
Wave Detection for Ocean Going
Robots

Samuel Barton, Miles Drake, Malachi Fisher, Grayson Lewis

1

Table of Contents
Table of Contents 1

Section 1: Overview 6
1.1: Executive Summary 6
1.2: Team Contacts, Communication Protocols, and Standards 7
Table 1.1: Team Member Contact Information 7

1.2.1 Communication Analysis: 9
1.3. Gap Analysis 9

1.3.1 Current Limitations and our Solution 9
1.3.2 Expected End User 9
1.3.3 User Story 9

1.4: Project Timeline 11
1.5: References and File Links 12

1.5.1 References 12
1.5.2 File Links 12

1.6: Revision Table 12

Section 2: Requirements, Impacts and Risks 13
2.1 Requirements 13

2.1.1 Data Collection and Analysis 13
2.1.2 PCB Size 14
2.1.3 Removable Data Storage 14
2.1.4 Glider Battery Life Impacts 14
2.1.5 Data Ease of Access 15
2.1.6 Project Overview Wiki Page 15
2.1.7 System Longevity 15
2.1.8 System Security 16

2.2 Design Impact Statement 17
2.2.1 Public Safety and Welfare Impacts 17
2.2.2 Cultural and Social Impacts 18
2.2.3 Environmental Impacts 18
2.2.4 Economic Impacts 18

2.3 Risks 18
2.4 References and File Links 20

2.4.1 References 20
2.4.2 File Links 20

2.5 Revision Table 20

Section 3: Top Level Architecture 22
3.1 Block Diagram 22
3.2 Block Descriptions 23

2

3.3 Interface Definitions 25
3.4 References and File Links 29

3.4.1 References 29
3.4.2 File Links 29

3.5 Revision Table 30

Section 4: Block Validations 30
4.1 MicroSD Card PCB 30

4.1.1 Description 30
4.1.2 Design 31
4.1.3 General Validation 34
4.1.4 Interface Validation 34
4.1.5 Verification Process 37
4.1.6 References and File Links 41
4.1.7 Revision Table 41

4.2 Microcontroller Block 42
4.2.1 Description 42
4.2.3 Design 42
4.2.4 General Validation 47
4.2.5 Interface Validation 48
4.2.6 Verification Plan 53
4.2.7 References and File Links 54
4.2.8 Revision Table 54

4.3 Data Analysis Firmware 55
4.3.1 Description 55
4.3.2 Design 55
4.3.3 General Validation 57
4.3.4 Interface Validation 57
4.3.5 Verification Plan 59
4.3.6 References and File Links 60
4.3.7 Revision Table 60

4.4 SD Interface Firmware 60
4.4.1 Description 60
4.4.2 Design 61
4.4.3 General Validation 62
4.4.4 Interface Validation 62
4.4.5 Verification Process 64
4.4.6 References and File Links 65
4.4.7 Revision Table 65

4.5 Buck Regulator Block 65
4.5.1 Description 65

3

4.5.2 Design 66
4.5.3 General Validation 66
4.5.4 Interface Validation 67
4.5.5 Verification Process 68
4.5.6 References and File Links 68
4.5.7 Revision Table 69

4.6 Power Management Block 69
4.6.1 Description 69
4.6.3 Design 69
4.6.3 General Validation 71
4.6.4 Interface Validation 71
4.6.5 Verification Process 74
4.6.6 References and File Links 75
4.6.7 Revision Table 75

4.7 Accelerometer Block Validation 75
4.7.1 Description 75
4.7.3 Design 76
4.7.3 General Validation 77
4.7.4 Interface Validation 78
4.7.5 Verification Process 80
4.7.6 References and File Links 80
4.7.7 Revision Table 81

4.8 Serial Interface Firmware Block 81
4.8.1 Description 81
4.8.3 Design 82
4.8.3 General Validation 85
4.8.4 Interface Validation 85
4.8.5 Verification Process 86
4.8.6 References and File Links 86
4.8.7 Revision Table 87

4.9 Revision Table 88

Section 5: System Verification Evidence 89
5.1 Universal Constraints 89

5.1.1 The system may not contain a breadboard 89
5.1.2 The final system must contain both of the following: a student designed PCB and a
custom Android/PC/Cloud application. 89
5.1.3 If an enclosure is present, the contents must be ruggedly enclosed/mounted as
evaluated by the course instructor. 92
5.1.4 If present, all wire connections to PCBs and going through an enclosure (entering
or leaving) must use connectors. 92
5.1.5 All power supplies in the system must be at least 65% efficient. 92

4

5.1.6 The system may be no more than 50% pre-purchased modules. 93
5.2 PCB Size 93

5.2.1 Requirement 93
5.2.2 Testing Process 93
5.2.3 Testing Evidence 94

5.3 Data Collection and Analysis 95
5.3.1 Requirement 95
5.3.2 Testing Process 96
5.3.3 Testing Evidence 96

5.4 Removable Data Storage 96
5.4.1 Requirement 96
5.4.2 Testing Process 96
5.4.3 Testing Evidence 96

5.5 Glider Battery Life Impacts 97
5.5.1 Requirement 97
5.5.2 Testing Process 97
5.5.3 Testing Evidence 97

5.6 Data Ease of Access 98
5.6.1 Requirement 98
5.6.2 Testing Process 98
5.6.3 Testing Evidence 98

5.7 Project Overview Wiki Page 102
5.7.1 Requirement 102
5.7.2 Testing Process 102
5.7.3 Testing Evidence 103

5.8 System Longevity 104
5.8.1 Requirement 104
5.8.2 Testing Process 104
5.8.3 Testing Evidence 104

5.9 System Security 104
5.9.1 Requirement 104
5.9.2 Testing Process 105
5.9.3 Testing Evidence 105

5.10 References and File Links 105
5.11 Revision Table 105

Section 6: Project Closing 106
6.1 Future Recommendations 106
6.2 Project Artifact Summary with Links 107

6.2.1 Project Code 107
6.2.2 Project Schematics 107

5

6.2.3 Project Wiki 111
6.3 Presentation Materials 112
6.4 References and File Links 112
6.5 Revision Table 113

6

Section 1: Overview

1.1: Executive Summary

The purpose of this project is to create a system to allow the Slocum G3 Glider to detect
wave conditions while on the ocean surface, and to make it available to the communications
modules inside the glider so that it may also be transmitted back to shore. This was
accomplished using a low power microcontroller, memory storage, and accelerometer on a
printed circuit board (PCB) mounted in the glider’s science bay, and in communication with the
glider’s central computer. It can detect wave amplitude, direction and period, while using
minimal power and maintaining a small form factor.

The Slocum Glider is a type of Autonomous Underwater Vehicle (AUV) designed to
monitor underwater conditions such as ocean salinity, temperature, depth, etc. It operates by
using ballast tanks and short wings on its sides to propel itself through the water. While in
operation it dives and resurfaces, and that process causes water to move over its wings,
propelling it forwards. After a predetermined number of glide cycles, the glider resurfaces to
transmit the collected data back to shore for analysis. The end-user group that this project is
focused on is the College of Earth, Ocean, and Atmospheric Sciences here at Oregon State
University which uses these gliders around the world for a number of research projects.

The project is currently in the closing stage. The ECE team has developed the hardware
that will be installed on the AUV, the interface between the hardware and the AUV, as well as
the firmware that will collect, store and process data. The CS team has developed software to
visualize the data as it is transmitted from the AUV, and perform more in-depth data processing
when the AUV returns from its mission and the raw data can be extracted from the device.

The implementation of this project uses an STM32 microcontroller connected to an
accelerometer. The microcontroller gathers data from the accelerometer and stores it in an SD
card, as well as performing the Fourier transform on the data to send it to the main computer
onboard the glider. The glider provides the board with a 17V power supply. A buck regulator is
used on our board to convert the 17V down to 3.3V.

7

1.2: Team Contacts, Communication Protocols, and Standards

Table 1.1: Team Member Contact Information

Member Name Contact Information Role Responsibilities

Pat Welch pat@mousebrains.com Project Partner ECE Team Mentor

Kipp Shearman shearmar@oregonstate.edu Project Partner CS Team Mentor

Kai-Fu Chang chankaif@oregonstate.edu Project Partner CS Team Mentor

Grayson Lewis lewigray@oregonstate.edu Team Member Accelerometer Block,
PC App Block, Serial
interface Firmware
Block, XSENS
Firmware Block

Miles Drake drakemil@oregonstate.edu Team Member Buck Regulator
Block, Main Firmware
Block, Power
Management Block

Samuel Barton bartonsa@oregonstate.edu Team Member Data Analysis
Firmware Block, Main
Board PCB,
Microcontroller Block

Malachi Fisher fishemal@oregonstate.edu Team Member MicroSD Card Block,
MicroSD Card PCB,
SD Interface
Firmware Block

8

Table 1.2: Team Member Communication Protocols and Standards

Topic Protocol Standard

Internal Communication The team will use Discord as
the primary means for internal
communication and remote
meetings.

Communications within the discord will
be kept in their appropriate channels.
All members are expected to check the
discord at least once per day, and
participate as necessary.

Partner Communication Project partner communication
will take place primarily via
email, but the project partner
will also have access to the
team Discord channel.

Project partner communication should
be kept professional and should be
discussed and agreed upon prior to
sending. It is not critical who in the
group sends the message, as long as
everyone has agreed on it.

Task Management Tasks will be assigned after
team discussion and will be
tracked via a spreadsheet kept
in the team google drive.

Team members are expected to give
an accurate assessment of their task
project and update the task tracking
spreadsheet accordingly.

File Sharing Shared Files will be kept in a
team google drive as well as a
box drive, and github

Documentation and shared class
assignments will be stored in a google
drive for easy access and
collaboration. Design files and files
provided by the project partner will be
stored in a box drive and a github
provided by the project partner.

Quality of work Assignments will be submitted
to Canvas.

Work that is submitted as a draft
should be submitted on time, and at
least 80% complete.

Work that is submitted as a final draft
should be submitted on time, 100%
complete, and the quality of work that
one would show to a potential
employer.

Time Tracking Time spent working will be
tracked with a spreadsheet
kept in the team google drive.

It is expected that team members will
update the spreadsheet with the time
that they spend working on the project.

Time Management Time spent working will be
focused and on task.

It is expected that team members do
not waste each other’s or project
partners time.

9

1.2.1 Communication Analysis:
● The Project Partners (Pat Welch, Kai-Fu Chang, and Kipp Shearman) have agreed to

join a communal Discord server between the two CS Teams and the ECE Team as a
primary form of communication.

● The Project Partners would like to meet weekly for progress updates from each of the
teams. Though Discord is the primary form of communication, the weekly meetings will
be held on Zoom for ease of use for each of the parties.

1.3. Gap Analysis

1.3.1 Current Limitations and our Solution
As it stands the Slocum ocean gliders do not have nine degrees-of-freedom inertial
measurement units that contain accelerometers, magnetometers, and gyroscopes to
detect wave conditions. Instead, researchers around the world rely on fixed buoys to
monitor wave conditions, which are expensive, immobile, and are often spaced many
miles apart, creating a very low resolution idea of current wave conditions in a given
area. By creating a way to retrofit the gliders with nine degrees-of-freedom inertial
measurement unit that contains accelerometers, magnetometers, and gyroscopes, the
College of Earth, Ocean, and Atmospheric Sciences will be able to quickly deploy wave
monitors to whatever areas they wish to ascertain swell height, period, and direction and
immediately view the results.

1.3.2 Expected End User
This project will be used by researchers and deployed on a specialized vehicle. Our end
user is someone who works in a research facility and already has some Slocum gliders
laying around but has no way to use them to measure waves. With our project, they can
retrofit their glider with an accelerometer board and be well on their way to capturing
wave data. Because this project will be installed on the inside of a glider, it can be
delivered as a bare printed-circuit board. We can assume that the end user will have a
technical background, and can safely handle the device to prevent damage due to
electrostatic discharge, and that we will not be responsible for preventing damage due to
water or particle ingress. Ocean gliders are expensive to operate, and are typically
deployed for up to three months, so it is important to the stakeholders that the system
operates reliably during that period.

1.3.3 User Story
The end user will receive the completed system and access to the project wiki. The user
will then install the system in a SLOCUM G3 ocean glider. When the glider is deployed in
the ocean, the user will command the glider to surface several times per day. When it is
at the surface, the glider’s computer will power the system on and float at the surface for
20 minutes while the system collects and processes wave data. When the system has

10

completed a data collection cycle, it will transmit the calculated wave parameters to the
glider’s computer and indicate that it has completed the data analysis. The glider can
then send the wave parameters to shore wirelessly. Once the glider has completed its
deployment, it is retrieved from the ocean, and can be opened to retrieve the system’s
SD card which contains all raw data that was collected. The user can then take this data
and perform a more thorough analysis.

11

1.4: Project Timeline

Figure 1.1: Project Timeline

12

1.5: References and File Links

1.5.1 References

1.5.2 File Links

Project Timeline:
https://docs.google.com/spreadsheets/d/1Lr86H4AFnyPC4HZCUiYSTr-dyl6JOHirsw4xZEpULac
/edit?usp=sharing

Xsens MTi-3 Product Sheet:
https://www.xsens.com/hubfs/Downloads/Leaflets/MTi-3.pdf?hsCtaTracking=8b4e849f-c2cb-4ed
7-847a-82a9c3524e46%7Cd8830f31-7f54-48f5-99ec-74cf5dc160dc

1.6: Revision Table
Table 1.3: Section 1 Revision Table

Date: Action:

12/3/2021 Miles updated section 1 based on peer feedback

11/19/21 Sam Updated Responsibilities

11/19/21 Malachi Updated Timeline, Responsibilities

11/10/21 Sam updated formatting, project timeline and executive summary per peer
review feedback.

11/10/21 Miles updated formatting, project timeline and executive summary per peer
review feedback.

11/10/21 Malachi updated formatting, project timeline and executive summary per peer
review feedback.

11/10/21 Grayson updated formatting, project timeline and executive summary per peer
review feedback.

10/29/21 Sam updated Section 1 to be better in line with the instructor feedback on
Section 1.

10/29/21 Miles updated Section 1 to be better in line with the instructor feedback on
Section 1.

10/29/21 Malachi updated Section 1 to be better in line with the instructor feedback on

https://docs.google.com/spreadsheets/d/1Lr86H4AFnyPC4HZCUiYSTr-dyl6JOHirsw4xZEpULac/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Lr86H4AFnyPC4HZCUiYSTr-dyl6JOHirsw4xZEpULac/edit?usp=sharing
https://www.xsens.com/hubfs/Downloads/Leaflets/MTi-3.pdf?hsCtaTracking=8b4e849f-c2cb-4ed7-847a-82a9c3524e46%7Cd8830f31-7f54-48f5-99ec-74cf5dc160dc
https://www.xsens.com/hubfs/Downloads/Leaflets/MTi-3.pdf?hsCtaTracking=8b4e849f-c2cb-4ed7-847a-82a9c3524e46%7Cd8830f31-7f54-48f5-99ec-74cf5dc160dc

13

Section 1.

10/29/21 Grayson updated Section 1 to be better in line with the instructor feedback on
Section 1.

10/21/21 Malachi updated Team Communication Protocols and Standards; added
project timeline

10/21/21 Grayson added state of project to executive summary, other minor edits.

10/20/21 Malachi drafted an executive summary

Section 2: Requirements, Impacts and Risks

2.1 Requirements

2.1.1 Data Collection and Analysis
● Project Partner Requirement (PPR): Build a system that analyzes swell data for 20

minutes and sends it to the main science computer in the glider.
● Engineering Requirement (ER): The system shall sample data at a maximum frequency

of 10 Hz (though lower frequencies may be desired) for up to 20 minutes, and analyze
the data collected to calculate the following parameters:

a) Hs, significant wave height in meters
b) Dom_period, dominant wave period in seconds
c) wave_dir, wave direction, magnetic
d) Hmax, maximum wave height in meters
e) Hmax2, second highest wave height
f) Pmax, maximum period
g) A1, spectral parameters
h) B1, spectral parameter
i) A2, spectral parameter
j) B2, spectral parameter index,
k) Wave component number

Note: The project partners may decide that some of these parameters are unnecessary
and not require their calculation for the final system.

● Verification Process (Black Box):
1) Power system and hook up to PC Application built for testing.
2) Run the system for 20 minutes.
3) Save the parameters calculated by the system

14

4) Ensure that there are at least 12,000 data samples measured and the last time
stamp ensures that 20 minutes have elapsed.

