
Compute-efficient Real-time Voice Cloning
An ECE 44x Project Document

Connor Saltmarsh
Matthew Raffel
Micah Janzen
Grant Everson

1

1 - Overview: 5
1.1 - Executive Summary 5
1.2 - Team Contacts & Protocols 6

1.2.1 - Team Contacts 6
1.2.2 - Protocols 6

1.3 - Gap Analysis: 7
1.4 - Timeline 9
1.5 - References and File Links 11

1.5.1 - References 11
1.5.2 - File Links 11

1.6 - Revision Table 11
2 - Impact and Risks 12

2.1 - Design Impact Statement 12
2.2 - Risks 15
2.3 - References and File Links 16

2.3.1 - References 16
2.3.2 - File Links 17

2.4 - Revision Table 17
3 - Top-Level Architecture 18

3.1 - Block Diagram 18
3.2 - Block Descriptions 19
3.3 - Interface Definitions 21
3.4 - References and File Links 23

2.3.1 - References 23
2.3.2 - File Links 23

3.5 - Revision Table 23
4 - Block Validations 23

4.1 - Deep Learning Block 23
4.1.1 - Description 23
4.1.2 - Design 24
4.1.3 - General Validation 28
4.1.4 - Interface Validation 30
4.1.5 - Verification Process 31
4.1.6 - References and File Links 31
4.1.7 - Revision Table 32

4.2 - Optimizer Block 33
4.2.1 - Description 33
4.2.2 - Design 33
4.2.3 - General Validation 34
4.2.4 - Interface Validation 34

2

4.2.5 - Verification Process 35
4.2.6 - References and File Links 36
4.2.7 - Revision Table 36

4.3 - Speaker Block 36
4.3.1 - Description 36
4.3.2 - Design 37
4.3.3 - General Validation 39
4.3.4 - Interface Validation 40
4.3.5 - Verification Process 41
4.3.6 - References and File Links 42
4.3.7 - Revision Table 42

4.4 - Display Block 42
4.4.1 - Description 42
4.4.2 - Design 43
4.4.3 - General Validation 44
4.4.4 - Interface Validation 44
4.4.5 - Verification Process 45
4.4.6 - References and File Links 46
4.4.7 - Revision Table 46

4.5 - Text Interface Block 46
4.5.1 - Description 46
4.5.2 -Design 46
4.5.3 - General Validation 48
4.5.4 - Interface Validation 49
4.5.5 - Verification Plan 51
4.5.6 - References and File Link 52
4.5.7 - Revision Table 52

4.6 - Microphone Block 53
4.6.1 - Description 53
4.6.2 - Design 53
4.6.3 - General Validation 54
4.6.4 - Interface Validation 54
4.6.5 - Verification Process 56
4.6.6 - References and File Links 56
4.6.7 - Revision Table 56

4.7 - I/O Control Code Block 56
4.7.1 - Description 56
4.7.2 - Design 57
4.7.3 - General Validation 58
4.7.4 - Interface Validation 59
4.7.5 - Verification Process 61

3

4.7.6 - References and File Links 62
4.7.7 - Revision Table 63

4.8 - UI Block 63
4.8.1 - Description 63
4.8.2 - Design 63
4.8.3 - General Validation 65
4.8.4 - Interface Validation 65
4.8.5 - Verification Process 66
4.8.6 - References and File Links 67
4.8.7 - Revision Table 67

4.9 - Microcontroller Block 67
4.9.1 - Description 67
4.9.2 - Design 68
4.9.3 - General Validation 69
4.9.4 - Interface Validation 69
4.9.5 - Verification Process 75
4.9.6 - References and File Links 76
4.9.7 - Revision Table 76

5 - System Verification Evidence 77
5.1 - Universal Constraints 77

5.1.1 - The system may not include a breadboard 77
5.1.2 - The final system must contain a student-designed PCB. 77
5.1.3 - All connections to PCBs must use connectors. 78
5.1.4 - All power supplies in the system must be at least 65% efficient. 78
5.1.5 - The system may be no more than 50% built from purchased 'modules.' 79

5.2 - Requirements 80
5.2.1 - Limited Computation Ability 80

5.2.1.1 - Project Partner Requirement: 80
5.2.1.2 - Engineering Requirement: 80
5.2.1.3 - Verification Process: 80
5.2.1.4 - Testing Evidence: 80

