the data
line as outlined by the PIC
programming guide.

For a PIC16F1615 [1]:
● 16 clock cycles are required

to send out data from PIC.
(4.3 Program/Verify
Commands)

● Data being read is sent as
some unknown value x, 14
data bits, and a final 0 bit.
(Figure 4-3)

● 16 bits is in line with set
specifications.

Other: Needs to
set a variable
clock signal, max
of 5MHz

5Mhz was chosen based on the
timing specifications of the PIC
datasheet. This can be variable as
the clock is not always on.

For a PIC16F1615 [1]:
● The Clock low and high pulse

both need to last for a
minimum of 100 ns. (Table
8-1: AC/DC Characteristics
Timing Requirements For
Program/Verify Mode)

● This means the clock period
is 200 ns = 5Mhz which is

37

what was chosen.

Other: Needs to
configure a 3.3V
and Ground pin

3.3V was chosen as this is a
standard for low voltage
microcontrollers.

For a PIC16F1615 [2]:
● Maximum standard operating

voltage on the VDD pin is
+5.5V. Minimum voltage for
32MHz internal clock
operation is 2.5V. (35.3 DC
Characteristics Table 35-1)

● 3.3V is within these
parameters and allows for full
use of the microcontroller.

glsgw_jpytr_data : Output

Messages: The
Jupyter Notebook
will send 14 bit
data to the
Glasgow

Since the PIC microcontroller uses
14 bit data memory, anything we
want to load into the PIC needs to
be 14 bits.

For a PIC16F1615 [1]:
● Data is sent as the start bit 0,

14 data bits, and end bit 0.
(Table 4-1)

● The start and stop bits are set
by the HDL code.

Messages: The
Jupyter Notebook
will receive 14 bit
data from the
Glasgow

Since the PIC microcontroller uses
14 bit data memory, anything we
read from the PIC will be in 14 bit
form.

For a PIC16F1615 [1]:
● Data is read as an unknown

bit x, 14 data bits LSB to
MSB, and end bit x. (Table
4-3)

● Only need the 14 data bits,
the start and stop bits can be
cut off.

Messages: The
Jupyter Notebook
will send 6 bit
opcodes to the
Glasgow

The PIC microcontroller uses 6
bits for the available programing
opcodes.

For a PIC16F1615 [1]:
● Program commands are 6

bits long and consist of 5 data
bits and an unknown value x.
(Table 4-1)

● 6 bits is in line with the set
specifications.

glsgw_hdl_cnfgrtn_data : Input

Messages: Data
to be loaded into
memory, 16 bits
wide

16 bits was chosen based on the
requirements outlined by the PIC
programming guide.

For a PIC16F1615 [1]:
● 16 clock cycles are required

to send in data to the PIC.
(4.3 Program/Verify

38

Commands)
● Data is sent as the start bit 0,

14 data bits, and end bit 0.
(Table 4-1)

● 16 bits is in line with the set
specifications.

Messages:
Program code to
be sent, 6 bits
wide.

6 bits was chosen as the size of
programming commands is 6 bits

For a PIC16F1615 [1]:
● Program commands are 6

bits long and consist of 5 data
bits and an unknown value x.
(Table 4-1)

● 6 bits is in line with the set
specifications.

4.5.5. Verification Plan

The HDL code will be uploaded to the Glasgow Explorer hardware which would configure it. The
Wave inspection block will be connected to the Glasgow in order to get readings of the
waveforms. The connection needed would be to the variable clock signal, data line, and clear
line. The verification process will be as follows:

1. The Wave Inspection block will begin a recording.
2. A chosen command will be sent to the Glasgow from the Jupyter Notebook.
3. Once the command is finished the recording will be stopped.
4. The recording will be inspected and checked if it matches the waveform seen in the PIC

data sheet [1] Table 4-1.
a. If the command was read data, the Jupyter Notebook must display the same data

read as the data seen in the recording.
5. This process will be repeated for all 5 commands.
6. The system passes verification if all 5 commands match the expected waveforms and

the read command sends data to the Jupyter Notebook.

4.5.6. References and File Links

[1] “Pic12(L)F1612/16(L)F161X memory programming,” Microchip, Sep-2013. [Online].
Available: https://ww1.microchip.com/downloads/en/DeviceDoc/40001720C.pdf.
[Accessed: 20-Jan-2023].