5) Remove SD card from system and connect to PC
6) Use a script that has been approved by the project partners to manually calculate

the parameters from the raw data that was collected.
7) Compare the parameters calculated by the system, and the parameters

calculated by the script. This requirement will be met if the two calculations differ
by no more than 5% for each parameter.

2.1.2 PCB Size
● PPR: Board must fit inside the science bay of the glider.
● ER: The microcontroller PCB must be smaller than 7 inches by 1.5 inches (and 2 inches

tall) to fit onto the back of the acoustic modem board in the science bay of the glider.
● Verification Process (Black Box):

1) Measure length of PCB.
2) Measure width of PCB.
3) Measure height of PCB.
4) Ensure that measurements are smaller than requirements.

2.1.3 Removable Data Storage
● PPR: Collected data must be available in removable memory.
● ER: Data must be stored to a micro SD card.
● Verification Process (White Box):

1) Collect data for 5 minutes
2) Remove memory card
3) Check if the memory card has at least 3,000 samples.

2.1.4 Glider Battery Life Impacts
● PPR: Board must not reduce gliders battery life by more than 1 percent.
● ER: For a 20 minute collection cycle, the system must consume less than 230 Joules
● Verification Process (Black Box):

1) Run a full 20 minute data collection cycle.
2) Measure the voltage on either side of a current-sensing resistor at the system’s

input for 20 minutes using an oscilloscope and export the waveforms as a .csv
file for post-processing.

3) Using MATLAB, calculate the instantaneous current and power over the entire 20
minute collection window.

4) Integrate the instantaneous power with respect to time to find the cumulative
energy in Joules.

5) Compare the final calculated value for energy with the maximum energy value of
230 Joules.

15

2.1.5 Data Ease of Access
● PPR: Removable Memory must be easily accessible
● ER: SD card and associated PCB will have at least 0.5 inches of clearance from nearby

military style screw connector and 0.25 inches of clearance from nearby white snap type
connectors.

● Verification Process (Black Box):
1) Install SD card and associated PCB into the glider see Figure 2.1.
2) Measure the distance to the connectors.
3) This will be successful if the measurements are less than or equal to 0.5 inches

from the connector with the screw on collar and 0.25 inches from the white plastic
connectors.

2.1.6 Project Overview Wiki Page
● PPR: The project must be thoroughly documented
● ER: A wiki page shall be created that includes: - A user guide - Firmware - Altium

Designer files - Electrical Schematic(s) - PCB Fabrication files (gerbers) - Electrical Bill
of Materials.

● Verification Process (White Box):
1) Check that all required sections exist and have content.
2) Write the initial draft of the Wiki Page and submit to the Project Partners by the

Friday of Week 9 Winter 2022
3) Receive feedback from the Project Partners by the Friday of Week 10 Winter

2022
4) Implement feedback from the project partners and complete a final draft of the

wiki before System Verification.
5) A project partner will indicate approval or disapproval of the wiki prior to System

Verification. If all required sections are completed, and a project partner gives
approval of the wiki, this requirement will be met.

2.1.7 System Longevity
● PPR: There should be no hardware or firmware bugs that cause the system to stop

logging data while in use.
● ER: System must work properly for at least 90 days of continual use.
● Verification Process (White box):

1) During a 90 day period, the system will be cycled 1080 times, a cycle consisting
of the system being powered on, collecting data for 20 minutes,
processing/storing the collected data, and then being powered off. To
demonstrate the system will not encounter any errors in this 90 day period, we
will cycle it 100 times, with a reduced data collection time.

2) Connect the system to a computer through an RS232 port. Run a python
program that simulates the serial communication from the glider for 100 cycles,
tells the system to collect data, and 10 seconds later sends the restart command

16

to the system. After the restart acknowledgement is received. Power cycle the
system to simulate the glider powering the system off then on. Then repeat for
100 cycles.

3) The system shall not encounter any failures during this data collection cycle, and
we should see 100 .csv files saved to the SD card.

4) Analysis: 100 cycles represents approx. 10% of the cycles it will experience
during its 90 day deployment. If no firmware failures occur during this sample
time, we extrapolate that it will not encounter firmware failures during
deployment.

2.1.8 System Security
● PPR: System must be rugged to withstand the forces associated with being put into and

taken out of the ocean.
● ER: The system shall function properly after a 10 foot drop. During the drop test the

system shall be mounted in a test enclosure, and the system shall be powered off during
the drop test.

● Verification Process (Black Box):
1) Enclose the system in the test enclosure.
2) Drop enclosure from 10 ft above the surface of a water tank (specific tank TBD).
3) Remove system from test enclosure.
4) Connect system to power source.
5) Ensure serial communication (including the transmission of the 13 final

parameters) is still functioning.

17

Figure 2.1: SD card retrieval hole in glider science bay.

2.2 Design Impact Statement

2.2.1 Public Safety and Welfare Impacts
The environmental impact of our project could have a negative effect on public health. Our
project will go in the ocean, so it could eventually add to the growing amount of trash in the
ocean [1]. A lot of trash in the ocean, like plastics, ends up getting eaten by fish and then eaten
by humans when we catch the fish. Some parts of the glider have toxic chemicals in it that could
be harmful if ingested. We can mitigate the risks of this in our design by attaching our board
very securely to the glider body. Hopefully the glider will remain intact long enough for the whole
thing to be removed from the ocean before any of the toxic parts are able to break down.

While not specific to ocean gliders, the manufacture of electronic goods including the microchips
necessary to create it contributes to a variety of health and safety issues to workers. In Chinese
manufacturing facilities where silicon wafers are produced, workers are subjected to long
working hours and harsh conditions, and low pay. In Malaysia, women working in the
semiconductor industry report pain in their limbs, necks, shoulders, and backs which was found
to be correlated with the amount of time they spent on the factory floor [2][3].

18

2.2.2 Cultural and Social Impacts
A potential cultural impact of this project relates to the generation of e-waste. Most e-waste isn’t
recycled in the country which generates it, most of it is exported to developing countries where it
is recycled. However, it isn’t always recycled properly or safely, in these countries, “Open
burning of e-waste is widely used to recover metals” [4]. These improper recycling practices
have significant negative impacts on the societies and cultures that end up processing e-waste.
Many workers are exposed to toxic chemicals, one study found that in people living near an
e-waste recycling site, “urinary cadmium levels were found to be significantly high (0.72 µg/l)
compared with the control site (0.27 µg/l)” [4]. And these exposures to toxic materials can result
in death or chronic illness [4]. Because e-waste processing is concentrated in developing
countries, the negative health socioeconomic impacts are concentrated in those societies. This
creates a disparity where wealthy countries enjoy the benefits of consuming electronic products
while developing countries are saddled with the burden of that consumption on their people and
their environment. Unfortunately there are few ways to mitigate this that don’t require large
systemic change, because once a product is sold to an end user, the manufacturer has little to
no control over what happens to that product. One route that can be taken to mitigate this is to
clearly label the system with instructions to send the system to an approved e-waste recycling
facility, or to send the system back to the manufacturer for proper disposal.

2.2.3 Environmental Impacts
As with anything we put into the ocean, there is potential to contribute to ocean waste. Ocean
debris is a huge issue, particularly plastic waste. Plastics are not biodegradable, and while they
do ‘break down’ when exposed to sunlight, in this case it simply means that the debris is
weakened to the point where it can be broken by water movement until it is small enough to be
considered a ‘microplastic.’ The plastic does not disappear simply because it is in smaller
pieces. In fact, microplastics are more difficult to remove from the ocean and dispose of properly
than plastic in more macroscopic pieces. It is in this microplastic state where these bits of
pollution are introduced to the food chain and propagate through it. The bodies of almost all
marine species, from plankton to whales, have been found to contain plastic. Plastics are found
in bird nests, the stomachs of sea turtles and albatross, and in some cases even hermit crabs
have been found using bits of plastic debris instead of shells [1]. Sources of plastic debris in
oceans is primarily from land-based sources but can also be from commercial and recreational
ships and vessels and fishing operations [6].

2.2.4 Economic Impacts
As these gliders are highly technical, require many components, and are made from
top-of-the-line materials, the overall cost of use of these ocean-going robots is immense. Each
glider costs around $250,000 to purchase from the manufacturer, and the custom components
on the inside are far from inexpensive. Not only are the gliders themselves expensive, but the
cost to operate a research vessel for a single day is astounding. OSU has two research vessels

19

(the R/V Wecoma and the R/V Oceanus) in which the operating costs come in at $30,441 per
day and around $6.1 million per year [7]. Considering the costs of these operations, the financial
toll on the university as well as the foundations funding the project is rather large. However, the
value in the research as well as the related jobs may counteract these costs in a societal point
of view.

2.3 Risks
Table 2.1: Risk Assessment and Action Plans

Risk
ID

Risk Description Risk
Category

Risk
Prob-
ability

Risk
Impact

Performance
Indicator

Respon
sible
Party

Action Plan

R1 Don’t receive
gliders back from
Teledyne due to
shipping issues

Timeline 10% L Shipping
delays due to
COVID etc

Samuel
Barton

Retain

R2 Component
shortages

Timeline 100% H Available stock
of desired
components

Grayson
Lewis

Reduce

R3 ICs destroyed by
static in delivery

Technical 5% H Chips don’t
work

Miles
Drake

Avoid

R4 PCB flaws in
manufacturing

Technical 25% M PCBs are
visually
different than
designed

Malachi
Fisher

Avoid

R5 Teammate
Sickness (COVID,
etc.)

Timeline 80% H Recent
exposure to
COVID
positive
individuals

Samuel
Barton

Reduce

R6 Test enclosure
breaks during
testing (drop test,
buoyancy test)

Timeline 5% H Water damage
to board

Miles
Drake

Retain

R7 Glider Sinks
During testing;
board is lost

Timeline 1% H Glider is not
recovered.

Malachi
Fisher

Retain

R8 Computer with
firmware/code is
lost/destroyed

Timeline 2% H Can’t turn on
or find the
computer that
has firmware.

Grayson
Lewis

Avoid

20

2.4 References and File Links

2.4.1 References
[1] C. Wabnitz, W. Nichols, “Editorial: Plastic Pollution: An Ocean Emergency,”

OceanRevolution.org, 2010.

[2] “China's pristine chip processing plants disguise harsh reality of the work,” China Labour
Bulletin, 30-Mar-2021. [Online]. Available:
https://clb.org.hk/content/china%E2%80%99s-pristine-chip-processing-plants-disguise-h
arsh-reality-work. [Accessed: 30-Oct-2021].

[3] H. Chee and K. Rampal, “Work-related Musculoskeletal Problems among Women Workers
in the Semiconductor Industry in Peninsular Malaysia,” International Journal of
Occupational and Environmental Health, vol. 10, no. 1, pp. 71–72, Jul. 2013.

[4] S. Herat and P. Agamuthu, “E-waste: A problem or an opportunity? review of issues,
challenges and solutions in Asian countries,” Waste Management & Research:
The Journal for a Sustainable Circular Economy, vol. 30, no. 11, pp. 1113–1129, 2012.
https://journals.sagepub.com/doi/abs/10.1177/0734242X12453378?casatoken=QqpX-Vp
zYaQAAAAA%3AJK4xkCZ64SawCJGRxx92HTEQuTEzH1Ir9-o-vWZ6Akcjng6dkYT6oTi
R0ECo0gPTN65Df1vCgoZO&journalCode=wmra [Accessed: 29-Oct-2021].

[5] M. Haward, “Plastic pollution of the world's seas and Oceans as a contemporary challenge
in Ocean Governance,” Nature News, 14-Feb-2018. [Online]. Available:
https://www.nature.com/articles/s41467-018-03104-3. [Accessed: 30-Oct-2021].

[7] National Science Foundation, “FY 2018 NSF Budget Request to Congress,” pp. 21-26,
2018. [Online]. Available: https://www.nsf.gov/about/budget/fy2018/pdf/30d_fy2018.pdf

2.4.2 File Links

2.5 Revision Table
Table 2.2: Section 2 Revision Table

Date: Action:

5/4/22 Added design impact assessment section

4/21/22 Updated wording of engineering requirements 2.1.6 and 2.1.8 for clarity and
feasibility, with project partner’s permission.

3/13/2022 Updated Data Collection and Analysis requirement at the suggestion of our
project partners.

10/13/2022 Updated data ease of access requirement with the approval of our project
partners.

21

10/29/2021 Grayson worked on the initial draft for section 2.1, 2.2, and 2.3 of the project
document.

10/29/2021 Malachi worked on the initial draft for section 2.1, 2.2, and 2.3 of the project
document.

10/29/2021 Sam worked on the initial draft for section 2.1, 2.2, and 2.3 of the project
document.

10/29/2021 Miles worked on the initial draft for section 2.1, 2.2, and 2.3 of the project
document.

10/11/2021 Grayson, minor revisions

10/11/2021 Malachi, General reformatting. Revised project risks to be more in line with
instructor feedback.

10/11/2021 Sam revised the project requirements to reflect feedback given by
peers/instructors

10/11/2021 Miles revised the action plans for the risk table.

10/12/2021 Grayson finalized Requirements after team meeting

11/19/2021 Sam revised the project requirements and risks to reflect feedback given by
instructors

11/19/2021 Miles revised the risks and project requirements according to instructor
feedback

12/3/2021 Miles revised requirement 2.1.3

12/3/2021 Sam revised requirement 2.1.6

12/3/2021 Grayson revised requirement 2.1.1

22

Section 3: Top Level Architecture

3.1 Block Diagram

Figure 3.1: Draft Block Diagram for our System

23

3.2 Block Descriptions
Table 3.1: Block Descriptions

Name Description

Buck Regulator
Champion: Miles Drake

This block includes the buck regulator power supply for the main
board PCB. The buck regulator block is a necessary part of the
system. The Slocum glider is able to supply between 7 and 17
volts to our board, but the microcontroller that we are using
needs a 3.3V supply. We will be designing a buck regulator
power supply for our board using the TPS54232DR. Since this is
the same chip that is used for the tech demo, we’ll use the tech
demo board to prove its functionality before implementing it in
the final PCB.

Power Management
Champion: Miles Drake

This block includes a power management circuit to cut power to
the SD card and the accelerometer. Since the SD card uses a
considerable amount of power while it is in sleep mode, we
would like to be able to cut its power line while it is not being
written to or read from. For this we will need a simple MOSFET
circuit that uses the output of a GPIO pin on the microcontroller
to control the flow of power to the SD card. We will use an
identical circuit to cut the power to the accelerometer when we
aren’t using it (while performing the fourier transform). We plan
to model the circuit in LTSpice before implementing it in the final
PCB.

Accelerometer
Champion: Grayson Lewis

This block encompasses the code that will be on the STM32
microcontroller used to interface with the XSENS Accelerometer
chip. It will handle the initial handshake between the
accelerometer and the microcontroller, and handle the transfer
of commands from the microcontroller to the accelerometer as
well as the transfer of data from the accelerometer to the
microcontroller. This block is necessary because without it we
would be unable to retrieve the data from our accelerometer.

Microcontroller
Champion: Sam Barton

This block includes the schematic for the STM32 microcontroller.
We need to create a symbol and footprint for the microcontroller.
Then we need to place the symbol in the schematic and put
down the clock crystal and all of the necessary capacitors and
resistors. We plan to use the datasheet for the microcontroller to
find out the recommended implementation.

Main Firmware
Champion: Miles Drake

This block includes the code that will run on the STM32
microcontroller to perform the memory management functions.
This block is necessary because there are memory
management tasks that do not fit into one of the other firmware
blocks.

24

XSENS Control Firmware
Champion: Grayson Lewis

This block encompasses the code that will be on the STM32
microcontroller used to interface with the XSENS Accelerometer
chip. It will handle the initial handshake between the
accelerometer and the microcontroller, and handle the transfer
of commands from the microcontroller to the accelerometer as
well as the transfer of data from the accelerometer to the
microcontroller. This block is necessary because without it we
would be unable to retrieve the data from our accelerometer.

SD Interface Firmware
Champion: Malachi Fisher

This block will take raw data from the microcontroller and
convert it to a format that can be sent to the SD card and stored.
Without it, we would be unable to store data to the SD card.
Additionally, this block will facilitate reading from the SD card
and converting it into data usable by the Microcontroller.

Serial Interface Firmware
Champion: Grayson Lewis

This block configures, and uses the hardware on the STM32
microcontroller for serial communication with the ocean glider,
and serial communication with the PC application. It is expected
that this will configure one or more USART modules, convert
information from the main firmware into serial packets, and
convert received serial packets into data to return to the main
firmware.