5.2.2 - Reproducibility 81
5.2.2.1 - Project Partner Requirement: 81
5.2.2.2 - Engineering Requirement: 81
5.2.2.3 - Verification Process: 81
5.2.2.4 - Testing Evidence: 81
https://drive.google.com/file/d/1tGZWbrKvObpTB8psnlXzEK9AGn9KXUgN/view?usp
=share_link 81

5.2.3 - Size 81
5.2.3.1 - Project Partner Requirement: 81
5.2.3.2 - Engineering Requirement: 81

4

5.2.3.3 - Verification Process: 81
5.2.3.4 - Testing Evidence: 81

5.2.4 - Speech input 82
5.2.4.1 - Project Partner Requirement: 82
5.2.4.2 - Engineering Requirement: 83
5.2.4.3 - Verification Process: 83
5.2.4.4 - Testing Evidence: 83

5.2.5 - Speech Output 83
5.2.5.1 - Project Partner Requirement: 83
5.2.5.2 - Engineering Requirement: 83
5.2.5.3 - Verification Process: 83
5.2.5.4 - Testing Evidence: 83

5.2.6 - Speed 84
5.2.6.1 - Project Partner Requirement: 84
5.2.6.2 - Engineering Requirement: 84
5.2.6.3 - Verification Process: 84
5.2.6.4 - Testing Evidence: 84

5.2.7 - Text Input 84
5.2.7.1 - Project Partner Requirement: 84
5.2.7.2 - Engineering Requirement: 84
5.2.7.3 - Verification Process 84
5.2.7.4 - Testing Evidence: 84

5.2.8 - Usability 85
5.2.8.1 - Project Partner Requirement: 85
5.2.8.2 - Engineering Requirement: 85
5.2.8.3 - Verification Process: 85
5.2.8.4 - Testing Evidence: 85

5.3 - References and File Links 85
5.4 - Revision Table 85

6 - Project Closing 86
6.1 - Future Recommendations 86

6.1.1 - Technical Recommendations 86
6.1.2 - Global Impact Recommendations 87
6.1.3 - Teamwork Recommendations 87

6.2 - Project Artifact Summary with Links 88
6.3 - Presentation Materials 90
6.4 - References and File Links 91

5

1 - Overview:
Section 1 Overview details overall project information and summaries of project
progression. This section will be focused on project management and communication
between team members regarding individual roles, team protocols, timeline
management, and specific milestones. The project definition is contained in this section
and shall be continually revised for more clarity on the project scope as our research
develops.

1.1 - Executive Summary
A voice cloning machine learning model receives a speech and text input and creates a
new speech output reading the text input in the voice of the speaker input. Such a voice
cloning procedure used to need nearly an hour of audio to create a realistic cloned
voice; however, recent advances in machine learning research using an SV2TTS model
has lowered the necessary audio to around 5 seconds [1]. The SV2TTS model is
composed of three components consisting of a speaker encoder, a synthesizer, and a
vocoder [2,3,4]. Since the SV2TTS model is composed of three submodels it requires a
large number of parameters, is computationally expensive, and is slow to both train and
run, preventing its use for low-end systems.

Our project is called “Compute Efficient Real-Time Voice Cloning.” Our project aims to
both speed up and reduce the computational resources necessary to provide a
voice-cloning model that will be uploaded to a low-end system. To achieve this
objective we have divided the project into three separate stages:

● Implement to the “ESPnet” repository[6] a modified version of VITS [7] called
YourTTS [8], a new state-of-the-art voice cloning model .

● Implement memory and processing optimizations such as quantization.
● Upload the final model to a low-end system and create additional peripherals for

users to interface with the system.

The ESPnet repository is a machine learning toolkit to speed up the productivity of
machine learning engineers [6]. By implementing a modified YourTTS model into
ESPnet we gain access to an improved training and evaluation environment that is
more accessible to a broader audience. The low-end system we plan to use in our
system is a Raspberry Pi 4, a versatile microcontroller used in many electronic system
applications. The peripherals consist of a miniature button keyboard with an attachable
display and a microphone for user inputs and a speaker for a cloned voice output. Each
of these peripherals are designed and implemented on a PCB.
Since the project's inception, our team has learned the basics of deep learning and has
familiarized ourselves with the YourTTS model. Additionally, we have studied the

https://github.com/espnet/espnet

6

structure of the ESPnet repository as we begin our plan to implement the YourTTS
model into it. In regards to hardware, we have designed schematics for the system
peripherals and have started testing the microcontroller's ability to run machine-learning
models.