[2] “PIC16(L)F1615/9 Data Sheet,” Microchip, Oct-2014. [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/40001770D.pdf. [Accessed:
20-Jan-2023].

39

https://ww1.microchip.com/downloads/en/DeviceDoc/40001720C.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/40001770D.pdf

4.5.7. Revision Table

Table 19: Revision Table for Library

3/12/23 Darius Salagean: Initial section creation. All parts filled out.

4.6. HDL Configuration
4.6.1. Description

This will be the code responsible for configuring the hardware within the Universal
Programmer block. The Universal Programmer block will be a Glasgow Explorer FPGA
which will send data to a chosen microcontroller. The code will configure the Glasgow
Explorer to replicate the digital signals for programming commands needed to read and
write data to a PIC16F1615 (PIC) microcontroller. Commands replicated will be Load
Configuration, Load Data for Program Memory, Read Data from Program Memory,
Increment Address, and Reset address. The code will be written using the Amaranth
HDL language and uploaded directly onto the Glasgow Explorer.

4.6.2. Design

The universal programmer project is attempting to read and write memory from a PIC
microcontroller. The hdl_cnfgrth_glsgw_data interface describes the necessary ports that
the HDL code must configure on theGlasgow Explorer so that it will be able to transmit
and receive data from the PIC using its specifications. The Glasgow Explorer will need to
be configured to supply a clock signal, power, ground, and a two way connection to send
and receive data. The glsgw_hdl_cnfgrtn_data interface describes the data that the
Glasgow Explorer will receive and the HDL Code will need to properly process the data
and set the Glasgow Explorer to perform the correct action. Fig. 11 shows the black box
diagram. Once the HDL code is written it will be downloaded onto the FPGA using a
USB connection.

40

Fig. 11. Black box diagram of HDL Configuration block.

The code will be designed to respond to 5 certain inputs and data. Each of the 5
commands has an associated opcode that the code will check for and perform a specific
operation. In the case of Load Configuration and Load Data, there will also be data given
as an input that will need to be sent. The Read Data command will have incoming data
that it will need to store. All commands will send data on the falling edge of the clock and
have a delay of 1us between command and data read/write. Pseudocode for this
implementation is seen in Figure 12.

Fig. 12. Pseudocode for the HDL Config code written in Amaranth

4.6.3. General Validation

For our project, we were required to use the Glasgow Explorer as our FPGA hardware.
The Glasgow Explorer is an open source project, so what we make could easily be
replicated by someone else if we were to share our code and set-up. Since our system is

41

using a Glasgow Explorer the Amaranth HDL language was chosen to make the code.
This is due to the fact that the Glasgow firmware is written in Python 3 and the FPGA is
modified using Amaranth HDL [1], which is a Python derived language.

The PIC microcontroller was chosen due to its simple design. It is an 8 bit microcontroller
with only 10 programming commands in total and one section of program memory. Other
microcontrollers we could have chosen were the STM32U4 and the NXP PA16. The
NXP PA16 is also an 8 bit microcontroller, however it has RAM, EEPROM, and Flash
memory that all have specific commands required to access and read. The STM32U4 is
a 32-bit microcontroller which has SRAM and Flash memory. Since it is 32 bits, it has a
much larger memory set which makes it much more difficult to read the contents of
program memory.

The PIC requires an external power source and ground connection in order to function,
so configuring the Glasgow Explorer to have these is necessary. The PIC is programmed
by using a clock connection and a two way data bus, so these connections also must be
configured by the HDL. The clock signal is not constant and needs to be delayed
between commands, so the clock signal needs to be variable. The Glasgow Explorer has
16 GPIO pins, meaning it has enough to connect to the PIC. The pins can also output
specific voltages, which makes delivering a constant 3.3v possible. The HDL code will
configure the internal hardware to make the data pin an output when sending data and
an input when receiving data.

4.6.4. Interface Validation

Table 20: Interface Validation table for HDL Configuration

hdl_cnfgrtn_glsgw_data : Output

Messages: Data
to be read from
memory, 16 bits
wide

16 bits was chosen as data in the
microcontroller is 14 bits wide,
however 16 clock cycles are
needed to output data on the data
line as outlined by the PIC
programming guide.

For a PIC16F1615 [2]:
● 16 clock cycles are required

to send out data from PIC.
(4.3 Program/Verify
Commands)

● Data being read is sent as
some unknown value x, 14
data bits, and a final 0 bit.
(Figure 4-3)

● 16 bits is in line with set
specifications.