PC Application
Champion: Grayson Lewis

This is a python based PC application that will be used to
communicate with the system serially, and show the user the
status of the system. This block is designed to aid development
by allowing the system to be connected to a PC, and display
information on the PC, such as the orientation of the
accelerometer, and overall status of the system.

MicroSD Card
Champion: Malachi Fisher

The SD card will be the removable memory device for the
system. It will be used to store the data from the accelerometer
until it can be processed using a fourier transform. The SD card
can also be removed and the data can be accessed with a PC
program for further analysis.

MicroSD Card PCB
Champion: Malachi Fisher

This block is the PCB that the SD card will be mounted to.
Without it, the SD card will not be able to be properly secured to
the inside of the glider. It will need to be small enough to fit
between the connectors on the wall of the glider bay without
compromising the ability to remove the connectors from their
sockets.

Main Board PCB
Champion: Sam Barton

This block encompasses the main PCB we will mount the
system onto. This will then be mounted onto the back of the
acoustic modem in the science bay of the glider. This block is
necessary because without it the system would not be secure in
the glider and would not be able to be mounted properly. The
PBC will also have connectors that will be used to supply the
system with power, to communicate with the science computer

25

onboard the glider, and send data out to the external SD card.

Data Analysis Firmware
Champion: Sam Barton

This block entails analyzing swell data from the accelerometer
including glider heading, significant wave height (meters), wave
period (seconds), wave direction, maximum wave height,
second highest wave height, maximum period, and spectral
parameters for the Fourier Transform.

3.3 Interface Definitions
Table 3.2: Interface Definitions

Name Properties

otsd_bck_rgltr_dcpwr ● Inominal: 30mA
● Ipeak: 80mA
● Vmax: 17V
● Vmin: 3.5
● Vnominal: 7V

otsd_acclrmtr_envin
● Electromagnetic: Earth's Magnetic Field X, Y, Z
● Other: Acceleration Nominal: +/- 1G in any axis
● Other: Roll, Pitch, Yaw
● Other: Acceleration: X, Y, Z

otsd_mcrsd_crd_pcb_mech
● Fasteners: 10 pin ribbon cable connector

Fasteners: Mounting Hardware, metal screws
with standoff

● Fasteners: SD Card Socket

otsd_mn_brd_pcb_mech
● Fasteners: Four screws on the four corners of

the PCB.
● Fasteners: Mounting screws to attach PCB to

the metal plates in the payload bay of the glider.
● Pulling Force: The PCB must stay connected in

the payload bay under a dropping force of 5G's

otsd_dt_nlyss_frmwr_code
● Other: Multiple functions on the MCU to calculate

26

the significant wave height (m), dominant period
(s), wave direction (degrees magnetic), maximum
wave height (m), second highest wave height
(m), maximum period (s), four spectral
parameters, and a wave component number (if
needed).

● Other: Language: C/C++

bck_rgltr_pwr_mngmnt_dcpwr
● Inominal: 50mA
● Ipeak: 140mA
● Vmax: 3.4V
● Vmin: 3.2V
● Vnominal: 3.3V

pwr_mngmnt_acclrmtr_dcpwr
● Inominal: 20mA
● Ipeak: 25mA
● Vmax: 3.4V
● Vmin: 3.2V
● Vnominal: 3.3V

pwr_mngmnt_mcrcntrllr_dcpwr
● Inominal: 11mA
● Ipeak: 14mA
● Vmax: 3.4V
● Vmin: 3.2V
● Vnominal: 3.3V

pwr_mngmnt_mcrsd_crd_dcpwr
● Inominal: 20mA
● Ipeak: 100mA
● Vmax: 3.4V
● Vmin: 3.2V
● Vnominal: 3.3V

acclrmtr_mcrcntrllr_data
● Messages: Cartesian (XYZ) Acceleration, 3x

32-bit floating point numbers
● Messages: Cartesian Magnetometer

Measurement: 3x 32-bit floating point numbers
● Messages: Rotation in Quaternions: 4x 32-bit

floating point numbers
● Protocol: SPI

27

mcrcntrllr_otsd_data
● Datarate: 115200 Baud
● Messages: Significant wave height (m),

dominant period (s), wave direction (degrees
magnetic), maximum wave height (m), second
highest wave height (m), maximum period (s),
four spectral parameters, a wave component
number (if needed), and a timestamp (UTC).

● Protocol: RS232 to science computer using level
shifters

mcrcntrllr_pwr_mngmnt_dsig
● Logic-Level: 3.3V
● Other: Active High

mcrcntrllr_mn_frmwr_code
● Other: Purpose: Data Management
● Other: Language: C

mcrcntrllr_pc_pplctn__data
● Datarate: 115200 Baud
● Datarate: System Status: (what information will

comprise 'status' is tbd)
● Messages: Cartesian (XYZ) Acceleration
● Messages: Roll, Pitch, Yaw orientation in

quaternions
● Protocol: USB

mcrcntrllr_mcrsd_crd_data
● Datarate: 25MB/s
● Protocol: SD protocol

mn_frmwr_xsns_cntrl_frmwr_data
● Messages: Reset XSENS
● Messages: Configure XSENS
● Messages: Get Measurements

mn_frmwr_sd_ntrfc_frmwr_code
● Other: Data Transfer: To SD Card
● Other: Data Format: Array

mn_frmwr_srl_ntrfc_frmwr_code
● Other: UART Selection: Which UART interface

should be used to transmit.

28

● Other: UART Parameters: baud rate, word
length, parity bits, stop bits. Or other necessary
to correctly configure UART module.

● Other: Data: Numbers and strings to be
transmitted via a UART Module

mn_frmwr_dt_nlyss_frmwr_data
● Messages: Significant wave height (m),

dominant period (s), wave direction (degrees
magnetic), maximum wave height (m), second
highest wave height (m), maximum period (s),
four spectral parameters, a wave component
number (if needed), and a timestamp (UTC).

● Other: This data transfer is internal to the
firmware inside the STM32 MCU. The data will
be transferred between the MCU's program
memory (RAM) and this firmware block, and then
sent back to the MCU's RAM.

xsns_cntrl_frmwr_mn_frmwr_data
● Messages: Rotation in Quaternions: 4x 32-bit

floating point numbers
● Messages: Cartesian (XYZ) Acceleration: 3x

32-bit floating point numbers
● Messages: Cartesian Magnetometer

Measurement: 3x 32-bit floating point numbers

sd_ntrfc_frmwr_mn_frmwr_code
● Other: Integers from SD card storage to be used

for Fourier Transform, Radio to shore.
● Other: Data Format: Array

srl_ntrfc_frmwr_mn_frmwr_code
● Other: Data: Numbers and strings received from

UART modules
● Other: Connection Status: Which UART devices

are connected to external devices

pc_pplctn__otsd_usrout
● Type: 3D visualization of accelerometer

orientation
● Type: Text display of system status
● Usability: Any of the team members must be

able to connect the system to a PC, open the
application, and determine the system status.

29

mcrsd_crd_mcrcntrllr_data
● Datarate: 25MB/s
● Protocol: SD protocol

dt_nlyss_frmwr_mn_frmwr_data
● Messages: Significant wave height (m),

dominant period (s), wave direction (degrees
magnetic), maximum wave height (m), second
highest wave height (m), maximum period (s),
four spectral parameters, a wave component
number (if needed), and a timestamp (UTC).

● Other: This data transfer is internal to the
firmware inside the STM32 MCU. The data will
be transferred between the MCU's program
memory (RAM) and this firmware block, and then
sent back to the MCU's RAM.

3.4 References and File Links

3.4.1 References

XSENS MTI-3 Sensor Specifications
[1] XSENS, “MTI-1 Series Sensor Specifications.” [Online] Available:
https://mtidocs.xsens.com/sensor-specifications

TI-TPS54232DR Switching Regulator Datasheet
[2] Texas Instruments, “TPS54232 2-A, 28-V, 1 MHz, Step-Down Converter with Eco Mode”
[Online] Available: https://www.ti.com/store/ti/en/p/product/?p=TPS54232DR

3.4.2 File Links
LucidChart Block Diagram
https://lucid.app/lucidchart/ead89e61-e7d5-48b2-860d-9d0f5be6ddcd/edit?from_docslist=true&i
nvitationId=inv_aa010d0b-06fa-4156-a60e-a370e72956ad&page=0_0#

https://mtidocs.xsens.com/sensor-specifications
https://www.ti.com/store/ti/en/p/product/?p=TPS54232DR
https://lucid.app/lucidchart/ead89e61-e7d5-48b2-860d-9d0f5be6ddcd/edit?from_docslist=true&invitationId=inv_aa010d0b-06fa-4156-a60e-a370e72956ad&page=0_0#
https://lucid.app/lucidchart/ead89e61-e7d5-48b2-860d-9d0f5be6ddcd/edit?from_docslist=true&invitationId=inv_aa010d0b-06fa-4156-a60e-a370e72956ad&page=0_0#

30

3.5 Revision Table
Table 3.3: Revision Table for Section 3

Date: Action:

12/3/2021 Grayson updated interface definitions for Accelerometer, PC Application,
XSENS Control Firmware, and Serial Interface Firmware blocks.

12/3/2021 Miles updated interface definitions for his blocks (Power management, Buck
Regulator, Main firmware).

12/3/2021 Sam updated interface definitions for the Microcontroller block, Main board
PCB block, and Data Analysis Firmware block

12/2/2021 Malachi updated the interface definitions related to communicating with the
SD Card, updated table.

11/19/2021 Miles created the section headings and the revision table and wrote up some
block descriptions.

11/19/2021 Malachi Inserted Block and interface tables from the block diagram tool

11/19/2021 Sam created blocks and interface definitions for the Microcontroller, main
PCB, and Data Analysis Firmware blocks.

Section 4: Block Validations

4.1 MicroSD Card PCB

4.1.1 Description
This block is the PCB that the microSD card will be mounted to. Without it, the microSD card will
not be able to be properly secured to the inside of the glider. It will need to be small enough to
be securely mounted between the connectors on the wall of the glider bay without
compromising the ability to remove the connectors from their sockets. The microSD card must
be held firmly in place in a microSD card socket, preferably a hinged type, so that microSD card
will remain secure throughout the deployment cycle of the glider. Additionally, the board will
need a cable with a connector to interface with the main PCB located elsewhere in the glider.

31

4.1.2 Design

Figure 4.1.2.1: Black Box Diagram of MicroSD Card PCB

32

Figure 4.1.2.2: Schematic for MicroSD Card PCB

33

Figure 4.1.2.3: Important Dimensions for the MicroSD Card PCB

34

Figure 4.1.2.4: 3D Mockup of finished microSD card PCB

4.1.3 General Validation
The point of this block is to provide a way to access certain parts of the system (namely the
microSD card) without completely disassembling the glider. It must be securely mounted to the
internals of the glider and must securely hold the microSD card and the attached cable. It must
also provide the additional circuitry required to properly operate the microSD card (pull-up
resistors, capacitors, etc.).

As a backup and for the purposes of testing this board I have developed a second board that
accepts the same style of connector used to connect the microSD card PCB to the main PCB
and is equipped with a set of female headers such that it will be possible to connect an STM32
Nucleo board to it which can then be connected to the microSD board via the ribbon cable that
will be used in the final assembly. However, if a problem arises with the design of the microSD
board, this board can be used as a stand-in. the female headers also will accept a premade
microSD card module which could be used in place of the primary microSD card PCB.

4.1.4 Interface Validation

35

Interface
Property

Why is this interface this
value?

Why do you know that your design details
for this block

above meet or exceed each property?

otsd_mcrsd_crd_pcb_mech : Input

Fasteners: 17 pin
ribbon cable
connector

A typical microSD card has 8 pins
and 8 discrete signals. By using a
17 pin ribbon cable/connector to
connect the microSD card PCB to
the main PCB, we are sure to have
enough signals to interface with the
card with enough conductors to
provide shielding between the
signal wires.

8 signals are needed to
communicate with a microSD
card using the 4-bit bus, so a 17
conductor cable will be more
than adequate. [1]

Fasteners:
Mounting
Hardware, metal
screws with
standoff

Metal screws and standoffs will be
provided to ensure solid mounting
of the PCB. A minimum of 3
mounting points will be required to
ensure that the PCB will remain on
a specified plane relative to the
internal wall of the glider where the
board will be mounted.

You need a minimum of 3 points
to define a plane, so to ensure
that our board is mounted on a
specified plane 3 mounting points
are required. [2]

Fasteners: SD
Card Socket

A microSD card was required by
the end user as the means to store
the recorded Data, so to mount the
card we will need an SD card
socket.

microSD card sockets are
specifically made to securely
hold microSD cards.

pwr_mngmnt_mcrsd_crd_pcb_dcpwr : Input

Inominal: 20mA This will be more than enough
current to power the microSD card
in standby state.

A typical microSD card
consumes less than a milliamp of
current in standby mode [1].
Having 20mA available will be

36

more than sufficient to operate
the microSD in standby mode.

Ipeak: 100mA This should be enough current to
operate the microSD during
area/write operation.

While the microSD card
specification allows for a card to
consume 200mA and above
during a read or write operation,
a typical microSD card operating
at less than 25Mhz will generally
consume less than 100mA [3].

Vmax: 3.4 This is the highest voltage that the
power management block will be
providing.

This is well within the allowable
operating voltage or a microSD
card as defined by the microSD
card specification, of 2.7-3.6V [3].

Vmin: 3.2 This is the lowest voltage that the
power management block will be
supplying.

This is well within the allowable
operating voltage or a microSD
card as defined by the microSD
card specification, of 2.7-3.6V [3].

Vnominal: 3.3 This is the nominal voltage that the
power management block will be
supplying.

This is normal operating voltage
of a microSD card [3].

mcrcntrllr_mcrsd_crd_pcb_comm : Input

Other: Pullup
Resistors on
Comm Lines

This is necessary to pull the data
line into a high state when not
being driven low by the microSD or
the microcontroller.

According to the microSD card
Specification, this is the typical
way to prevent floating pins on
the SD bus [3].

Protocol: SD
Protocol

SD protocol is faster to write to the
microSD than SPI.

The microSD card specification
explicitly states that using the
microSD card in SD mode comes
at the cost of performance [3].

37

Vmax: 3.4V This is the maximum voltage that
will be supplied by the power
management block, and therefore
the highest voltage our signal wire
can be at.

This is well within the allowable
operating voltage or a microSD
card as defined by the microSD
card specification, of 2.7-3.6V [3].

Vnominal: 3.3V This is the nominal voltage that will
be supplied by the power
management block and will
therefore be the nominal ‘high’
voltage of the microSD data bus.

This is normal operating voltage
of a microSD card [3].

mcrsd_crd_pcb_mcrcntrllr_comm : Output

Other: Pullup
Resistors on
Comm Lines

This is necessary to pull the data
line into a high state when not
being driven low by the microSD or
the microcontroller.

According to the microSD card
Specification, this is the typical
way to prevent floating pins on
the SD bus [3].

Protocol: SD
Protocol

SD protocol is faster to write to the
microSD than SPI.

The microSD card specification
explicitly states that using the
microSD card in SD mode comes
at the cost of performance [3].

Vmax: 3.4V This is the maximum voltage that
will be supplied by the power
management block, and therefore
the highest voltage our signal wire
can be at.

This is well within the allowable
operating voltage or a microSD
card as defined by the microSD
card specification, of 2.7-3.6V [3].

Vnominal: 3.3V This is the nominal voltage that will
be supplied by the power
management block and will
therefore be the nominal ‘high’
voltage of the microSD data bus.

This is normal operating voltage
of a microSD card [3].

4.1.5 Verification Process

otsd_mcrsd_crd_pcb_mech

38

1. 17 pin ribbon cable and fasteners

1.1. Connect the ribbon cable and fasteners

1.2. Ensure that the connectors are firmly connected by tugging on them gently.

2. Mounting Hardware, Metal screws with standoffs

2.1. Attatch the metal screws with and standoffs through the mounting holes of
the PCB to ensure proper hole sizing.

2.2. Mount the standoffs to a metal plate to simulate the interior wall of the
glider, ensure that the board is solidly mounted.

3. MicroSD card Socket

3.1. Ensure that the microSD card is secure when inserted into the microSD
card socket.

pwr_mngmnt_mcrsd_crd_pcb_dcpwr : Input

4. Inominal: 20mA

4.1. Connect the PCB with the microSD card to 3.3V DC through an ammeter.

4.2. Initialize the SD card using a test program on a STM32 Nucleo Board.

4.3. Ensure that after initialization, while idle the current on the DC power bus
does not exceed 20mA.

5. Ipeak 100mA

5.1. With the PCB still connected to 3.3V DC through an ammeter and still
initialized by the STM32 Nucleo board, preform a write operation and a read
operation to the microSD card.