1.2 - Team Contacts & Protocols

1.2.1 - Team Contacts
Table 1.2.1: Team Contacts

Name: Contact: Primary Role: Contributions:

Connor
Saltmarsh

saltmaco@oregonstate.e
du

Treasurer Output Hardware
Integration

Micah Janzen janzenm@oregonstate.e
du

Scribe Input Hardware
Integration

Grant Everson eversong@oregonstate.
edu

Project Support System Software
Handling

Matthew Raffel raffelm@oregonstate.ed
u

Technical Leader Quantization
Implementation

1.2.2 - Protocols
Table 1.2.2: Team Protocols

Topic Protocol Standard

Communication with Project
Partner

Matthew communicates with
Project Partner Dr. Chen.

Bi-Weekly emails to Dr. Chen
outlining progress on the
project and any lingering
questions. Monthly meeting
with Dr. Chen to discuss the
project.

On-time Deliverables If task(s) are not completed
by the due date, explain to
the team why, next steps, and
possible re-assessment of
task(s).

A one-paragraph message
submitted to discord
explaining reasoning for
delay and a proposed plan for
completing the task.

Meeting Duration and
Frequency

Meet a minimum of 2x per
week for 1.5 hours combined.

Meet every week at LINC on
Tuesday and Thursday
5:15-6:00pm.

7

Task Management Fill out a team weekly
progress report under
individual sections and any
team progress made.

Weekly progress report must
be half a page in length.

Team Communication Weekly Discord Messages
and fill in jobs in team Notion
page

Answer questions and
provide personal questions or
suggestions about the
project.

1.3 - Gap Analysis:

The SV2TTS model was a major advancement for voice cloning as it reduced the
amount of source audio required to clone a voice; however it possesses three major
drawbacks to make it widely adaptable. These include the computational complexity for
it to clone a voice, the slow speech generation speed of its vocoder submodel [2, 5],
and being implemented into an unofficial GitHub repository. As such our project exists
to solve each of these issues, while also uploading our model into a low-end handheld
system that allows the model to be easily usable for its target end user.

One target end user of our YourTTS model implemented on a low-end handheld system
is those who have lost their voices [7]. With our system, this demographic will be
capable of recapturing their voices with a low latency carriable system, which the
SV2TTS model could not perform. A secondary end user is a simultaneous speech
interpreter [1]. Typically, interpreters speak a translation simultaneously using their own
voice of a source person's speech. However, with our faster, more compact model
these interpreters could type the words of the individual they are translating and have
the model speak in the source person's own voice. Furthermore, implementing the
model into ESPnet[6] is more accessible to future ML engineers who can provide further
improvements. Some key end-product stakeholders could be larger companies that
want to improve their voice assistants, organizations that aim to help provide realistic
speech to those unable to speak, or audiobook companies looking to create realistic
cloned voices to read text.

We are assuming that the target end users and each of these stakeholders will value a
low-latency system that requires a lower computational cost than previous methods
when cloning voices. Additionally, we assume that there is merit to placing such a
voice-cloning model on a low-end handheld system and that our model will not be

8

overshadowed by other voice-cloning models allowing ML engineers to continue
adapting it for the foreseeable future on ESPnet.