Other: Needs to
set a variable
clock signal, max
of 5MHz

5Mhz was chosen based on the
timing specifications of the PIC
datasheet. This can be variable as
the clock is not always on.

For a PIC16F1615 [2]:
● The Clock low and high pulse

both need to last for a
minimum of 100 ns. (Table

42

8-1: AC/DC Characteristics
Timing Requirements For
Program/Verify Mode)

● This means the clock period
is 200 ns = 5Mhz which is
what was chosen.

Other: Needs to
configure a 3.3V
and Ground pin

3.3V was chosen as this is a
standard for low voltage
microcontrollers.

For a PIC16F1615 [3]:
● Maximum standard operating

voltage on the VDD pin is
+5.5V. Minimum voltage for
32MHz internal clock
operation is 2.5V. (35.3 DC
Characteristics Table 35-1)

● 3.3V is within these
parameters and allows for full
use of the microcontroller.

glsgw_hdl_cnfgrtn_data : Input

Messages: Data
to be loaded into
memory, 16 bits
wide

16 bits was chosen based on the
requirements outlined by the PIC
programming guide.

For a PIC16F1615 [2]:
● 16 clock cycles are required

to send in data to the PIC.
(4.3 Program/Verify
Commands)

● Data is sent as the start bit 0,
14 data bits, and end bit 0.
(Table 4-1)

● 16 bits is in line with the set
specifications.

Messages:
Program code to
be sent, 6 bits
wide.

6 bits was chosen as the size of
programming commands is 6 bits

For a PIC16F1615 [2]:
● Program commands are 6

bits long and consist of 5 data
bits and an unknown value x.
(Table 4-1)

● 6 bits is in line with the set
specifications.

4.6.5. Verification Plan

The HDL code would normally be uploaded to the Glasgow Explorer hardware which
would configure it to be able to perform set actions based on the input opcodes and
data. For verification, the HDL code can be simulated using a test bench to demonstrate

43

how the code would perform if it were uploaded to the Glasgow Explorer. This simulation
would create a waveform that can be used to verify the specifications of the interfaces. If
the simulated waveforms match the specifications, it is expected that the code will
perform the same when uploaded to the Glasgow Explorer. The verification process will
be as follows:

1. Amaranth HDL code will be written and a test bench will be presented.
2. The test bench will perform the following tests

a. The Load Data For Program Memory command will be sent (0 1 0 0 0 x)
b. The 14 bit opcode data for adding 13 to W register (1 0 1 1 0 0 0 0 0 1 1

1 1 1) will be sent.
c. The Read Data From Program Memory command will be sent (0 0 1 0 0

x)
3. Code will be ran and generate a .vcd file.
4. .vcd file will be ran with GTKWave in order to display the created wave form.
5. The waveform must have the following signals to be considered complete:

a. A constant output that is high (will represent the 3.3V pin).
b. A constant output that is low (will represent the 0V pin).
c. A clock signal which does not exceed a 5Mhz period.
d. The simulated Load Data For Program Memory that was sent by the test

bench. The execution is seen in Fig. 13.
i. The program command bits 0 1 0 0 0 x will be sent.
ii. After a delay of 1 us (TDLY), the 0 start bit will be sent followed by

the 14 data bits from the test bench, followed by the 0 stop bit.
e. The simulated Read Data From Program Memory that was sent by the

test bench following the data from the previous command. The execution
is seen in Fig. 14.
i. The program command bits 0 0 1 0 0 x will be sent.
ii. After a delay of 1 us, an unknown value x will be received,

followed by the same 14 data bits sent earlier, and finally a 0.

Fig. 13. Load Data example execution from programing datasheet [2]

44

Fig. 14. Read Data example execution from programing datasheet [2]

4.6.6. References and File Links

[1] “Glasgow interface explorer,” Crowd Supply. [Online]. Available:
https://www.crowdsupply.com/1bitsquared/glasgow. [Accessed: 20-Jan-2023].

[2] “Pic12(L)F1612/16(L)F161X memory programming,” Microchip, Sep-2013. [Online].
Available: https://ww1.microchip.com/downloads/en/DeviceDoc/40001720C.pdf.
[Accessed: 20-Jan-2023].

[3] “PIC16(L)F1615/9 Data Sheet,” Microchip, Oct-2014. [Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/40001770D.pdf. [Accessed:
20-Jan-2023].