5.2. Ensure that at no point does the current to the microSD exceed 100mA.

6. Vnominal: 3.3

6.1. Ensure that the above tests were successful at reading and writing to the
micro

SD card at nominal voltage.

7. Vmax: 3.4

39

7.1. Adjust the DC power into the PCB to 3.4V.

7.2. Perform an initialization, read, and write operation to the microSD card
using the STM32 Nucleo board running a test program.

7.3. Ensure that these operations were successful at 3.4V.

8. Vmin: 3.2

8.1. Adjust the DC power into the PCB to 3.2V.

8.2. Perform an initialization, read, and write operation to the microSD card
using the STM32 Nucleo board running a test program.

8.3. Ensure that these operations were successful at 3.2V.

mcrcntrllr_mcrsd_crd_pcb_comm : Input

9. Other: Pullup Resistors on Comm Lines

9.1. With the microSD PCB disconnected from DC power, test the resistance
between each data bus line and the DC bus to ensure that each pullup resistor
is in place.

9.2. Connect the microSD PCB to 3.3V DC and ensure that each data line is
pulled to 3.3V.

10. Protocol: SD Protocol

10.1 Connect the microSD PCB DC power into the PCB to 3.3V.

10.2 Perform an initialization, read, and write operation to the microSD card
using the STM32 Nucleo board running a test program.

10.3 Using an oscilloscope, ensure that these communications happen using
SD protocol.

11. Vmax: 3.4

11.1 Adjust the DC power into the PCB to 3.4V.

11.2 Perform an initialization, read, and write operation to the microSD card
using the STM32 Nucleo board running a test program.

11.3 Ensure that these operations were successful at 3.4V.

40

11.4 Because the high level of the data bus is determined by the voltage level
of the power bus, the above tests will ascertain whether the databus can operate
at 3.4V.

12. Vnominal: 3.3

12.1 Adjust the DC power into the PCB to 3.4V.

12.2 Perform an initialization, read, and write operation to the microSD card
using the STM32 Nucleo board running a test program.

12.3 Ensure that these operations were successful at 3.4V.

Because the high level of the data bus is determined by the voltage level of the
power bus, the above tests will ascertain whether the data bus can operate at
3.4V.

mcrsd_crd_pcb_mcrcntrllr_comm : Output

13. Other: Pullup Resistors on Comm Lines

13.1 With the microSD PCB disconnected from DC power, test the resistance
between each data bus line and the DC bus to ensure that each pullup resistor
is in place.

13.2 Connect the microSD PCB to 3.3V DC and ensure that each data line is
pulled to 3.3V.

14. Protocol: SD Protocol

14.1 Connect the microSD PCB DC power into the PCB to 3.3V.

14.2 Perform an initialization, read, and write operation to the microSD card
using the STM32 Nucleo board running a test program.

14.3 Using an oscilloscope, ensure that these communications happen using
SD protocol.

15. Vmax: 3.4

15.1 Adjust the DC power into the PCB to 3.4V.

15.2 Perform an initialization, read, and write operation to the microSD card
using the STM32 Nucleo board running a test program.

41

15.3 Ensure that these operations were successful at 3.4V.

15.4. Because the high level of the data bus is determined by the voltage level
of the power bus, the above tests will ascertain whether the databus can operate
at 3.4V.

16. Vnominal: 3.3

16.1 Adjust the DC power into the PCB to 3.4V.

16.2 Perform an initialization, read, and write operation to the microSD card
using the STM32 Nucleo board running a test program.

16.3 Ensure that these operations were successful at 3.4V.

16.4 Because the high level of the data bus is determined by the voltage level
of the power bus, the above tests will ascertain whether the data bus can operate
at 3.4V.

4.1.6 References and File Links

[1] “MicroSDXC Memory Card Features - Kingston Technology.” [Online]. Available:
https://www.kingston.com/datasheets/SDCIT-specsheet-64gb_us.pdf. [Accessed:
08-Jan-2022].

[2] “Plane (geometry),” Wikipedia, 25-Oct-2021. [Online]. Available:
https://en.wikipedia.org/wiki/Plane_(geometry). [Accessed: 08-Jan-2022].

[3] “Simplified specifications: SD association,” SD Association | The SD Association,
23-Dec-2020. [Online]. Available:
https://www.sdcard.org/downloads/pls/pdf/?p=Part1_Physical_Layer_Simplified_Specific
ation_Ver8.00.jpg&f=Part1_Physical_Layer_Simplified_Specification_Ver8.00.pdf&e=EN
_SS1_8. [Accessed: 22-Jan-2022].

4.1.7 Revision Table

Date: Action:

3/5/22 Malachi added this section to the main document

1/21/22 Malachi completed Validation section.

42

1/20/22 Malachi updated Design Documentation

1/7/21 Malachi finished draft of section 1, 2, 3, 4, 5, 6 and 7.

1/6/21 Malachi finished Initial section creation. Created section 1.

4.2 Microcontroller Block

4.2.1 Description
The purpose of the Microcontroller block (championed by Samuel Barton) is to run all firmware
blocks including data analysis, data transfer, serial communication firmware, etc., as well as
receive and transmit data between the Inertial Measurement Unit (IMU), SD Card, and the
science computer found inside the payload bay of the glider. This block will be the primary
means of processing the measurement data collected by the XSENS MTI-3 IMU. With that in
mind, the design for this block will be centered around an STM32 L4R5 series microcontroller
that offers 2 Mbytes of Flash memory and 640 Kbytes of RAM memory to ensure ample memory
to hold all data in memory before being transmitted over the satellite link to shore.

4.2.3 Design

Figure 4.2.3.1: Black-box diagram for the “Microcontroller” block.

43

Figure 4.2.3.2: Designed schematic for the STM32 microcontroller and header pins to all
peripherals.

44

Figure 4.2.3.3: JTAG connection (used for programming/debugging using ST-Link) connections
to GPIO pins.

Figure 4.2.3.4: Bypass capacitor circuitry to STM32 VDD/VSS pairs with included ferrite bead.

45

Figure 4.2.3.5: Connections to STM32 GPIO pins to power management block, as well as reset
button and boot switch included.

Figure 4.2.3.6: Header pins used for debugging SD, SPI, and UART protocols as well as
monitoring the various GPIO pins to be used.

46

Figure 4.2.3.7: Header pins included to connect the extraneous input voltage pins (VDDA,
VDDIO2, VDDUSB, VREF+) to VDD if not needed.

Figure 4.2.3.8: Designed PCB layout used for testing.

47

4.2.4 General Validation

As stated earlier, the two main purposes of this block are to hold the firmware to allow for
communication between the various modules in the system and analyze the incoming data from
the IMU. As the IMU outputs upwards of 7 different types of measurement data including
acceleration, orientation, and a time stamp, the microcontroller chosen must have large
amounts of RAM to ensure all measurements are stored and accounted for. In the block
description statement above, it was noted that the STM32L4R5 series MCU has 640 Kbytes of
RAM storage on board which should be plenty to hold the data being accumulated for the 20
minutes the Slocum G3 glider is at the surface.

As apparent in the Black-box diagram of the microcontroller block (Figure 1 above), there are 7
different interfaces that are associated with the microcontroller. Each of these interfaces will
require physical connections to either the power management block, the accelerometer/inertial
measurement unit (IMU), the SD card/serial interface, or our on-shore PCs as each interface will
require at least one of the input/output pins to fulfill its purpose. The STM32 will be using 3
different communication protocols depending on the desired peripheral. SPI will be used
between the STM32 and the XSENS IMU, UART (which will then be translated into RS232)
between the microcontroller and the science computer on-board the gider, and the SD protocol
for transferring data to/from the SD card. Furthermore, general GPIO pins will be used for
toggling the desired voltage levels used for the power management digital signals. For
debugging the communication protocols and digital signals, header pins have been established
to allow for more simplicity in debugging (shown in Figure 6).

Alongside the I/O pins necessary to support the rest of the system, there are over 20 different
pins out of the 144 total pins found on the STM32 that are dedicated to powering this module.
As found in Figure 4 above, there are many instances around the perimeter of the block labeled
VDD/VSS, in which VDD will be connected to the output of the voltage regulator, and VSS will
be connected to the ground plane of the PCB. Between each of these sets of pins, a
“decoupling” capacitor with a value between the 10’s of nanofarads and 1 microfarad will be
placed between VDD and the via to the ground plane on the PCB in order to minimize some of
the high-frequency noise that is typically common on the output of a switching voltage regulator,
acting as a form of a low-pass filter.

The pins VDDUSB, VDDIO2, VDDA, VBAT, and VREF+ (found in Figure 4) will have the ability
to be shorted to VDD using jumpers from header pins (Figure 7) if the extra functionality these
pins offer will not be used. According to the STM32L4R5ZIP datasheet [1], this is the suggested
configuration if the extra supply pins will not be used. Considering the timeline of the project and
the requirement to be able to change designs as further blocks develop, including these
headers for shorting will allow for more freedom and will prevent extraneous limitations being
placed on the system.

For programmability, a JTAG ribbon connected to the STMicroelectronics ST-Link [2] seemed to
be the most appropriate for the given design. The STM32 also allows for Serial Wire Debug
(SWD) programmability, however, the STM NUCLEO boards our team has been using for

48

developing firmware and test scripts includes settings for using the ST-Link, making it a more
suitable option as the settings currently in place for programming will not need to be changed.

Within the JTAG header shown in Figure 3, there includes pins RESET#, TDO, TCK/SWCLK,
TMS/SWDAT, TDI, and TRST. These are all declared in the STM32L4R5 datasheet as the
following and are stated in Table 1.

Table 4.2.4.1: Pin declaration for JTAG port

Pin Name JTAG Debug Port SW Debug Port Pin Assignment
(STM)

TMS/SWDAT JTAG test mode
selection

Serial wire data
input/output

PA13

TCK/SWCLK JTAG test clock Serial wire clock PA14

TDI JTAG test data input - PA15

TDO JTAG test data output - PB3

RESET# JTAG test nReset - PB4

As shown above, the JTAG pins listed also include the ability to work as a Serial Wire (SW)
debug configuration depending on the desired functionality of the connections (set in the STM
Cube IDE). The choice to use the JTAG port will allow the team to use either JTAG for serial
debugging/programming as well as SW debugging/programming which allows for the
opportunity to further optimize the system to achieve our low-power goal.

4.2.5 Interface Validation
Table 4.2.5.1: Interface validation table for Microcontroller block.

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

pwr_mngmnt_mcrcntrllr_dcpwr : Input

Inominal: 11mA Given from the STM32 Data
sheet for the given MCU. [1]

The voltage source is in the
correct range given by that data
sheet so the MCU won’t have to
pull more current for the same
input power. Also, the MCU
includes a low power mode that
drastically decreases current

49

draw that may be used for our
project.

Ipeak: 14mA Given from the STM32 Data
sheet for the given MCU. [1]

After writing test scripts through
the STM32 Cube IDE which
gives an estimate of power
consumption with the given
firmware uploaded to the MCU,
the power estimate showed a
value for current below this
value.

Vmax: 3.4V Given from the STM32 Data
sheet for the given MCU. [1]

The output of the buck regulator
being designed will have an
output voltage of 3.3V. All VDD
pins will be connected directly to
the output of the regulator
module and it can be assumed
that there ground plane used to
reference this voltage is at 0V.

Vmin: 1.71V Given from the STM32 Data
sheet for the given MCU. [1]

Assuming the connections to the
buck regulator block are low
resistance within the PCB or any
various protoboard
arrangements, there should be
no extraneous voltage drop
along the signal line.

Vnominal: 3.3V Given from the STM32 Data
sheet for the given MCU. [1]

The output of the buck regulator
being designed will have an
output voltage of 3.3V. All VDD
pins will be connected directly to
the output of the regulator
module.

acclrmtr_mcrcntrllr_data : Input

Messages: Cartesian
(XYZ) Acceleration, 3x
32-bit floating point
numbers

This is the defined data type
from the accelerometer as given
in the XSENS MTI-3 Data
Sheet. [3]

The STM32L4R5 series MCUs
have a 32-bit ARM Cortex M-4
core which allows for 32-bit float
data transfer. [1]

50

Messages: Cartesian
Magnetometer
Measurement: 3x
32-bit floating point
numbers (Note: This is
a unitless
measurement
normalized to 1)

This is the defined data type
from the accelerometer as given
in the XSENS MTI-3 Data
Sheet. [3]

The STM32L4R5 series MCUs
have a 32-bit ARM Cortex M-4
core which allows for 32-bit float
data transfer. [1]

Messages: Rotation in
Quaternions: 4x 32-bit
floating point numbers

This is the defined data type
from the accelerometer as given
in the XSENS MTI-3 Data
Sheet. [3]

The STM32L4R5 series MCUs
have a 32-bit ARM Cortex M-4
core which allows for 32-bit float
data transfer. [1]

Protocol: SPI The XSENS module has many
examples and guides for
implementing SPI
communication which will allow
for improved implementation for
the team.

The STM32 Cube IDE allows for
the designation of certain pins for
various tasks (including SPI) and
generates base code to help
jump-start the programming
process.

mcrcntrllr_otsd_data : Output

Datarate: 9600 Baud Defined by the acceptable baud
rates of the science computer
currently installed on the glider.

The STM32 can handle this baud
rate depending on the firmware
and system configurations set
using the STM32 Cube IDE.

Messages: Significant
wave height (m),
dominant period (s),
wave direction
(degrees magnetic),
maximum wave height
(m), second highest
wave height (m),
maximum period (s),
four spectral
parameters, a wave
component number (if
needed), and a
timestamp (UTC).

Given to us by the project
partners as “what they need.”

This is determined by firmware,
there should be no physical
constraints on the transfer of this
data besides physical
connections. Assuming the Data
Analysis Firmware Block is able
to calculate these values, this is
simply a matter of writing these
values to the I/O pins used for
serial communication to the
science computer.

51

Protocol: UART This is what was suggested by
the project partner and is still
being researched. Will require a
level shifter or some sort of
custom module.

As this protocol will require a
level shifter to generate the +/-
12V signals used in RS232,
assuming the level shifter
designed/purchased is suitable
for the 3V voltage levels created
by the I/O pins, this is obtainable.

mcrcntrllr_pwr_mngmnt_dsig : Output

Logic-Level: 3.3V This is typical voltage level
output by the MCU.

As stated by the STM32 data
sheet, the GPIO pins on this
board have a nominal “high”
voltage level of 3.3V [1].

Other: Max Current
Draw: 500uA

As the pins used for the dsig will
be connected to the gate of a
MOSFET, there should be very
little leakage current.

The STM32 MCU can toggle its
GPIO pins high or low based off
of the firmware written in the
Cube IDE.

Other: Active High This is based on the design of
the power management block
for our system.

The GPIO pins on the STM32
allow for a maximum current
draw of 20mA [1]. As the
accompanying design will consist
of FETs, there should be no
more than 500nA of current
drawn which will easily be
supplied by the accompanying
IO pins.

mcrcntrllr_pc_pplctn__data : Output

Datarate: 115200 Baud This baud rate is common for
serial communication and
supported by both devices.

The STM32 can handle this baud
rate depending on the firmware
and system configurations set
using the STM32 Cube IDE.

Messages: Cartesian
(XYZ) Acceleration

Needs to mimic the entire
system working with the
on-board science computer in
the glider.

This is determined by firmware,
there should be no physical
constraints on the transfer of this
data besides physical
connections.

52

Messages: Roll, Pitch,
Yaw orientation in
quaternions

Needs to mimic the entire
system working with the
on-board science computer in
the glider.

This is determined by firmware,
there should be no physical
constraints on the transfer of this
data besides physical
connections.

Protocol: UART UART is a common
communication protocol for
serial communication and can
be implemented rather easily
using the STM Cube IDE

There will be a Micro USB
connection in series with a
USB-Serial module to ensure
serial communication through
between the two devices.

mcrcntrllr_mcrsd_crd_pcb_comm : Output

Protocol: SD Protocol This protocol is standard in
practice when creating data
transfer between a device and
SD card.

This function is supported by the
STM32 Cube IDE set up in which
the properties of the protocol can
be set to match whatever is
currently written in firmware.

Vmax: 3.4V The data transfer will be carried
out with the GPIO pins,
therefore the voltage levels
should be within the specs of
these pins.

This is below the threshold for
maximum voltage the GPIO pins
can output, therefore ensuring no
damage will be done to either
device. [1]

Vnominal: 3.3V The data transfer will be carried
out with the GPIO pins,
therefore the voltage levels
should be within the specs of
these pins.