9

1.4 - Timeline

TASK
NUMBER TASK TITLE TASK OWNER START DATE DUE

DATE DURATION

PCT OF
TASK
COMPL
ETE

ECE 441 ECE 442 ECE 443

October Novembe
r

Decembe
r January February March April May June

2 3 4 5 6 7 8 9 1
0
1
1
W
B
W
B
W
B 1 2 3 4 5 6 7 8 9 1

0
1
1
S
B 1 2 3 4 5 6 7 8 9 1

0
1
1

1 Research and
Planning

1.1
Read Chapters 5-10 of
Deep Learning
Textbook

Everybody 10/3/2022 11/11/20
22 39 100.00%

1.2 Read SV2TTS
Research Papers Everybody 10/10/2022 11/11/20

22 32 80.00%

1.3

Verify SV2TTS Github
Repository
Implementation is
Correct

Matthew 10/3/2022 10/14/2
022 11 100.00%

1.4 Hardware Schematic
Design Connor 11/10/2022 11/25/20

22 15 25.00%

1.5 Familiarize Yourself
With ESPnet Code Everybody 11/14/2022 11/25/20

22 11 25.00%

1.6
Verify Jetson Nano
runs SV2TTS model Matthew 11/21/2022 12/2/20

22 11 0.00%

1.7 Create Comprehensive
Research Document Everyone 11/14/2022 12/9/20

22 25
10.00%

2 Implement and Test

2.1 Implement SV2TTS
model into ESPnet Matthew 11/20/2022 12/20/2

022 30 0.00%

2.2
Optimize SV2TTS
model with updated
submodels

Matthew 12/20/2022 2/1/202
3 43 0.00%

2.3 Implement
Quantization Matthew & Micah 1/9/2023 2/28/20

23 50 0.00%

10

2.4 Design Interface PCBs Connor,Micah,
Grant 11/20/2022 1/20/20

23 61 0.00%

2.5 Order Interface PCBs Connor 1/20/2023 1/27/20
23 7 0.00%

2.6 Create an Enclosure Grant 1/9/2023 1/31/20
23 22 0.00%

2.7 Power and Memory
Analysis Micah and Grant 1/9/2023 2/10/20

23 32 0.00%

3 Refine and Finalize

3.1 Verification and Testing Everyone 2/1/2023 3/20/20
23 47 0.00%

3.2 Documentation of
Progress Everyone 1/9/2023 5/20/20

23 131 0.00%

3.3 Present Work Everyone 6/1/2023 6/1/202
3 0 0.00%

Figure 1.4: Project Timeline

11

1.5 - References and File Links

1.5.1 - References

[1] Jia Y., “Transfer Learning from Speaker Verification to Multispeaker
Text-To-Speech Synthesis”, arXiv e-prints, 2018.

[2] Kalchbrenner N., “Efficient Neural Audio Synthesis”, arXiv e-prints, 2018.

[3] Wang Y., “Tacotron: Towards End-to-End Speech Synthesis”, arXiv e-prints,
2017.

[4] Wan L., Wang Q., Papir A., and Lopez Moreno I., “Generalized End-to-End Loss
for Speaker Verification”, arXiv e-prints, 2017.

[5] Jemine C., “Real-Time Voice Cloning,” M.S. thesis, Université de Liège, Liège,
Belgique, 2019.

[6] Watanabe S., “ESPnet: End-to-End Speech Processing Toolkit”, arXiv e-prints,
2018.

[7] Casanova, E., Weber, J., Shulby, C., Junior, A. C., Gölge, E., and Antonelli Ponti,
M., “YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice
Conversion for everyone”, arXiv e-prints, 2021.

[8] Kim, J., Kong, J., and Son, J., “Conditional Variational Autoencoder with
Adversarial Learning for End-to-End Text-to-Speech”, arXiv e-prints, 2021.

1.5.2 - File Links
Project Learning Materials:
https://docs.google.com/document/d/10PZG9tsSCM68SfZKgvimSlv4Om6vntkV_J9I6_o2hrY/edi
t?usp=sharing

1.6 - Revision Table
Table 1.6: Revision Table

Author: Date: Change: Reasoning:

Grant 10-14-2022 Created Document Draft Project assignment due

https://docs.google.com/document/d/10PZG9tsSCM68SfZKgvimSlv4Om6vntkV_J9I6_o2hrY/edit?usp=sharing
https://docs.google.com/document/d/10PZG9tsSCM68SfZKgvimSlv4Om6vntkV_J9I6_o2hrY/edit?usp=sharing

12

Connor 10-21-2022 Overview Content Revision from Professor comments

Connor 11-4-2022 Executive
Summary Addition

Update summary to include current
design choices/approaches.

Matthew 11-14-2022 Revised Executive
Summary, Added
Table for Protocols
Section, Added
new timeline to
document

Project Document Submission

Matthew 11-16-2022 Revised Gap
Analysis

Project Document Submission

Matthew 11-17-2022 Added additional
citations and filled
out Table for
Protocols Section

Project Document Submission

Micah 11-18-2022 Fixed simple
spelling and
grammar errors,
revised document

Project Document Submission

Connor 3-12-2023 Updated project
summary

Provide up to date information on relative
hardware and microcontroller

Matthew 5-13-23 Updated Gap
Analysis and
Executive
Summary with
up-to-date
information

Provide up to date information on voice
cloning machine learning model

2 - Impact and Risks
The section 2 impacts and risks section outlines the potential risks and solutions to risks the
team may face during the project. We provide both a design impact statement and a risk
assessment table. Additionally, the section provides a references and links section and a
revision table tracking changes.