4.6.7. Revision Table

Table 21: Revision Table for HDL Configuration

3/6/23 Darius Salagean: HDL Configuration put into project
document. Final edits made based on review.

2/11/23 Darius Salagean: General Validation section was redone to
include reasoning for selection of specific components, other
options, and specifics of how the HLD code meets
requirements based on feedback from Hunter, Benjamin, and
Rachale.

2/11/23 Darius Salagean: Pseudocode was made and added to the
design section based on feedback from Hunter and Benjamin.

45

https://www.crowdsupply.com/1bitsquared/glasgow
https://ww1.microchip.com/downloads/en/DeviceDoc/40001720C.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/40001770D.pdf

2/11/23 Darius Salagean: Description updated to specifically
reference the Glasgow Explorer based on feedback from
Hunter Pitzler.

2/10/23 Darius Salagean: Updated Verification plan to match new
interfaces and include more detail in description based on
feedback from Rachael Cate.

2/10/23 Darius Salagean: Interface table and block diagram updated
to include an input interface based on feedback from
Benjamin Johnson

1/20/23 Darius Salagean: Initial document creation and sections filled
out.

5. System Verification Evidence
5.1. Universal Constraints

5.1.1. The system may not include a breadboard

Our project is made up of code and specific hardware. There are no
electrical connections that are made using a breadboard, because of this,
the universal constraint is met.

Fig. 15. Image of the Final System With all Connections

5.1.2. The final system must contain a student designed PCB.

Our system includes a PCB that acts like a static connection, because of
this, we do not need surface mount pads as part of our design. For this
reason, the constraint must be modified to remove the required 30

46

surface mount pads. With this modification in place, the universal
constraint is met. Approval for modification to this constraint is seen in
Fig. 17 at the end of this section.

5.1.3. All connections to PCBs must use connectors.

Our PCB uses either Jtag connections or female headers for connections.
There are pin outs that are used for taking measurements and not part of
the system. For these reasons, this universal constraint is met.

Fig. 16. Front and Back of PCB

5.1.4. All power supplies in the system must be at least 65% efficient.

The power supply in the project is the laptop the device is connecting to.
There is no other external power source that was made by us for the
project, and therefore there is no measurable efficiency. For these
reasons, this constraint is not required. Approval for this is seen in Fig. 17
at the end of this section.

5.1.5. The system may be no more than 50% built from purchased modules.

The system does use a few pre-purchased modules, such as, the
Glasgow Explorer, PIC16F1615 (Microcontroller), Data analyzer, and
programmer. However, these modules are being connected into a larger
system that uses our built modules which will overall have our system
made up of built modules instead of purchased modules. For this reason,
this constraint is met. The blocks that are purchased are the glasgow and
the logic analyzer, while the built modules are the glasgow code, library,
jupyter, and pcb. This means that only 33% of the modules are
purchased.

47

Fig. 17. Email from Donald Heer approving modification to PCB constraint and removal of
Power Supply constraint.

48

5.2. Requirements
5.2.1. Save Data

5.2.1.1. Project Partner Requirement:

The universal programmer system will be able to record data.

5.2.1.2. Engineering Requirement:

The universal programmer system will save results in a way that is
clear and accessible to 9 out of 10 users.

5.2.1.3. Testing Method:

Test

5.2.1.4. Verification Process:

A user will be shown the Jupyter code and given an explanation
as to how to use the Jupyter Notebook interface. The User will
then be asked to run the code that saves the data, find the file on
their own, and look at the file contents We will then ask if the data
they see is clear and if the file was accessible. A signature in the
form of a Google Form will collect the user's response.

Pass Condition:

9 out of the 10 users who are tested certify that the data was
saved in a way that is clear and accessible.

5.2.1.5. Testing Evidence:

Link to video demonstration Performed on 5/13/2023

Fig. 18. Responses From 20 Users. 19 out of 20 Say Yes.

49

https://drive.google.com/file/d/1VwUHUx1h443GZ248yjJ8wFLEtb0DEtwH/view?usp=share_link

5.2.2. Stable Interface
5.2.2.1. Project Partner Requirement:

The universal programmer will be able to connect to a user
interface.

5.2.2.2. Engineering Requirement:

The universal programmer interface won't crash during 9 out 10
command executions.

5.2.2.3. Testing Method:

Test

5.2.2.4. Verification Process:

All cells of the Jupyter code will be run using a new kernel each
time.