This is the nominal output
voltage for the GPIO pins,
therefore this voltage level
should be suitable throughout
the lifetime of the MCU without
causing any damage to the
device. [1]

mcrsd_crd_pcb_mcrcntrllr_comm : Input

Protocol: SD Protocol This protocol is standard in
practice when creating data
transfer between a device and
SD card.

This function is supported by the
STM32 Cube IDE set up in which
the properties of the protocol can
be set to match whatever is
currently written in firmware.

Vmax: 3.4 The data transfer will be carried
out with the GPIO pins,
therefore the voltage levels

This is below the threshold for
maximum voltage the GPIO pins
can receive, therefore ensuring

53

should be within the specs of
these pins.

no damage will be done to either
device. [1]

Vnominal: 3.3 The data transfer will be carried
out with the GPIO pins,
therefore the voltage levels
should be within the specs of
these pins.

This is below the threshold for
maximum voltage the GPIO pins
can receive, therefore ensuring
no damage will be done to either
device. [1]

4.2.6 Verification Plan

1) Initial Set up:
a) Connect VDD pin to power supply set to 3.3V and GND pin to negative terminal

of power supply.
b) Connect ST-Link to PC and JTAG ribbon to JTAG connector found on PCB.
c) Flash test script to the STM32 MCU used for testing the system.

2) Verifying pwr_mngmnt_mcrcntrllr_dcpwr input interface:
a) Measure current through the VDD connection using DMM.

i) Target current: Less than 14mA
b) Range supply voltage from 3.4V to 1.71V.

i) Verify circuit is still functioning within this range. The MCU should still be
discoverable through the STM32Cube IDE.

3) Verifying acclrmtr_mcrcntrllr_data input interface:
a) Connect an oscilloscope to pins used for communication using SPI.

i) Verify toggling clock (CLK).
ii) Verify more data being sent through the MOSI (Master Output, Slave

Input) connection in comparison to MISO (Master Input, Slave Output).
iii) Verify the Slave Select Line becomes active before communication.

4) Verifying mcrcntrllr_otsd_data output interface:
a) Connect the Tx pins to be used for serial communication to oscilloscope.

i) Find the shortest time where the Tx pin is low.
(1) Baud rate can be approximated by taking the inverse of the

shortest period (f = 1/T) [4].
ii) Connect UART, VDD, and GND to RS232 to USB module
iii) Verify all parameters have been sent:

(1) Significant wave height (m)
(2) Dominant period (s)
(3) Wave direction (degrees magnetic)
(4) Maximum wave height (m)
(5) Second highest wave height (m)
(6) Maximum period (s)
(7) Four spectral parameters
(8) Wave component number
(9) Timestamp (UTC)

5) Verifying mcrcntrllr_pwr_mngmnt_dsig output interface:
a) Verify all pins used for power management (mcrcntrllr_pwr_mngmnt_dsig) toggle

within noted acceptable voltage ranges using DMM.
i) Target Voltage: 3.3V

54

ii) Maximum Output Voltage: 3.4V
iii) Imax: > 500nA

6) Verifying mcrcntrllr_pc_pplctn__data output interface:
a) Connect the Tx pins to be used for serial communication to oscilloscope.

i) Find the shortest time where the Tx pin is low.
(1) Baud rate can be approximated by taking the inverse of the

shortest period (f = 1/T) [4].
ii) Connect UART, VDD, and GND to RS232 to USB module
iii) Verify all parameters have been sent:

(1) Cartesian (XYZ) Acceleration
(2) Roll, Pitch, Yaw orientation in quaternions

7) Verifying mcrcntrllr_mcrsd_crd_pcb_comm/mcrsd_crd_pcb_mcrcntrllr_comm interface:
a) Connect SDMMC1_D0-D3, SDMMC1_CK, SDMMC1_CMD, VDD, and GND pins

to SD card PCB.
b) Run test script transferring data to SD card from STM32.
c) Transfer SD card to PC and check to make sure a write has been made.

4.2.7 References and File Links

[1] STMicroelectronics. STM32L496R5ZI Datasheet. (2021). Accessed: February 4, 2022.
[Online]. Available: https://www.st.com/en/microcontrollers-microprocessors/stm32l4r5zi.html

[2] STMicroelectronics. ST-LINK/V2 in-circuit debugger/programmer for STM8 and STM32.
(n.d.). Accessed: February 18, 2022. [Online]. Available:
https://www.st.com/en/development-tools/st-link-v2.html

[3] XSENS. MTI-1 series Datasheet. Accessed: February 2, 2022. [Online]. Available:
https://www.xsens.com/hubfs/Downloads/Manuals/MTi-1-series-datasheet.pdf

[4] Kumari.net. Determining Unknown Baud Rate. (n.d.). Accessed: January 7, 2022. [Online].
Available: https://www.kumari.net/index.php/random/37-determing-unknown-baud-rate

4.2.8 Revision Table
Table 4.2.8: Revision table for Microcontroller Block.

Date: Action:

02/18/2022 Samuel Barton: Updated general validation section to highlight
finalized design, updated interface validation to reflect scope changes.

02/16/2022 Samuel Barton: Updated design section to show designed
configuration (schematic and PCB layout).

02/04/2022 Samuel Barton: Updated block description, general validation,
interface validation, and verification plan sections.

01/07/2022 Samuel Barton: Created first draft of document.

https://www.st.com/en/microcontrollers-microprocessors/stm32l4r5zi.html
https://www.st.com/en/development-tools/st-link-v2.html
https://www.xsens.com/hubfs/Downloads/Manuals/MTi-1-series-datasheet.pdf
https://www.kumari.net/index.php/random/37-determing-unknown-baud-rate

55

4.3 Data Analysis Firmware

4.3.1 Description

The purpose of the Data Analysis Firmware block (championed by Samuel Barton) is to analyze
the swell data taken by the accelerometer using the STM32 microcontroller (MCU). This data
includes glider heading, significant wave height, wave period, wave direction, maximum wave
height, second highest wave height, maximum period, the spectral parameters of the waves
being analyzed, and a time-stamp from when each measurement was taken.

The primary functions of this block are to rotate the measurements taken by the inertial
measurement system (IMU) to reflect the current position of the glider, take a Fourier Transform
of each of the sensor’s measurements in reference to the Earth’s coordinate system, calculate
three Power Spectral Densities (PSD) and three Cross Spectral Densities (CSD), calculate the
five spectral coefficients and spectral moments, and finally calculate the eleven parameters
requested by the project partners.

4.3.2 Design

Figure 4.3.2.1: Black-box diagram of the Data Analysis Firmware block.

56

Figure 4.3.2.2: Higher Level code flow required for completion of the Data Analysis Firmware
block.

57

4.3.3 General Validation

The sole purpose of this project is to be able to document swell conditions while the Slocum G3
gliders are out at sea. On the shore-side of this project, the CS team is focusing on creating a
visual representation of the analyzed data that the IMU system is capturing while the glider is on
the surface. This data will then be transmitted over a satellite link currently present on the glider.
Not only will the data be transmitted via satellite communications, the Glider team requests
analyzed data to be stored on the SD card to be mounted within the payload bay of the glider.

As the STM32 MCU has ample processing power to accomplish the calculations necessary
parameters to be sent over the satellite link and stored on the SD card, these calculations will
be carried out using the built-in functionalities of the microcontroller. The STM32 MCUs are built
using ARM cortex M4 processors which include Common Microcontroller Software Interface
Standard (CMSIS) tools including a specific digital signal processor (DSP) library [1].

The key function within the Data Analysis Firmware block is the Fourier Transform that is later
used to find the Power Spectral Densities and Cross Spectral Densities of the swell conditions
being monitored. The CMSIS DSP library includes many transform functions which can be used
on-board the STM32, including multiple variations of Fast Fourier Transforms (FFTs). Therefore,
designing this block around the CMSIS libraries currently included on the chosen MCU will allow
for the block to accomplish all necessary tasks for the completion of this project.

4.3.4 Interface Validation
Table 4.3.4.1: Interface validation table for Data Analysis Firmware block.

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block

above meet or exceed each
property?

mn_frmwr_dt_nlyss_frmwr_data : Input

Messages:
Acceleration Data in
N-Direction (32-bit
floats): Acceleration
North-South

The data analysis firmware must
be able to analyze acceleration
in the North-to-South Direction
to allow for complete wave-data
analysis.

The data measured by the IMU
will be sent into RAM on the
MCU un-touched. This data will
be read directly from the MCU’s
memory and analyzed from
there.

58

Messages:
Acceleration Data in
U-Direction (32-bit
floats): Vertical
acceleration data

The data analysis firmware must
be able to analyze vertical
acceleration to allow for
complete wave-data analysis.

These measurements taken by
the IMU will also be stored in
RAM on the MCU. The STM32 is
a 32-bit microcontroller, and can
handle 32-bit values [2].

Messages:
Acceleration Data in
E-Direction (32-bit
floats): Acceleration
East-West

The data analysis firmware must
be able to analyze acceleration
in the East-to-West Direction to
allow for complete wave-data
analysis.

Within RAM, the acceleration
data coming from the XSENS
accelerometer will be stored in
three different arrays for the N, E,
and U acceleration. Therefore,
when the data analysis begins, it
will be able to draw from the
separate data stored in the IMU.

dt_nlyss_frmwr_mn_frmwr_data : Output

Messages: Dominant
Period in E Direction
(s)

This parameter is standard for
most swell analyses. This was
required per the project partners’
requests.

The dominant period will be
calculated by using the
parameter a0 from the output of
the “Calculate the 5 Coefficients”
block as found in the NOAA
document [3].

Messages: Dominant
Period in U Direction
(s)

This parameter is standard for
most swell analyses. This was
required per the project partners’
requests.

The dominant period will be
calculated by using the
parameter a0 from the output of
the “Calculate the 5 Coefficients”
block as found in the NOAA
document [3].

Messages: FFT
Results in Upward (U)
Direction (Real and
Complex Values)

The results of the FFT will be
used further to calculate the rest
of the 11 parameters required
per the project partners’
requests.

Using the CMSIS RFFT library,
the FFT data in the “U” direction
will be calculated within the
“Fourier Transform Z” block in
Figure 2 above.

Messages: FFT
Results in Northward
(N) Direction (Real
and Complex Values)

The results of the FFT will be
used further to calculate the rest
of the 11 parameters required
per the project partners’
requests.

As the CMSIS RFFT library is
being used to calculate all
subsequent parameters, the FFT
results in the “N” direction will be
calculated in the “Fourier
Transform X” block in Figure 2
above.

59

Messages: FFT
Results in Eastward
(E) Direction (Real
and Complex Values)

The results of the FFT will be
used further to calculate the rest
of the 11 parameters required
per the project partners’
requests.

Using the CMSIS RFFT library,
the FFT data in the “U” direction
will be calculated within the
“Fourier Transform Z” block in
Figure 2 above.

Messages: Dominant
Period in N Direction
(s)

This parameter is standard for
most swell analyses. This was
required per the project partners’
requests.

The dominant period will be
calculated by using the
parameter a0 from the output of
the “Calculate the 5 Coefficients”
block as found in the NOAA
document [3].

4.3.5 Verification Plan

In order to test the functionality of the Data Analysis Firmware block, test data will be
hard-coded into the STM32 firmware via the STMCube IDE. From there, data from the Fourier
Transform as well as the outputs from the calculations to find the Power and Cross Spectral
Densities, five coefficients, spectral moments, and finally the directional and non-directional
parameters will be transmitted to the test pc terminal for validation of completion.

To begin:

1) Download the STMCube IDE script to the STMCube.
2) Connect STM32 L4R5 nucleo board to the pc through the COM ports.
3) Open the terminal with specification to the COM port the nucleo board is connected to.
4) Build the STM32 Project.
5) Run the STM32 Debugger on the main.c file which includes all calculations to be

completed.

To verify the mn_frmwr_dt_nlyss_frmwr_data interface:

1) Verify through the STM32 Cube IDE that acceleration data in N, E, U directions have
been established using the memory allocation tool.

To verify the RFFT has been taken:

1) Verify data has been saved in memory showing multiple frequency bands and their
respective energies to the terminal.

To verify the dt_nlyss_frmwr_mn_frmwr_data interface:

1) Verify data from calculations for the desired outputs include:
a) Maximum Wave Height
b) Second Highest Wave Height

60

c) Wave Component Number
d) Timestamp
e) Wave Direction
f) Significant Wave Height
g) Maximum Period
h) Four Spectral Parameters (a1, b1, a2, b2)
i) Dominant Period

4.3.6 References and File Links

[1] Common Microcontroller Software Interface Standard. CMSIS DSP Library. (n.d.). Accessed
January 17, 2022. [Online]. Available:
https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html

[2] STMicroelectronics. Floating point unit demonstration on STM32 microcontrollers. (2016).
Accessed: January 12, 2022. [Online]. Available:
https://www.st.com/resource/en/application_note/dm00047230-floating-point-unit-demonstration
-on-stm32-microcontrollers-stmicroelectronics.pdf

[3] National Data Buoy Center. Nondirectional and Directional Wave Data Analysis Procedures.
(1996). Accessed: January 13, 2022. [Online]. Available:
https://www.ndbc.noaa.gov/wavemeas.pdf

4.3.7 Revision Table
Table 4.3.7: Revision table for Data Analysis Firmware block.

Date: Action:

03/05/2022 Samuel Barton: Changed the interface properties to show what was checked
off for the Block 1 Checkoff.

01/21/2022 Samuel Barton: Changed the block to be validated from the MCU block to
the Data Analysis Firmware block and re-worked each section accordingly.

01/07/2022 Samuel Barton: Created first draft of document.

4.4 SD Interface Firmware

4.4.1 Description
This project will be mounted to the inside of an ocean glider and will use an
accelerometer to capture wave motion data and save it to an SD card for later

https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
https://www.st.com/resource/en/application_note/dm00047230-floating-point-unit-demonstration-on-stm32-microcontrollers-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00047230-floating-point-unit-demonstration-on-stm32-microcontrollers-stmicroelectronics.pdf
https://www.ndbc.noaa.gov/wavemeas.pdf

61

examination. This block will be a function library that will take an array of floats from the
accelerometer board and converts it into data formatted to be saved to a file on the
microSD card to be analyzed on shore. The library will also have functions to perform the
reverse of that operation- open a file on the microSD card and return an array of floats,
so that the glider can process some of the data and radio it back to shore.

4.4.2 Design

Figure 4.4.2.1: Black Box Diagram of the SD Software Block

62

Figure 4.4.2.2: Flowchart of the software library

4.4.3 General Validation
This design allows for the main firmware to call functions that will take care of the
reading and writing of the microSD card. Due to its design, all of the file creation, float
conversion, SD initialization, etc. will be abstracted into simple read and write function
calls. This will reduce the complexity of the main firmware, increase readability, and add
versatility to the main firmware.

4.4.4 Interface Validation

63

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block

above meet or exceed each
property?

mn_frmwr_sd_ntrfc_frmwr_code : Input

Other: Data:
Populated array of
floats

This is the array that will be
written to a .csv file on the SD
card.

The Xsens accelerometer board
firmware samples data and
converts them to floats, which will
be stored to an array. This array
will be passed to the write
function to be saved to the SD
card.

Other: Data: Null
float array pointer

This is a null pointer which will
be populated by information from
a SD card read.

The data analysis firmware will be
expecting an array of floats to
perform the Fourier transform on.
By putting the data from the SD
card into an array pointed to by
this pointer, the data analysis
firmware will be able to use that
data easily [1].

Other: Data:
Timestamp

The timestamp is a unique
identifier which can be used to
name files.

By using the timestamp given to
our system by the science
computer, we can ensure that
each time the glider surfaces it
will have a unique name to give
the files where the accelerometer
data will be stored, even after
multiple reboot cycles of the
system.

sd_ntrfc_frmwr_mn_frmwr_code : Output

Other: Data:
Populated array of
floats from file on
uSD

This is the array containing the
data read from the microSD
card.

The data analysis firmware will be
expecting an array of floats to
perform the Fourier transform on.
By putting the data from the SD
card into an array, the data

64

analysis firmware will be able to
use that data easily.

Other: Return Value:
Number of floats
read

This is the return value of the
read function.

By returning the number of floats
read from the microSD card, we
can do some rudimentary error
checking to ensure the operation
was successful.

Other: Return Value:
Number of floats
written

This is the return value of the
write function.

By returning the number of floats
written to the microSD card, we
can do some rudimentary error
checking to ensure the operation
was successful.

Other: Return Value:
Error Code

This returns integer error codes
in the case that a read or write
operation fails.

Integer error codes are standard
practice and are a useful
debugging tool.