2.1 - Design Impact Statement
Our project consists of creating a real-time compute-efficient voice cloning machine learning
system. From designing and using such a system creates the possibility of negative

13

consequences. We explore these consequences under the guidance of four broad categories
consisting of the following:

● Public Health, Safety, and Welfare
● Cultural and Social
● Environmental
● Economic

For each potential impact, we will explain the necessary background information and the causes
leading to the implication. Additionally, we will introduce solutions to counter the effect. Even
though we aim to solve each negative impact, some will be outside the scope of our abilities,
and we must consider tradeoffs. Providing a comprehensive examination of our project's
potential negative impacts enables us to avoid or diminish their effects. Furthermore, it provides
our project partner and stakeholders assurance of our ability to foresee negative outcomes,
create plans to avoid them and keep them informed on project details.

Voice cloning models can easily have negative impacts on public safety and welfare if it is not
safely integrated into society. In today’s society, where scam phone calls are repetitive and
relentless, citizens have become better at deciphering them, however, some scamming
organizations have begun utilizing advanced technology similar to voice cloning machine
learning to record the voices of the consumer and clone their voice. Using a model such as this,
scammers could get valuable information such as bank account access over the phone by
sounding like the consumer, or vice versa, having a convincing or recognizable voice on the
“banking” end and get people to give up banking information. One study conducted by Ovadya
and Whittlestone explains that voice cloning models will only be easily implemented if there are
“already established processes for phone scams into which new voice generation capabilities
can be slotted easily, without any need to change goals or strategy” [1]. An important takeaway
with this type of technology is that before it can be fully integrated to better society, there needs
to be existing practices that can decipher a cloned voice and avoid malicious behavior. In
regards to the specific project, the group's implementation of such a model will be designed as a
simple, easy to use handheld device with recording and text input capabilities. One negative
impact to this is obviously accessibility to scammers and people looking to use a voice cloning
device for malicious intent. One solution toward limiting the malicious intent, albeit not very
practical, would be to have a device registration requirement. Since the intent of the device is to
assist the disabled/speech impaired (not as a consumer facing product) this process may be
more feasible with a focused demographic.

When creating a system that can clone a human's voice, machine learning requires tons of data.
With the data collection, it is often seen in engineers’ eyes and the public eyes as being
absolute and unbiased. However, data collection can have downfalls when the way it is
collected is inherently biased or too focused on getting specific data. An example of this is seen
in the Los Angeles police department trying to implement AI with predictive guesses as to where
crime will occur. “ Since the program uses skewered data collected by police over the years, it is
likely to be biased against minorities, with critics suggesting the algorithm has been
disproportionately targeting minority neighborhoods''[2]. This bias goes beyond how data is
collected and can apply to have most white people collect data for white people. For our project,

14

the datasets used to train the model are from VCTK and LibriTTS, both of which are populated
by native English speakers' recordings with differing accents[3 & 4]. Native English-speaking
datasets are biased towards exactly what the dataset was created from native English
speakers. This creates inaccuracies with cloning voices of minorities, or anyone that is not a
native English speaker as the model will struggle to understand different cadences of
non-English speakers. To mitigate bias within datasets, including non-native speakers would
allow models trained on datasets to be utilized by non-native speakers. A secondary social
impact of voice cloning is impersonating other people, not our voices. Since only a very short
clip of anyone’s voice is needed, anyone could clone someone else’s voice with high accuracy.
Kitti Palmai, a writer for BBC, writes about how voice cloning has been growing for voice actors
and cybercriminals. Palmai quotes someone to interview on the topic, saying, “‘For example, if a
boss phones an employee asking for sensitive information, and the employee recognizes the
voice, the immediate response is to do as asked. It's a path for a lot of cybercrimes.’”[5]. This
idea can be easily expanded to any other area, where asking for sensitive information or
impersonating another person can create trust from the victim of the cybercrime, as voice is still
seen as a difficult human component to replicate. It’s important to ensure measures are taken to
limit the accuracy of voice cloning. As models get more accurate, there should still be
inaccuracies in the voice that let people know the voice is produced from a computer.