Pass Condition:

The Jupyter code executes without a printed error or kernel crash
at least 9 out of the 10 runs

5.2.2.5. Testing Evidence:

Link to video demonstration Performed on 5/14/2023

5.2.3. Commands
5.2.3.1. Project Partner Requirement:

The universal programmer will be able to program a
microcontroller

5.2.3.2. Engineering Requirement:

The system will produce 5 commands (Load Config, Load, Read,
Incr, Reset) for the PIC16 family of uC.

5.2.3.3. Testing Method:

Demonstration

50

https://drive.google.com/file/d/1ifSTqBUS6OmJR8rD71Gttws2zS6QE-bp/view?usp=share_link

5.2.3.4. Verification Process:

The system will be connected to a wave analyzer device and
begin recording. Each individual command will be executed and
the recording will stop. The resulting wave forms will be compared
to the wave forms from the PIC16F1615 datasheet.

Pass Condition:

The recorded wave forms match the wave forms found in the
datasheet.

5.2.3.5. Testing Evidence:

Link to video demonstration Performed on 5/8/2023

Fig. 19. Recorded Load Configuration Command and Data Sheet Specification

51

https://drive.google.com/file/d/1XecrvoIfNwR9fZ6Jd5XL0VDdnsLpbsP1/view?usp=sharing

Fig. 20. Recorded Load Data Command and Data Sheet Specification

Fig. 21. Recorded Read Data Command and Data Sheet Specification

52

Fig. 22. Recorded Increment Address Command and Data Sheet Specification

Fig. 23. Recorded Reset Address Command and Data Sheet Specification

53

5.2.4. Connection
5.2.4.1. Project Partner Requirement:

The universal programmer must be able to connect to the
microcontroller it is programing

5.2.4.2. Engineering Requirement:

The system will connect to the target microcontroller securely
enough that when the system is turned upside down, it will not
disconnect.

5.2.4.3. Testing Method:

Test

5.2.4.4. Verification Process:

The microcontroller will be connected to the carrier board, which
will then be connected to the universal programmer. After which,
the whole connected system will be turned upside down and held
for 30 seconds.

Pass Condition:

The system does not come apart after being held upside for 30
seconds.

5.2.4.5. Testing Evidence:

Link to video demonstration Performed on 5/8/2023

5.2.5. GUI
5.2.5.1. Project Partner Requirement:

The universal programmer will be able to connect to a user
interface.

5.2.5.2. Engineering Requirement:

The system will have 9 out of 10 users execute programmer
commands from a Jupyter notebook and report that the process
was "clear".

54

https://drive.google.com/file/d/1ouvzjIqGqljAXcBV0sxEb2pGjmIYv3x0/view?usp=sharing

5.2.5.3. Testing Method:

Test

5.2.5.4. Verification Process:

A user will be shown the code interface and explained how to use
Jupyter Notebook. The User will then be asked to run each of the
programming commands. We will then ask if the process of
executing commands was clear. A signature in the form of a
Google Form will collect the user's response.

Pass Condition:

9 out of 10 users certify that the process of executing commands
was clear.

5.2.5.5. Testing Evidence:

Link to video demonstration Performed on 5/10/2023

Fig. 24. Responses From 11 Users. 11 out of 11 Say Yes.

5.2.6. Reading
5.2.6.1. Project Partner Requirement:

The universal programmer will be able to read program memory
from a microcontroller.

5.2.6.2. Engineering Requirement:

The universal programmer will read the program memory from a
PIC uC without any errors.

55

https://drive.google.com/file/d/1V1_XlFBaB9aFLfL4SSmsihqje-Of4hN-/view?usp=sharing

5.2.6.3. Testing Method:

Demonstration

5.2.6.4. Verification Process:

The PIC microcontroller will be put into Program/Verify mode.
Then, the Device ID will be read from the memory address 8006h.
The received value will be compared to the expected value from
the datasheet.

Pass Condition:

The data that is saved from the reading process matches the
Device ID that is listed in the datasheet.

5.2.6.5. Testing Evidence:

Link to video demonstration Performed on 5/10/2023

Fig. 25. Recording of all 5 commands back to back in 2.05 seconds

5.2.7. Speed
5.2.7.1. Project Partner Requirement:

The universal programmer needs to mimic the speed of the
microcontroller's normal programmer.