4.4.5 Verification Process

1. Create a test .csv file on the microSD card with a known name and populate it with
floating point numbers.

2. Insert the microSD card into the test jig and begin running test code.

3. In the test code, attempt to use the name of the file as the timestamp input for the
read function. If the file opens (Does not return an error code), the timestamp property is
confirmed to work.

4. In the test code, pass the read function a null pointer. If after the read is complete,
the pointer points to an array of floats read from the file, both the null float array property
and the return value populated array of floats property will be confirmed to have worked.

5. Examine the integer value returned by the read function. If it matches the number
of floating-point values in the uSD card file, this property is confirmed to work.

6. Using a different value for the timestamp as used previously and the array of floats
read in the previous steps, attempt to call the write function to the uSD card.

7. If after the write operation is complete, there is a new file in the uSD card with the
same floating point values as the other file, the floating-point array input is confirmed to
work.

65

8. If after the write operation is complete, the write function returns the number of
floating point numbers as were in the array, the return value: number of floats written
property is confirmed to work.

9. Attempt to read a file by passing a non-existent filename as the timestamp value.
If the read function returns a negative integer, the error code property is confirmed to
work.

4.4.6 References and File Links
[1] S. Barton, “Data Analysis Firmware Block Validation.” .

4.4.7 Revision Table

Date: Action:

3/5/22 Malachi added this to the main project document

2/18/22 Malachi updated sections to accommodate changes suggested by peers.

2/4/2022 Malachi completed the draft for sections 1-7 of this section.

4.5 Buck Regulator Block

4.5.1 Description

This block includes the buck regulator power supply for the main board PCB. The Slocum glider
is able to supply between 7 and 17 volts to our board, but the microcontroller that we are using
needs a 3.3V supply. We will be designing a buck regulator power supply for our board using
the TPS54233D. Since this is the same chip that is used for the tech demo, we’ll use the tech
demo board to prove its functionality before implementing it in the final PCB.

66

4.5.2 Design

Figure 4.5.2.1: Black Box Diagram for the Buck Regulator

Figure 4.5.2.2: Schematic for the Buck Regulator

Note: otsd_bck_rgltr_dcpwr = Input 3.5-28V and bck_rgltr_pwr_mngmnt_dcpwr = Output 3.3V.

4.5.3 General Validation

The slocum glider provides our board with either a 7V or 17V DC power line. We need a way to
turn this into a 3.3V supply for the microcontroller, accelerometer, and SD card. Whatever
solution is used, it needs to be high efficiency because the power budget on our project is
extremely tight.

The TPS54233 is a good choice because it has upwards of 85% efficiency with VIN at 7-8V. This
is among the highest of the regulator chips considered for this design. Additionally, this chip is
readily available at the TekBots store, as well as being in stock on Mouser and DigiKey.

67

The circuit used for this block is known to be correct because it is taken almost entirely from the
reference design on the TPS54233 datasheet. The only changes that were made were the
feedback resistors. These were altered to change the output voltage from 5V to 3.3V.

4.5.4 Interface Validation

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

otsd_bck_rgltr_dcpwr : Input

Inominal: 8mA This was derived by working back
from the average current needed
for the microcontroller,
accelerometer and SD card. It
takes into account efficiency and
voltage level changes.

IIN = (IOUT*VOUT)/(efficiency*VIN).
IIN = (0.05*3.3)/(0.85*17) ~= 8mA

Ipeak: 25mA This was derived by working back
from the maximum current
needed for the microcontroller,
accelerometer and SD card. It
takes into account efficiency and
voltage level changes.

IIN = (IOUT*VOUT)/(efficiency*VIN).
IIN = (0.14*3.3)/(0.85*17) ~= 25mA

Vmax: 17V This is the highest possible
supply voltage from the Slocum
Glider

VIN of the TPS54233 can range
from 3.5 to 28 Volts (from the
TPS54233 Datasheet)

Vmin: 7 This is the lowest possible supply
voltage from the Slocum Glider

VIN of the TPS54233 can range
from 3.5 to 28 Volts (from the
TPS54233 Datasheet)

bck_rgltr_pwr_mngmnt_dcpwr : Output

Inominal: 50mA This is the average current
needed for the microcontroller,
accelerometer and SD card.

The TPS54233 can supply up to
1.5A of current. (from the
TPS54233 Datasheet)

Ipeak: 140mA This is the average current
needed for the microcontroller,

The TPS54233 can supply up to
1.5A of current. (from the

https://www.ti.com/lit/ds/symlink/tps54233.pdf?ts=1641598617562&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS54233
https://www.ti.com/lit/ds/symlink/tps54233.pdf?ts=1641598617562&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS54233
https://www.ti.com/lit/ds/symlink/tps54233.pdf?ts=1641598617562&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS54233

68

accelerometer and SD card. TPS54233 Datasheet)

Vmax: 3.35V Calculated from the worst case of
resistance tolerance issues.

With 1% tolerance resistors, VOUT

could be as high as
0.8*(10.433/3.267 + 1) = 3.35V
(equation from the TPS54233
Datasheet)

Vmin: 3.1V Calculated from the worst case of
resistance tolerance issues.

Tested prototype PCB and found
the minimum output voltage to be
3.1V

4.5.5 Verification Process
To test the TPS54233 Buck Regulator block, we will be using the PCB designed for the tech
demo. The tech demo board is set up for 5V output but the resistances can be changed to allow
for a 3.3V output.

Testing Procedure:

1. Set a power supply to 7V and then turn it off. Attach the ground lead from the power
supply to the negative input pin on the board. Attach the positive lead from the power
supply through a digital multimeter (for reading input current) to the positive input pin on
the board.

2. Attach the output pins on the board to the leads of an electronic load. Set the load to
draw 0mA of current.

3. Turn on the power supply and the load.
4. For each increment of 5mA up to 200mA, record the output voltage and the input

current.
5. Repeat the process with the power supply at 17V.

Analysis:

1. Go through the data and ensure that the voltage never goes above 3.35V or below
3.25V.

2. Check that the input current is ~30mA when the output current is 50mA.
3. Check that the input current is ~80mA when the output current is 140mA.
4. Calculate the efficiency of the power supply at 50mA output current and verify that it is

above 80%

4.5.6 References and File Links
TPS54233 Datasheet

https://www.ti.com/lit/ds/symlink/tps54233.pdf?ts=1641598617562&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS54233
https://www.ti.com/lit/ds/symlink/tps54233.pdf?ts=1641598617562&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS54233
https://www.ti.com/lit/ds/symlink/tps54233.pdf?ts=1641598617562&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS54233
https://www.ti.com/lit/ds/symlink/tps54233.pdf?ts=1641598617562&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS54233

69

4.5.7 Revision Table
Table 4.5.7.1: Section 4.5 Revision Table

Date: Action:

3/5/22 Miles added section to project document

1/21/22 Fixed resistor value in schematic

1/21/22 Made changes to reflect peer feedback

1/6/22 Document Created by Miles

4.6 Power Management Block

4.6.1 Description

This block includes a power management circuit to cut power to the SD card and the
accelerometer. Since the SD card uses a non negligible amount of power while it is in sleep
mode, we would like to be able to cut its power line while it is not being written to or read from.
For this we will need a simple MOSFET circuit that uses the output of a GPIO pin on the
microcontroller to control the flow of power to the SD card. We will use an identical circuit to cut
the power to the accelerometer when we aren’t using it (while performing the fourier transform).
We plan to model the circuit in LTSpice before implementing it in the final PCB. The block
champion is Miles Drake.

4.6.3 Design

The image below shows the black box diagram for the power management block. The inputs
are the 3.3V generated by the buck regulator and a digital signal from the microcontroller that
tells the block which sections of the circuit to give power to. The outputs of the block are the
power to each section of the circuit, the microcontroller, the SD card, and the accelerometer.

70

Figure 4.6.3.1: Black Box Diagram

Keep in mind that the output to the microcontroller is essentially just a pass through, since we
always want to have it powered. This is shown in the top section of the circuit diagram below.
The 3V3 line from the buck regulator passes directly to the microcontroller (Through 0 ohm
resistors to keep net labels organized). This also provides the power for the power management
circuit.

Figure 4.6.3.2: Schematic for Block Implementation

Table 4.6.3.1: Black Box and Schematic Corresponding Interfaces

Black Box Interface Corresponding Schematic Interface

mcrcntrllr_pwr_mngmnt_dsig SDCARD_EN, XSENS_EN

pwr_mngmnt_mcrsd_crd_pcb_dcpwr SD_3V3

pwr_mngmnt_acclrmtr_dcpwr XSENS_3V3

71

The rest of the schematic shows two identical power switching blocks, one for the SD card and
one for the accelerometer. In each, the NMOS on the bottom is held closed by the pull down
resistor. This sets the gate voltage of the PMOS to 3.3V, closing the PMOS and not letting any
current flow to the SD Card/XSENS. When the digital logic enable signal is asserted high, it
opens the NMOS, setting the gate of the PMOS to GND. This opens the PMOS and allows
current to flow to the SD Card/XSENS.

The specific parts for the MOSFETS will be an FDV301N NMOS and an FDV304P PMOS.

4.6.3 General Validation

The design of this block is all about simplicity and low power. There are load switch ICs that you
can buy off the shelf, but this circuit only takes two MOSFETs and a few passive components.
Depending on the resistors that are used in the circuit (And how slow of a turn on time you can
deal with), the current draw while on can be reduced to less than 8uA.

I chose MOSFETS over BJTs specifically because they do not need much gate current over
time, just enough to get them open. This fits well with the low power requirements for our
project.

I also chose to make the design active high so that when the power is coming up and the
microcontroller is turning on, the SD card and the XSENS will be held in reset (no power).

4.6.4 Interface Validation

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

bck_rgltr_pwr_mngmnt_dcpwr : Input

Inominal: 31mA This is the expected nominal
current draw of the whole system
from the power supply.
(Accelerometer, Microcontroller,
and SD card)

The current will flow through the
PMOS transistor FDV304P.
According to the FDV304P
Datasheet, it can handle up to
4.5A.

Ipeak: 97mA This is the expected peak current
draw of the whole system from
the power supply. (Accelerometer,
Microcontroller, and SD card)

The current will flow through the
PMOS transistor FDV304P.
According to the FDV304P
Datasheet, it can handle up to
4.5A.

Vmax: 3.35V This is the maximum output According to the FDV304P

https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf

72

voltage of the buck regulator
based on resistor tolerances.

Datasheet, this PMOS can handle
up to 8V gate source voltage.

Vmin: 3.1V This is the minimum output
voltage of the buck regulator
based on resistor tolerances.

According to the FDV304P
Datasheet, this PMOS can handle
up to 8V gate source voltage.

Vnominal: 3.3V This is the nominal output voltage
of the buck regulator based on
equations from the datasheet.

According to the FDV304P
Datasheet, this PMOS has
approximately 50mOhms on
resistance with a Vgs of 3.3V.

pwr_mngmnt_acclrmtr_dcpwr : Output

Inominal: 15mA This is the expected nominal
current draw of the XSENS
accelerometer. (Measured with
prototype)

The current will flow through the
PMOS transistor FDV304P.
According to the FDV304P
Datasheet, it can handle up to
4.5A.

Ipeak: 33mA This is the expected peak current
draw of the XSENS
accelerometer. (Measured with
prototype)

The current will flow through the
PMOS transistor FDV304P.
According to the FDV304P
Datasheet, it can handle up to
4.5A.

Vmax: 3.4V This is a safe range of operating
supply for the XSENS. (Taken
from the XSENS Datasheet)

This circuit will not increase the
voltage, only relay it from the buck
regulator, which has already been
proven to not give voltage higher
than 3.35V

Vmin: 2.9V This is a safe range of operating
supply for the XSENS. (Taken
from the XSENS Datasheet)

This circuit will not decrease the
voltage by very much, only relay it
from the buck regulator, which has
already been proven to not give
voltage lower than 2.9

pwr_mngmnt_mcrcntrllr_dcpwr : Output

Inominal: 11mA This is the expected nominal
current draw for the
microcontroller (Taken from the

The current will flow through the
PMOS transistor FDV304P.
According to the FDV304P

https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.xsens.com/hubfs/Downloads/Manuals/MTi-1-series-datasheet.pdf
https://www.xsens.com/hubfs/Downloads/Manuals/MTi-1-series-datasheet.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf

73

STM32 Datasheet) Datasheet, it can handle up to
4.5A.

Ipeak: 14mA This is the expected peak current
draw for the microcontroller
(Taken from the STM32
Datasheet)

The current will flow through the
PMOS transistor FDV304P.
According to the FDV304P
Datasheet, it can handle up to
4.5A.

Vmax: 3.4V This is a safe range of operating
supply for the microcontroller
(Taken from the STM32
Datasheet)

This circuit will not increase the
voltage, only relay it from the buck
regulator, which has already been
proven to not give voltage higher
than 3.35V

Vmin: 1.71V This is a safe range of operating
supply for the microcontroller
(Taken from the STM32
Datasheet)

This circuit will not decrease the
voltage by very much, only relay it
from the buck regulator, which has
already been proven to not give
voltage lower than 3.25

pwr_mngmnt_mcrsd_crd_pcb_dcpwr : Output

Inominal: 5mA This is the expected nominal
current of the SD card board.
(Measured with prototype)

The current will flow through the
PMOS transistor FDV304P.
According to the FDV304P
Datasheet, it can handle up to
4.5A.

Ipeak: 50mA This is the expected peak current
of the SD card board. (Measured
with prototype)

The current will flow through the
PMOS transistor FDV304P.
According to the FDV304P
Datasheet, it can handle up to
4.5A.

Vmax: 3.4 This is a safe range of operating
supply voltage for the SD Card

This circuit will not increase the
voltage, only relay it from the buck
regulator, which has already been
proven to not give voltage higher
than 3.35V

Vmin: 2.9 This is a safe range of operating
supply voltage for the SD Card

This circuit will not decrease the
voltage by very much, only relay it
from the buck regulator, which has
already been proven to not give

https://www.st.com/en/microcontrollers-microprocessors/stm32l496ag.html
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32l496ag.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l496ag.html
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32l496ag.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l496ag.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l496ag.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l496ag.html
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf

74

voltage lower than 2.9

mcrcntrllr_pwr_mngmnt_dsig : Input

Logic-Level: 3.3V The microcontroller has a logic
level of 3.3V, so it makes sense to
use that here as well.

The LTSPICE simulation of the
circuit has been proven to work
with logic level 3.3V

Other: Max Current
Draw: 500uA

This current is set very low
because we don’t want extra
power to be used to turn off the
SD Card or XSENS power

According to the FDV301N
Datasheet, the current draw on the
gate of the NMOS is a maximum
of 100nA.

Other: Active High This is active high so that the
accelerometer and SD card will
be held in reset (no power) before
the microcontroller has booted up.

The LTSPICE simulation of the
circuit has shown that no power is
delivered to the SD card/XSENS
when the logic signal is not
asserted or asserted low.

4.6.5 Verification Process

To verify the power management block, we will be breadboarding the circuit using SOT23
breakout boards for the MOSFETS. The prototype buck regulator circuit will be used to power
this block. The verification plan is as follows:

1. Set a power supply to 17V and then turn it off. Attach the ground lead from the power
supply to the negative input pin on the buck regulator board. Attach the positive lead
from the power supply to the positive input pin on the board.

2. Attach the output of the power supply to the 3V3_BUCK input of the power management
circuit.

3. Attach the 3V3_SD to an electronic load and set the current draw to 50mA.
4. Attach the 3V3_XSENS to another electronic load and set the current draw to 33mA.
5. Turn on the power supply. Neither of the 3V3 lines for SD or XSENS should have any

voltage. Verify that 3V3_MICRO has 3.3 volts on it using a DMM.
6. Take a jumper cable from the 3V3_BUCK line and attach it to the SDCARD_EN. Verify

that 3V3_SD is in fact at 3.3 volts (by looking at the voltage level on the electronic load)
and that nothing has exploded. Remove the jumper.