5.2.7.2. Engineering Requirement:

The universal programmer will execute a command in under 10
seconds.

5.2.7.3. Testing Method:

Inspection

56

https://drive.google.com/file/d/1Lojlwwv45uW5mC0IWj05qC3_c6BkY3xh/view?usp=sharing

5.2.7.4. Verification Process:

The system will execute each of the 5 commands one at a time. A
timer will record time passed from the start of execution until the
end for each command.

Pass Condition:

None of the 5 commands exceed a time of 10 seconds.

5.2.7.5. Testing Evidence:

Link to video demonstration Performed on 5/10/2023

5.2.8. Visualize data
5.2.8.1. Project Partner Requirement:

The universal programmer will be able to connect to a user
interface.

5.2.8.2. Engineering Requirement:

The data from the programmer will display data in a way that is
clear to 9 out of 10 users

5.2.8.3. Testing Method:

Test

5.2.8.4. Verification Process:

A user will be shown the Jupyter code and given an explanation
as to how to use the Jupyter Notebook interface. The User will
then be asked to run the code that reads program memory and
look at the displayed results. We will then ask if the data they see
is clear. A signature in the form of a Google Form will collect the
user's response.

Pass Condition:

9 out of 10 users will report that the data that is displayed is clear.

5.2.8.5. Testing Evidence:

Link to evidence Performed on 5/10/2023

57

https://drive.google.com/file/d/1aoCzVYKHrnOZP_knMjTZlWW53IcAM76v/view?usp=sharing
https://drive.google.com/file/d/1V0YpO5gM5_kyRCBDC2EgUH1bwfgAZFJI/view?usp=sharing

Fig. 26. Responses From 12 Users. 12 out of 12 Say Yes.

5.3. References and File Links

5.4. Revision Table

Table 22: Revision Table Section 5

5/14/2023 Darius Salagean: Updated testing videos for Save Data and
Stable Interface. Added photos of PCB and completed system
to Section 5.1

5/10/2023 Darius Salagean: Evidence added for Speed, Reading, GUI,
and Visualize Data

5/9/2023 Bryson Flint: Evidence added for Commands and connection

4/26/2023 Darius Salagean: Content for 5.2.3 through 5.2.8 added

3/14/2023 Darius Salagean: Added link for Data save and Stable
Interface testing evidence

3/10/2023 Darius Salagean: Initial section creation. Initial content for
5.2.1 and part of 5.1
Bryson Flynt: Initial content for 5.2.2 and part of 5.1

6. Project Closing
6.1. Future recommendations

6.1.1. Technical recommendations

The earliest technical recommendation for the project is to learn the
Glasgow Explorer early on in the year. The reason for this

58

recommendation is because it has a large learning curve and resources
on it are limited as it is new. In order for our group to be able to complete
this project we had to receive 3 training sessions from someone in
Germany over the course of 6 weeks. Having these done as early as
possible will ensure there is no rush, as our group only completed these
at the end of Spring break. This reference [1] will help learning the
Glasgow Explorer. The next recommendation is to follow this [2] reference
PCB that was provided by the project partner to create the carrier PCB for
the system. This is an example that shows the Glasgow being connected
to a different device and can work as a good early point for designing a
PCB with a chosen chip. It is also helpful to study the original example as
it has many good PCB rules, such as avoiding traces with right angles
and using test pads. Another technical recommendation is to make sure
some group members, if not all group members, understand python.
Python will be demanded of you when using Jupyter notebook and using
the language Amaranth on the Glasgow Explorer. Having solid
fundamentals in the language will help when learning how to use these
pieces of software and will reduce the time needed to debug code. This
[3] is a link to learning more about python. The last technical
recommendation, thoroughly read the data sheet of the chosen
microcontroller for the project. Several instances of reading the data sheet
for our chosen microcontroller made sense of the data being viewed.
There are also important flow charts that go through a typical
programming cycle. Use this [4] guide to help understand reading data
sheets, they can be overwhelming at first.

6.1.2. Global Impact recommendations

One global recommendation is to choose a chip that is commonly used,
so that it would be able to help advance chip security globally. A chip that
is used in common household appliances could be a good target, as they
would be used everyday. This could then further help chip security and
maintain chip security in homes, so that data cannot be gathered without
people's knowledge, and so that the chip firmware can be secure [5].
Another global recommendation is to choose a chip to create a
programmer for, where the programmer can be expanded on so that it
can possibly program an entire family. This relates to the chip shortage
and creating a programmer that is more “universal” can have a positive
impact [6].

6.1.3. Teamwork recommendations

One teamwork recommendation that really worked for this team is to have
weekly meetings outside of our class time, and to specifically meet at a

59

time that is spaced out from class time. Our group met once every week
sometime Monday through Friday, which kept everyone in the group
up-to-date on progress. The space between lectures and our meeting
also meant there was time for each group member to work on their
assigned task and have a check-in that was timely. Another
recommendation is to get to know your teammates outside of technical
meetings. This can mean just grabbing dinner and drinks one night, or to
get coffee, so that you can bond and find things in common outside of just
the project [7]. Our group had dinner during the Fall term, and went to an
event together during Winter term. These moments helped us see each
other more as friends than just co-workers / project members and so we
were much more involved in the success of each other and the project as
a whole.

6.2. Project Artifact Summary with Links
6.2.1. User Sign off form for Data Save

https://forms.gle/UA5CuYEtQVVxo1Zt7

6.2.2. User Sign off form for GUI
https://forms.gle/V9sCBxKYu4B5Sbo3A

6.2.3. User Sign off form for Visualize Data
https://forms.gle/8wTavfPQ8uwsJBSdA

6.2.4. PCB KiCad project zip file link
https://drive.google.com/file/d/14F4AQEj3Jojlgt3XZFVn7VOksHo_LSR0/v
iew?usp=sharing

60

https://forms.gle/UA5CuYEtQVVxo1Zt7
https://forms.gle/V9sCBxKYu4B5Sbo3A
https://forms.gle/8wTavfPQ8uwsJBSdA
https://drive.google.com/file/d/14F4AQEj3Jojlgt3XZFVn7VOksHo_LSR0/view?usp=sharing
https://drive.google.com/file/d/14F4AQEj3Jojlgt3XZFVn7VOksHo_LSR0/view?usp=sharing

6.2.5. PCB layout

6.2.6. PCB Schematic

61

6.2.7. Excel spreadsheet of gathered data
https://docs.google.com/spreadsheets/d/1QUk4qd4LdQEFy9CZT_XsMNi
ZtIICVjEa/edit#gid=1941618922

6.2.8. PIC applet code for initializing Glasgow Interface commands and building
applet
https://drive.google.com/file/d/1VIsvY6NOQ0NZN6kRUcl4zWsaYfYz6U8q
/view?usp=sharing

6.2.9. PIC gateware code for hardware implementation
https://drive.google.com/file/d/1kuMYDKdll50mMCCNOeua7WAra97CO0
Zr/view?usp=sharing

6.2.10. Jupyter code for GUI
https://drive.google.com/file/d/1SeYfbElcuBu8lF2GmlrTOcoUy8G821g7/vi
ew?usp=sharing

6.2.11. Jupyter Library code for functions
https://drive.google.com/file/d/1UZcqrgEcF-IdP0poFvzYnwObY_2fpL9G/v
iew?usp=sharing

6.3. Presentation Materials

Showcase Link:
https://eecs.engineering.oregonstate.edu/project-showcase/projects/?id=XsGF0a
goaspWCPlm

62

https://docs.google.com/spreadsheets/d/1QUk4qd4LdQEFy9CZT_XsMNiZtIICVjEa/edit#gid=1941618922
https://docs.google.com/spreadsheets/d/1QUk4qd4LdQEFy9CZT_XsMNiZtIICVjEa/edit#gid=1941618922
https://drive.google.com/file/d/1VIsvY6NOQ0NZN6kRUcl4zWsaYfYz6U8q/view?usp=sharing
https://drive.google.com/file/d/1VIsvY6NOQ0NZN6kRUcl4zWsaYfYz6U8q/view?usp=sharing
https://drive.google.com/file/d/1kuMYDKdll50mMCCNOeua7WAra97CO0Zr/view?usp=sharing
https://drive.google.com/file/d/1kuMYDKdll50mMCCNOeua7WAra97CO0Zr/view?usp=sharing
https://drive.google.com/file/d/1SeYfbElcuBu8lF2GmlrTOcoUy8G821g7/view?usp=sharing
https://drive.google.com/file/d/1SeYfbElcuBu8lF2GmlrTOcoUy8G821g7/view?usp=sharing
https://drive.google.com/file/d/1UZcqrgEcF-IdP0poFvzYnwObY_2fpL9G/view?usp=sharing
https://drive.google.com/file/d/1UZcqrgEcF-IdP0poFvzYnwObY_2fpL9G/view?usp=sharing
https://eecs.engineering.oregonstate.edu/project-showcase/projects/?id=XsGF0agoaspWCPlm
https://eecs.engineering.oregonstate.edu/project-showcase/projects/?id=XsGF0agoaspWCPlm