7. Put the jumper cable instead from 3V3_BUCK to the XSENS_EN. Verify that
3V3_XSENS is indeed 3.3 volts and that nothing has exploded.

https://www.digikey.com/en/products/detail/onsemi/FDV301N/458851?utm_adgroup=Semiconductor%20Modules&utm_source=google&utm_medium=cpc&utm_campaign=Dynamic%20Search_EN_RLSA_Buyers&utm_term=&utm_content=Semiconductor%20Modules&gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KGYWYvYxjRmUQ34k2FP62bSAAdvB8ofRNARgx15BLGv3fvbBrl7JbgaApMdEALw_wcB
https://www.digikey.com/en/products/detail/onsemi/FDV301N/458851?utm_adgroup=Semiconductor%20Modules&utm_source=google&utm_medium=cpc&utm_campaign=Dynamic%20Search_EN_RLSA_Buyers&utm_term=&utm_content=Semiconductor%20Modules&gclid=Cj0KCQiApL2QBhC8ARIsAGMm-KGYWYvYxjRmUQ34k2FP62bSAAdvB8ofRNARgx15BLGv3fvbBrl7JbgaApMdEALw_wcB

75

8. Now attach two jumpers from 3V3_BUCK, one to each of the enable lines. Verify that
both 3V3_SD and 3V3_XSENS have 3.3 volts on them.

4.6.6 References and File Links
FDV304P Datasheet
STM32 Datasheet
XSENS Datasheet

4.6.7 Revision Table
Table 4.6.7.1: Section 4.6 Revision Table

Date: Action:

3/5/22 Miles added section to project document

2/17/22 Miles Fixed schematic to show MOSFET Values

2/17/22 Miles Fixed interfaces to match new values on portal

2/17/22 Miles added information suggested by peer reviews

2/4/22 Document Created by Miles

4.7 Accelerometer Block Validation

4.7.1 Description
This block includes the electrical circuitry necessary to power, configure and

communicate with the XSENS Accelerometer. It includes the necessary passives to support the
accelerometer, such as a decoupling capacitor, and resistors to configure the communication
mode of the modules. It interfaces to the microcontroller via several digital signals, which allow it
to transfer data to and from the microcontroller.

Our system will be mounted in an ocean glider, where it will use measurements from the
accelerometer to measure the properties of waves. This block is necessary because it will allow
our system to collect acceleration, and orientation data, and transfer that data to the host
microcontroller. This data is critical to the operation of our system, and therefore this block is
necessary.

https://www.mouser.com/datasheet/2/308/1/FDV304P_D-2313231.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32l496ag.html
https://www.xsens.com/hubfs/Downloads/Manuals/MTi-1-series-datasheet.pdf

76

4.7.3 Design

Figure 1: Accelerometer black box diagram.

Figure 2: Accelerometer electrical schematic. Notes: (1) the blue boxes are labeled either with a
note, or with the name of the interface they pertain to. (2) R2 is labelled DNI (Do not install), it is
in the schematic so that the communication mode of the sensor could be changed without
significant PCB rework if necessary later in the project.

77

Figure 3: Typical application schematic for SPI mode communication. [1]

4.7.3 General Validation

This design was chosen because it implemented a sensor that will collect the data required by
the system and easily interface with the microcontroller selected for the project. It is based on
the typical schematic for the XSENS MTI-3 operating in SPI mode. The system needs to be able
to measure acceleration, orientation, and heading in order to meet the system requirements,
and this sensor is capable of collecting all of those measurements.

A significant driving force for the design of this block is that the previous year’s group, as well as
the project partners had already identified this sensor as being sufficient for the system in terms
of accuracy, price, and power consumption. While other sensors could have been chosen, and
implemented, this was the most obvious choice.

78

4.7.4 Interface Validation

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block

above meet or exceed each
property?

otsd_acclrmtr_envin : Input

Electromagnetic:
Earth's Magnetic Field
X, Y, Z

The system will be operating in
locations where the earth’s
magnetic field will be strong
enough to be detected.

The sensor can measure the
Earth’s magnetic field in the X, Y
and Z directions [2]

Other: Roll, Pitch, Yaw The system will have some
orientation within 3D space.

The sensor can measure its
orientation in 3D space [2]

Other: Acceleration: X,
Y, Z

The system will experience
acceleration throughout its
operation.

The sensor can measure its
acceleration in the X, Y and Z
directions [2]

Other: Acceleration
Nominal: +/- 1G in any
axis

The system will be operating in
a vehicle in the ocean and the
primary source of acceleration
will be from waves. Because of
this it is unlikely that the system
will experience more than +/-1G
during normal operation.

The sensor can measure up to
+/- 16G in any axis [2]

pwr_mngmnt_acclrmtr_dcpwr : Input

Inominal: 15mA The only part that consumes
power in this block is the
sensor, which has nominal
current draw of 15mA

The product website lists power
consumption of 44mW at 3.0v,
giving 15mA of current
consumption. [2]

Ipeak: 33mA The sensor has a maximum
current draw of 33mA

The datasheet for the sensor
specifies a maximum power
consumption of 100mW at 3.0v,

79

giving 33mA peak current
consumption. [3]

Vmax: 3.4V This is the maximum voltage
that the power supply block will
output as per its design

The normal operating range of
the sensor (not absolute
maximums) specifies a
maximum input voltage of 3.6V
[3]

Vmin: 3.2V This is the minimum voltage
that the power supply block will
output as per its design

The normal operating range of
the sensor (not absolute
maximums) specifies a minimum
input voltage of 2.16V [3]

Vnominal: 3.3V This is the nominal voltage that
the power supply block will
output as per its design

3.3V is between the minimum
and maximum operating
voltages of the sensor.

acclrmtr_mcrcntrllr_data : Output

Messages: Rotation in
Quaternions: 4x 32-bit
floating point numbers

We want to transfer the
acceleration measurement from
the sensor to the
microcontroller, and quaternions
make it computationally easy to
perform vector rotations.

The sensor can be configured to
output its orientation as a
quaternion consisting of four
32-bit floating point numbers. [5]

Messages: Cartesian
(XYZ) Acceleration, 3x
32-bit floating point
numbers

We want to transfer the
acceleration measurement from
the sensor to the
microcontroller.

The sensor can be configured to
output its acceleration in X, Y, Z,
as three 32-bit floating point
numbers. [5]

Messages: Cartesian
Magnetometer
Measurement: 3x 32-bit
floating point numbers
(Note: This is a unitless
measurement
normalized to 1)

We want to transfer the
magnetometer measurement
from the sensor to the
microcontroller so that the
magnetic heading can be
determined.

The sensor can be configured to
output its magnetic
measurement in X, Y, Z, as three
32-bit floating point numbers. [5]

Protocol: SPI SPI is sufficient for our
application and is supported by
the microcontroller we are
using.

The sensor has an SPI interface.
[1]

80

4.7.5 Verification Process

1. The circuit will be connected to a variable power supply with the power supply turned
OFF

2. The data connections will be connected to an STM32 Nucleo development board, and
the ground of the circuit will be connected to the ground of the development board.

3. Set the variable power supply to 3.2V This will verify that the block works properly at
Vmin from the pwr_mngmnt_acclrmtr_dcpwr interface.

4. Run a test program to collect floating-point data from the sensor. The test program
should output the data collected (Orientation, Acceleration, Magnetometer) to a serial
port. This will demonstrate both the acclrmtr_mcrcntrllr_data, and the
otsd_acclrmtr_envin interfaces.

5. To verify acceleration measurements, the sensor shall be rotated to 6 orientations,
corresponding to the sensor pointing in the +/-X, +/-Y, and +/-Z directions. When in each
of these orientations, +/- 1G will be measured on each of the axes. During this test, the
orientation and magnetometer measurements shall change with orientation as well. This
will demonstrate the Rotation, Acceleration, Magnetometer, and SPI properties of the
acclrmtr_mcrcntrllr_data interface.

a. Orientation data can be verified using a visualization program.
b. Acceleration data can be observed to change numerically, or it can be plotted.
c. Magnetometer data can be observed numerically, or plotted. It can be verified

using a cell phone compass. Note: magnetometer data is unitless and normalized
to 1.0.

d. If necessary, an oscilloscope or logic analyzer can be used to verify the operation
of the SPI bus.

6. Monitor supplied current. During execution of the test program the supplied current shall
be within +30%/-100% of Inominal, and shall never exceed Ipeak. This will demonstrate
the Inominal, and Ipeak property of the pwr_mngmnt_acclrmtr_dcpwr interface.

7. Repeat steps 4-6 for power supply voltage of 3.4V This will demonstrate the block
operates at Vmax from the pwr_mngmnt_acclrmtr_dcpwr interface.

4.7.6 References and File Links

[1] https://mtidocs.xsens.com/interfaces$spi

[2] https://www.xsens.com/mti-3

[3] https://www.xsens.com/hubfs/Downloads/Manuals/MTi-1-series-datasheet.pdf

[4] https://mtidocs.xsens.com/functional-description$pin-descriptions

[5] https://mtidocs.xsens.com/messages$data-related-messages

https://mtidocs.xsens.com/interfaces$spi
https://www.xsens.com/mti-3
https://www.xsens.com/hubfs/Downloads/Manuals/MTi-1-series-datasheet.pdf
https://mtidocs.xsens.com/functional-description$pin-descriptions
https://mtidocs.xsens.com/messages$data-related-messages

81

4.7.7 Revision Table

Date: Action:

2/1/2022 Removed DATA_READY property (not a strictly necessary property, difficult to
test)

1/21/2022 Implemented feedback, improved testing procedure, added typical application
schematic from documentation, changed “2021” to “2022” in line 1 of the
revision table.

1/08/2022 Grayson Lewis: Initial Draft

4.8 Serial Interface Firmware Block

4.8.1 Description

This block configures, and uses the hardware on the STM32 microcontroller for serial
communication with the ocean glider, and serial communication with the PC application. This
block is a firmware library that the main firmware block will be able to call in order to send and
receive data from either the ocean glider or the PC application. The main firmware will tell this
block how to (and which) UART modules to configure. The main firmware will be able to pass
this library data, as well as information on how to format that data, and which UART should
transmit, and this library will configure the data correctly, and transmit it. Conversely, the main
code will be able to request data from either of the UART modules, and the module should
return the data in the order it is received, as well as the status of the UART modules, and
whether data has been received but not passed to the main firmware yet.

82

4.8.3 Design

Figure 4.8.3.1: Black box diagram

83

Figure 4.8.3.2: Main code flowchart

84

Figure 4.8.3.3: UART Receive Interrupt Handler

The first thing that this library will do is be initialized. The main firmware will call the init()
function, which will configure which UART modules to use, set up the receive buffers, and
enable the receive interrupts.

When the main firmware calls this library, it will have three options:

1. Transmit data:

The main firmware will provide the data, the format the data should be transmitted in, as
well as its selection of which UART module it should be transmitted from. The library will
take this data, generate an array based on the format specified, and transmit it. The
library will update its status and then return.

2. Receive data:

The main firmware will request to read from a specific UART module, if the receive buffer
for that module is empty, a null pointer, and the status will be returned. If the receive

85

buffer is not empty, the data in that buffer will be parsed. If the parse is successful, a
pointer to the parsed data will be returned, as well as the status, and the data will be
removed from the receive buffer. If the parse is unsuccessful, the code will delay for a
period of time in the hopes that more data will be received which will allow the parse to
be successful. If the parse is still unsuccessful, the data will be discarded, and the status
will be set to an error state.

3. Check status:

This will simply return the current status. This will probably include how much data is in
the receive buffers, as well as whether any errors have occurred.

4.8.3 General Validation

This design was chosen for several reasons. The first being flexibility, as many of the decisions
about what kind of data we want to send to/from the PC application are undecided, we want to
leave room to add different kinds of data and methods of parsing that data. This design also
handles the encoding and decoding of the data from the UART, which will make the UART
aspects of the project much easier when we want to do system integration.

Another key design decision was to use interrupts instead of polling for receiving data. If polling
is used, it can result in dropped bytes, as data may be received while the program is doing
something else, and thus an incomplete or corrupted message may be received [1]. By using
interrupts, this library will be able to receive data and hold it, even while the program is in the
middle of executing other operations, reducing the risk of a corrupted message.

4.8.4 Interface Validation

Interface Property Why is this interface this
value?

Why do you know that your
design details for this block
above meet or exceed each

property?

mn_frmwr_srl_ntrfc_frmwr_code : Input

Other: UART Selection:
Which UART interface
should be used to
transmit/receive

This library will be responsible
for managing communications
with multiple UART modules,
so we should be able to select
which module to use

The microcontroller we are
using has multiple UART
modules, and is capable of
interfacing with them through
firmware. [2]

Other: Baud Rate: Speed
the UART should operate
at.

The baud rate depends on the
hardware configurations of the
other devices connected to the

The baud rate of the various
UART modules is configurable.
[2]

86

serial ports of the micro, so it
should be configurable in order
to accommodate those devices

Other: Data: Numbers
and strings to be
transmitted via a UART
Module

The main firmware will need to
be able to pass this library data
to be transmitted.

The microcontroller is capable of
manipulating data and passing it
to UART modules.

srl_ntrfc_frmwr_mn_frmwr_code : Output

Other: Status: Errors,
and/or whether there is
data in the receive
buffers of the UARTs

The main firmware should
know when an error has
occurred, and should know
how much data has been
received

The firmware flowchart defines
different states in which different
statuses will be indicated.

Other: Data: Numbers
and strings received from
UART modules

The library should be able to
return the data it received from
the UART modules.

The microcontroller is capable of
manipulating data and passing it
to UART modules.

Other: Data Identifier:
The type of data that is
being received

The main firmware should not
have to guess at what kind of
data it is receiving.

By defining how data is parsed,
metadata can be generated that
describes the type of data being
returned.

4.8.5 Verification Process

1. Load test program into microcontroller that interacts with the library.
2. Send data of various types and formats to both of the different UART modules. They can

be received using a computer, or another microcontroller. Verify that the data was
received and encoded correctly based on the specified format.

3. Using a microcontroller or computer, send data to the various uart modules. View the
data that was returned to the main program and ensure that it is correct.

a. Incorrect and incomplete data should be transmitted as well, the appropriate
status messages should be returned.

4.8.6 References and File Links

[1] http://www.simplyembedded.org/tutorials/interrupt-free-ring-buffer/

[2] https://www.st.com/resource/en/datasheet/stm32l4r5vi.pdf

http://www.simplyembedded.org/tutorials/interrupt-free-ring-buffer/
https://www.st.com/resource/en/datasheet/stm32l4r5vi.pdf

87

4.8.7 Revision Table

Date: Action:

2/4/2022 Grayson Lewis: Initial version

2/18/2022 Grayson Lewis: Updated testing procedures

88

4.9 Revision Table
Table 4.9: Revision Table for Section 4.

Date: Action:

03/05/2022 Samuel created the Microcontroller Block and Data Analysis Firmware Block
sections.

89

Section 5: System Verification Evidence

5.1 Universal Constraints

5.1.1 The system may not contain a breadboard

Figure 5.1.1.1: Fully assembled system does not contain a breadboard

5.1.2 The final system must contain both of the following: a student
designed PCB and a custom Android/PC/Cloud application.

Figure 5.1.2.1: Student Designed PCB

A PC application was also written to receive data from the system microcontroller, and
store that data in a CSV file for analysis.

90

Figure 5.1.2.2: Command Line interface for PC application

Figure 5.1.2.3: CSV file output of PC application

91

Figure 5.1.2.4: Magnetometer Plot from CSV file

Figure 5.1.2.5: Acceleration Plot from CSV file

92

Figure 5.1.2.6: Quaternion (orientation) Plot from CSV file

Link to video demonstration of PC Application: https://youtu.be/6PUx6oeFvUs

5.1.3 If an enclosure is present, the contents must be ruggedly
enclosed/mounted as evaluated by the course instructor.
The system will be directly mounted to the interior of the ocean glider, which is a
waterproof environment that contains other bare PCBs to operate the glider. Because
the glider itself will ruggedly protect our system, no enclosure is necessary.

5.1.4 If present, all wire connections to PCBs and going through an
enclosure (entering or leaving) must use connectors.

See Figure 5.1.1.1 to view that all connections to the PCB are made with connectors.

5.1.5 All power supplies in the system must be at least 65% efficient.
The power supply used for the PCB is a buck regulator switching power supply designed
around the TPS54233 chip. The schematic for this circuit is shown in the figure below.

Figure 5.1.5.1: Buck Regulator Schematic

https://youtu.be/6PUx6oeFvUs

93

Figure 5.1.5.2: Buck converter efficiency plot.

This figure shows the tested efficiency of our power supply under different loads. In the
relevant operating range (31mA nominal current), its efficiency is above 65% for both the
7V and 17V supply (~82% with a supply voltage of 7V and ~72% with a supply voltage of
17V).

5.1.6 The system may be no more than 50% pre-purchased modules.

The system only contains one pre-purchased module, the Xsens MTI-3 Accelerometer,
which is soldered onto the system PCB.

5.2 PCB Size

5.2.1 Requirement
● PPR: Board must fit inside the science bay of the glider.
● ER: The microcontroller PCB must be smaller than 7 inches by 1.5 inches (and 2 inches

tall) to fit onto the back of the acoustic modem board in the science bay of the glider.

5.2.2 Testing Process
1. Measure the length of PCB.
2. Measure the width of PCB.
3. Measure the height of PCB.
4. Ensure that the measurements are smaller than requirements.

94

5.2.3 Testing Evidence
This Is a placeholder for the evidence that will be present in the next draft of this document.

Figure 5.2.1.1: Measurement of PCB length (less than 7 inches).

Figure 5.2.1.2: Measurement of the PCB width (less than 1.5 inches).

95

Figure 5.2.1.3: Measurement of the PCB height (less than two inches).

5.3 Data Collection and Analysis

5.3.1 Requirement
● PPR: Build a system that analyzes swell data for 20 minutes and sends it to the main

science computer in the glider.
● ER: The system shall sample data at a maximum frequency of 10 Hz (though lower

frequencies may be desired) for up to 20 minutes, and analyze the data collected to
calculate the following parameters:

○ Hs, significant wave height in meters
○ Dom_period, dominant wave period in seconds
○ wave_dir, wave direction, magnetic
○ Hmax, maximum wave height in meters
○ Hmax2, second highest wave height
○ Pmax, maximum period
○ A1, spectral parameters
○ B1, spectral parameter
○ A2, spectral parameter
○ B2, spectral parameter index,
○ Wave component number

96

Note: The project partners may decide that some of these parameters are unnecessary and not
require their calculation for the final system.

5.3.2 Testing Process
1. Power system and hook up to PC Application built for testing.
2. Run the system for 20 minutes.
3. Save the parameters calculated by the system
4. Ensure that there are at least 12,000 data samples measured and the last time stamp

ensures that 20 minutes have elapsed.
5. Remove SD card from system and connect to PC
6. Use a script that has been approved by the project partners to manually calculate the

parameters from the raw data that was collected.
7. Compare the parameters calculated by the system, and the parameters calculated by

the script. This requirement will be met if the two calculations differ by no more than 5%
for each parameter.

5.3.3 Testing Evidence
The system is currently not capable of this functionality, and thus there is no evidence for this
requirement.

5.4 Removable Data Storage

5.4.1 Requirement
● PPR: Collected data must be available in removable memory.
● ER: Data must be stored to a micro SD card.

5.4.2 Testing Process
1. Collect data for 5 minutes
2. Remove memory card
3. Check if the memory card has at least 3,000 samples.

5.4.3 Testing Evidence
The video link below shows the system being powered up, the initialization commands being
passed to the system using serial communication, the data being collected, and verification that
over 3,000 data samples have been taken.

Video link for evidence: https://youtu.be/tHGRNZm4bSw

https://youtu.be/tHGRNZm4bSw

97

5.5 Glider Battery Life Impacts

5.5.1 Requirement
● PPR: Board must not reduce gliders battery life by more than 1 percent.
● ER: For a 20 minute collection cycle, the system must consume less than 230 Joules

5.5.2 Testing Process
1. Run a full 20 minute data collection cycle.
2. Measure the voltage on either side of a current-sensing resistor at the system’s input for

20 minutes using an oscilloscope and export the waveforms as a .csv file for
post-processing.

3. Using MATLAB, calculate the instantaneous current and power over the entire 20 minute
collection window.

4. Integrate the instantaneous power with respect to time to find the cumulative energy in
Joules.

5. Compare the final calculated value for energy with the maximum energy value of 230
Joules.

5.5.3 Testing Evidence
After running the devised MATLAB script to achieve the functionality listed above, two plots
were created including a plot of Instantaneous Power and Cumulative Energy as shown in
Figures 5.5.1 and 5.5.2 below. As shown in Figure 5.5.2, the total energy consumption at the
end of the 20 minute collection cycle was 183.111 J, significantly less than the maximum energy
consumption listed above of 230 Joules.

Figure 5.5.3.1: Plot of instantaneous power consumption over a 20 minute data
collection cycle generated using MATLAB.

98

Figure 5.5.3.2: Plot of cumulative energy consumption over the 20 minute data collection cycle
generated using MATLAB. Note the maximum energy consumption peaks at a value of 183 J

(below our target of 230 J).

Video link for evidence: https://youtu.be/jjXzIVOu81A

5.6 Data Ease of Access

5.6.1 Requirement
PPR: Removable Memory must be easily accessible
ER: SD card and associated PCB will have at least 0.5 inches of clearance from nearby
military style screw connector and 0.25 inches of clearance from nearby white
connectors.

5.6.2 Testing Process
1. Install SD card and associated PCB into the glider see Figure 2.1.
2. Measure the distance to the connectors.
3. This will be successful if the measurements are less than or equal to 0.5 inches from the

connector with the screw on collar and 0.25 inches from the white plastic connectors.

5.6.3 Testing Evidence
The SD board was affixed to a 3D printed bracket which was installed into the glider with double
sided tape to measure the connector clearances as was suggested by our project partners. In

https://youtu.be/jjXzIVOu81A

99

addition to directly measuring the clearances with a set of calipers, we also created a template
out of cardstock the width of our minimum clearance dimensions that fits around the bracket. By
showing that the template fits between the connectors with the bracket and SD board mounted,
our clearances can be easily verified visually.

Figure 5.6.3.1: The SD card board mounted to the 3D printed bracket attached to the wall of the
glider between the power and data connectors, with the red cardstock clearance template in

place.

100

Figure 5.6.3.2: Demonstrating that the clearance requirement between the military style screw
collared connector and the 3D printed bracket is greater than the required minimum of 0.5

inches.

Figure 5.6.3.3: Demonstrating that the clearance requirement between the top white snap
connector and the 3D printed bracket is greater than the required minimum of 0.25 inches.

Figure 5.6.3.4: Demonstrating that the clearance requirement between the bottom white snap
connector and the 3D printed bracket is greater than the required minimum of 0.25 inches.

101

Figure 5.6.3.5: Demonstrating that the width of the cardstock template is larger than minimum
required tolerance between bracket and the connector, proving that the template can be used to

visually verify the clearance requirement.

Figure 5.6.3.6: Demonstrating that the width of the cardstock template is larger than minimum
required tolerance between bracket and the connector, proving that the template can be used to

visually verify the clearance requirement.

102

Figure 5.6.3.7: Demonstrating that the width of the cardstock template is larger than minimum
required tolerance between bracket and the connector, proving that the template can be used to

visually verify the clearance requirement.

5.7 Project Overview Wiki Page

5.7.1 Requirement
● PPR: The project must be thoroughly documented
● ER: A wiki page shall be created that includes:

○ A user guide
○ Firmware
○ Altium Designer files
○ Electrical Schematic(s)
○ PCB Fabrication files (gerbers)
○ Electrical Bill of Materials.

5.7.2 Testing Process
1. Check that all required sections exist and have content.
2. Write the initial draft of the Wiki Page and submit to the Project Partners by the Friday of

Week 9 Winter 2022
3. Receive feedback from the Project Partners by the Friday of Week 10 Winter 2022

103

4. Implement feedback from the project partners and complete a final draft of the wiki
before System Verification.

5. A project partner will indicate approval or disapproval of the wiki prior to System
Verification. If all required sections are completed, and a project partner gives approval
of the wiki, this requirement will be met.

5.7.3 Testing Evidence

Figure 5.7.3.1: Proof of submission of a first draft of the project Wiki. Pat Welch replied with
multiple different action items. We have since fixed the issues that he brought to our attention.

Figure 5.7.3.2: Proof of final project partner approval of the wiki

104

Wiki Link: Ocean Going Robots (oregonstate.edu)

5.8 System Longevity

5.8.1 Requirement
● PPR: There should be no hardware or firmware bugs that cause the system to stop

logging data while in use.
● ER: System must work properly for at least 90 days of continual use.

5.8.2 Testing Process
1. During a 90 day period, the system will be cycled 1080 times, a cycle consisting of the

system being powered on, collecting data for 20 minutes, processing/storing the
collected data, and then being powered off. To demonstrate the system will not
encounter any errors in this 90 day period, we will cycle it 100 times, with a reduced data
collection time.

2. Connect the system to a computer through an RS232 port. Run a python program that
simulates the serial communication from the glider for 100 cycles, tells the system to
collect data, and 10 seconds later sends the restart command to the system. After the
restart acknowledgement is received. Power cycle the system to simulate the glider
powering the system off then on. Then repeat for 100 cycles.

3. The system shall not encounter any failures during this data collection cycle, and we
should see 100 .csv files saved to the SD card.

4. Analysis: 100 cycles represents approx. 10% of the cycles it will experience during its 90
day deployment. If no firmware failures occur during this sample time, we extrapolate
that it will not encounter firmware failures during deployment.

5.8.3 Testing Evidence

Video link for evidence: https://youtu.be/jfHFVicpnvs

5.9 System Security

5.9.1 Requirement
● PPR: System must be rugged to withstand the forces associated with being put into and

taken out of the ocean.

https://web.engr.oregonstate.edu/~fishemal/wiki/OceanGoingRobotsWiki/#
https://youtu.be/jfHFVicpnvs

105

● ER: The system shall function properly after a 10 foot drop. During the drop test the
system shall be mounted in a test enclosure, and the system shall be powered off during
the drop test.

5.9.2 Testing Process
1. Enclose the system in the test enclosure.
2. Drop enclosure from 10 ft above the surface of a water tank (specific tank TBD).
3. Remove system from test enclosure.
4. Connect system to power source.
5. Ensure serial communication is still functioning.

5.9.3 Testing Evidence
The video at the link below shows the system being placed into an enclosure, dropped
from a height of ten feet into a tank of water, and being powered on and tested
afterwards.

Video link for evidence: https://www.youtube.com/watch?v=fdnPgEW07Yo

5.10 References and File Links
N/A

5.11 Revision Table

Date: Action:

5/2/22 Grayson cleaned up verification procedures.

5/2/22 Sam added evidence of “Glider Battery Life Impacts” and “Removable Data
Storage” system requirements.

4/21/22 Updated wording of engineering requirements 5.1.6 and 5.1.8 for clarity and
feasibility, with project partner’s permission.

3/13/22 Malachi updated the phrasing of engineering requirements\ for section 5.3 at
the suggestion of our project partners.

3/13/22 Updated engineering requirement for section 5.6 after getting approval from
our project partners.

3/5/22 Initial creation, Malachi

https://www.youtube.com/watch?v=fdnPgEW07Yo

106

Section 6: Project Closing

6.1 Future Recommendations
6.1.1 Technical Recommendations

The first and foremost technical recommendation for a future revision of this project would be to
fix the outstanding errors on the current PCB. The main error (that required a jumper wire to fix
on the PCB) is one of the connections in both of the power management circuits that was
supposed to go to ground but did not. Another error that would need to be fixed is in the buck
regulator circuit. A footprint for an electrolytic capacitor was used for the output capacitor, but a
ceramic capacitor was placed there. This footprint should be swapped. Making these changes
would improve the professionalism and durability of the project.

Another technical recommendation for a future revision would be to make the whole thing
smaller. A different connector could be used to program the board, a smaller switch could be
used, and overall things could be rearranged a little bit to get a smaller form factor for the PCB.
This would make the project more attractive to the user because it means it would have a
smaller chance of getting in the way of glider operations or other glider add ons that could use
the same space.

Another recommendation our team has is possibly finding a different manufacturer for the
microcontroller used as the key piece of the system. On top of the chip shortages that affected
all projects around the world, the stocking of STMicroelectronics’ was already very slim which
made it very difficult to purchase excess MCUs in case we damaged one of ours. During our
time using this MCU, we had to take apart existing development boards (which
STMicroelectronics calls “Nucleo Boards”) in order to find the exact chip our team had decided
to use. Some example microcontrollers we’ve found include the MICROCHIP AT32UC3A1512
[1].

One last recommendation would be that if the STM32 MCU chip is used for a future
implementation, a different IDE should be used to write the firmware. We used the STM32Cube
IDE and it proved to be very difficult. There are a lot of options and it is very slow to compile.
Additionally, we ran into an issue with the versions of the software where the firmware would
only compile to the board from one computer in our group. We lost 2 days of work to this bug
and if we had used a different IDE, we might have been able to write better firmware. You can
check out what other IDEs are available for STM32 integrated development on the
STMicroelectronics website [2].

6.1.2 Global Impact Recommendations
Making the PCB smaller is not only a good technical recommendation, but also a good global
impact recommendation. As we have discussed in the design impact section of this document,
there are not good ways to recycle PCBs. Mostly they end up as e-waste or in landfills. The

107

smaller we make our PCB, the better it is for the environment and the less of a negative impact
it will have.

Another recommendation for global impacts would be to use a different accelerometer that does
not cost upwards of 300 dollars. A cheaper accelerometer might not collect as many parameters
of data, but a system that costs less could be more accessible to more areas of research, more
areas of the world, or maybe even individuals/hobbyists. This would have a greater impact on
the scientific community because more people would be able to use the device. One possible
accelerometer option is the Adafruit IMU Fusion Breakout Board [3].

6.1.3 Teamwork Recommendations
The main teamwork recommendation we have for this project in the future would be to
communicate with the CS team earlier on in the process. We had an issue where we didn’t talk
to the CS team about their code that was supposed to run on our microcontroller until about a
week before our project was due. It turned out that their implementation used more memory
than we had available on the device and so by the time they had fixed this, it was too late for us
to try to implement it onto our board. This could have been avoided if we had been in better
communication with them from the beginning [4].

Another teamwork recommendation we have is to set up regularly scheduled meetings within
the ECE team. We had these meetings scheduled for Fall term, but fell off during winter and
spring. It made it hard to make time to meet during this term because teammates would
schedule things without thinking about when we were going to meet. If we had set aside a time
to meet every week, we could have always had a guaranteed meeting time, even if we hadn’t
chosen to use it. We recommend using when2meet [5] to find a meeting time for your group and
then setting a meeting at least once a week for discussion and work time.

6.2 Project Artifact Summary with Links

6.2.1 Project Code
All code used is included in the project Github below:
https://github.com/sammyb34/OSU_OceanGoingRobots_ECE

https://github.com/sammyb34/OSU_OceanGoingRobots_ECE

108

6.2.2 Project Schematics

Figure 6.2.2.1: System-level schematic for the System PCB.

Figure 6.2.2.2: Buck regulator schematic on-board the System PCB.

109

Figure 6.2.2.3: Microcontroller schematic including bypass capacitor sizing used for protection
and all communication pins.

Figure 6.2.2.4: Power management block schematic used for turning on/off the XSENS
accelerometer and SD card PCB.

110

Figure 6.2.2.5: XSENS schematic including the required bypass capacitor and all
communication/control pins.

Figure 6.2.2.6: RS232 UART level shifter schematic focused around the MAX 3232 chip.

111

Figure 6.2.2.7: Micro-SD card PCB schematic.

6.2.3 Project Wiki
All project artifacts, all information from this document, a user guide, and downloadable
schematic/PCB files and firmware are available on the project wiki at the following link.

Wiki Link: Ocean Going Robots (oregonstate.edu)

https://web.engr.oregonstate.edu/~fishemal/wiki/OceanGoingRobotsWiki/#

112

6.3 Presentation Materials

Figure 6.3.1: Engineering Expo Poster

6.4 References and File Links
[1]"Smart | Connected | Secure | Microchip Technology", Microchip.com, 2022. [Online].

Available: https://www.microchip.com/en-us/product/AT32UC3A1512). [Accessed: 07-
May- 2022].

[2]"STM32 IDEs - STMicroelectronics", STMicroelectronics, 2022. [Online]. Available:
https://www.st.com/en/development-tools/stm32-ides.html#products). [Accessed: 07-
May- 2022].

[3]A. Industries, "Adafruit 9-DOF Absolute Orientation IMU Fusion Breakout - BNO055",
Adafruit.com, 2022. [Online]. Available: https://www.adafruit.com/product/2472.
[Accessed: 07- May- 2022].

[4]A. Cheng, "The importance of effective communication in the workplace | RingCentral",
RingCentral, 2022. [Online]. Available:

113

https://www.ringcentral.com/us/en/blog/the-importance-of-effective-communication-in-t
he-workplace/. [Accessed: 07- May- 2022].

[5]"When2meet", When2meet.com, 2022. [Online]. Available: https://www.when2meet.com.
[Accessed: 07- May- 2022].

6.5 Revision Table

Date: Action:

5/6/22 Malachi Added IEEE Citations to the recommendations

5/6/22 Samuel updated Section 6.2 to include code and schematics.

5/6/22 Miles Added some tech and global impact recommendations

5/4/22 Created section in document