Fig. 27. Expo Poster

6.4. References and File Links

[1] GlasgowEmbedded, “Glasgow Debug Tool,” GitHub. [Online]. Available:
https://github.com/GlasgowEmbedded/glasgow. [Accessed: 26-Apr-2023].

[2] https://drive.google.com/file/d/1pHvo2i1HZeHUw2EdkK22PL7KFjMrrKxw/
view?usp=sharing

[3] “Python for beginners,” Python.org. [Online]. Available:
https://www.python.org/about/gettingstarted/. [Accessed: 26-Apr-2023].

[4] M. Grusin, “How to Read a Datasheet,” SparkFun Electronics, 17-Nov-2010. [Online].
Available: https://www.sparkfun.com/tutorials/223. [Accessed: 26-Apr-2023].

[5] M.Schink and J.Obermaier, “Exception(al) Failure - Breaking the STM32F1 Read-out
Protection,” 17 March 2020, Accessed: 11 October 2022. [Online]. Available:
https://blog.zapb.de/stm32f1-exceptional-failure/

63

https://github.com/GlasgowEmbedded/glasgow
https://drive.google.com/file/d/1pHvo2i1HZeHUw2EdkK22PL7KFjMrrKxw/view?usp=sharing
https://drive.google.com/file/d/1pHvo2i1HZeHUw2EdkK22PL7KFjMrrKxw/view?usp=sharing
https://www.python.org/about/gettingstarted
https://www.sparkfun.com/tutorials/223
https://blog.zapb.de/stm32f1-exceptional-failure/

[6] P. hanbury, A. Hoecker and M. Schallehn, “A chip shortage recovery guide,” Bain.com,
25 March 2022, Accessed: 04 Nov 2022. [Online]. Available:
https://www.bain.com/insights/a-chip-shortage-recovery-guide/#:~:text=The%20automati
on%2 and%20 industrial%20sectors,2023%20(see%20 Figure%201).

[7] R. Baker, “Team bonding: Why it's important and how you can encourage it,” nTask,
13-Jan-2023. [Online]. Available:
https://www.ntaskmanager.com/blog/team-bonding/#:~:text=When%20team%20member
s%20are%20bonded,each%20other%20through%20difficult%20challenges. [Accessed:
26-Apr-2023].

6.5. Revision Table

Table 23: Revision Table Section 6

5/14/2023 Darius Salagean: Updated sections 6.1.1 and 6.1.3 based on
draft feedback.

5/10/2023 Darius Salagean and Bryson Flint: Added more artifacts and
updated placeholders with full links.

4/26/2023 Sections created by Bryson Flint.
Artifact section filled out by Darius Salagean.
6.1.1 filled out by Bryson Flint.
6.1.2 and 6.1.3 filled out by Elizabeth Lindsay.

A. Appendix

Link to Glasgow homepage: https://www.crowdsupply.com/1bitsquared/glasgow

PIC16 Programming datasheet:
https://ww1.microchip.com/downloads/en/DeviceDoc/40001720C.pdf

PIC16 Electrical datasheet:
https://ww1.microchip.com/downloads/en/DeviceDoc/40001770D.pdf

64

https://www.bain.com/insights/a-chip-shortage-recovery-guide/#:~:text=The%20automotive%20and%20industrial%20sectors,2023%20(see%20Figure%201)
https://www.bain.com/insights/a-chip-shortage-recovery-guide/#:~:text=The%20automotive%20and%20industrial%20sectors,2023%20(see%20Figure%201)
https://www.ntaskmanager.com/blog/team-bonding/#:~:text=When%20team%20members%20are%20bonded,each%20other%20through%20difficult%20challenges
https://www.ntaskmanager.com/blog/team-bonding/#:~:text=When%20team%20members%20are%20bonded,each%20other%20through%20difficult%20challenges
https://www.crowdsupply.com/1bitsquared/glasgow
https://ww1.microchip.com/downloads/en/DeviceDoc/40001720C.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/40001770D.pdf