All supervised machine learning tasks are composed of training and inference. During training,
a model will learn parameters to perform a specific task, and during inference, the model will
use the learned parameters to perform the trained task. In our project, our model will learn
parameters to improve its ability to clone a voice using a dataset and a learning algorithm,
allowing it to clone any provided voice. One issue with machine learning algorithms is that each
requires many parameters to perform tasks like voice cloning well. These parameters coincide
with the amount of energy consumed by the model while training and inferring. From requiring
lots of energy to both train and evaluate a model, CO2 emissions are released into the
atmosphere. In the case of training, a standard machine learning Transformer model designed
for natural language processing tasks produces 192 lbs of CO2 while using a GPU [6]. For
reference, the average American produces 99 lbs of CO2 a day [6]. Since voice cloning is a
more complex task than standard natural language processing tasks like automatic speech
recognition or translation, it requires a combination of multiple different machine learning
submodels. As such, the process of training a single voice cloning model will produce an even
greater amount of CO2 than that forecasted for the standard transformer model. As expected,
training a model requires more energy than inference. However, this is only the case if the
inference only occurs once[7]. But, in most cases, a model will undergo inference multiple
times, which causes inference actually to consume more energy than training. For our
voice-cloning system to be useful for end users such as those who have lost their voices, it will
need to perform inference hundreds of times a day, effectively overshadowing the training costs
in the long run regarding carbon emissions. In order to combat CO2 emissions and other
negative effects resulting from excessive energy consumption in the training and inference of a
model, we plan to implement a combination of techniques, such as quantization, into our models
[8]. By doing so, we will reduce the model's computational costs, in turn reducing the energy
consumption of the model.

15

One quite prevalent occupation when dealing with foreign relations and business is a translator.
According to the United States Bureau of Labor Statistics, there are an estimated 69,000 jobs in
the interpreter and translator field of work. With an average pay of almost $50,000 per year, this
occupation accounts for nearly 3.5 billion dollars of yearly pay. Even more so, the projected
market for this occupation is set to grow by 20% over the next ten years [9]. Despite this, there
may be a concern in the future that machine learning could potentially slow the growth of this
profession or even start to replace humans when translating, especially as text-to-speech and
voice cloning starts to sound more and more human. Utilizing machine learning in positions
where translations are needed is a great way for companies to lower costs when dealing with
foreign and even inter-company communications. As the world does not all speak and read the
same language, there will always be a need for some type of translator. According to the article
"Will artificial intelligence replace human translation?" there is no possibility that artificial
intelligence, or machine learning, will replace human translators [10]. Citing that each language
has different nuances, semantics, cultural impacts, and syntax, there will be no way to translate
one phrase to mean the exact same thing in each language. Humans can generally provide a
better translation as they understand each language's culture and can better reflect phrases
between two distinct languages. Though this may not be a concern now, machine learning
models continually evolve, so in the future, when models become more proficient, they may
become more reliable with translations than humans. Even so, we will most likely not fully
replace translators, as they are often needed for legal documents and other higher-stakes
communication. Though for other situations, they may be good enough to serve as interpersonal
communication translators. A last potential economic impact is voice clonings' ability to be used
for fraud. While on much less of a grand economic scale, this type of machine learning could be
used for small-scale thievery. Spam calls have become more common in recent years, and
unfortunately, many tend to target the elderly. With a bit more targeting, this could be used to get
a voice sample from a relative and, using that, clone the voice and target family members,
tricking them into sending money.

2.2 - Risks
Table 2.2: Risk Breakdown

Risk
ID

Risk Description Risk
Categor
y

Risk
Probability

Risk
Impact

Performan
ce
Indicator

Action Plan

1 Falling Behind in
Reading/Research

Timeline Med Med Lack of
Understan
ding

Reduce depth
and increase
the breadth of
reading

2 Unable to
understand Espnet
or Voice Cloning
Code

Technic
al

High High Lack of
Understan
ding

Use debugger
to step through
code

16

3 Unable to gain
access to GPUs to
train models

Organiz
ational

Med High No way to
train
models

Contact Project
Partner

4 Model does not
run well on
Raspberry Pi

Technic
al

High High Unable to
evaluate
models

Use Jetson
Nano

5 Lack of progress in
updates to Project
Partner

Organiz
ational

Med Med Feedback
from
Project
Partner

Come to
understanding
on
expectations
with Project
Partner

6 Parameter
reduction
techniques
negatively affect
performance

Technic
al

High High Voice
cloned
does not
sound
realistic

Increase the bit
representation
of parameters

7 Losing edits made
to code

Organiz
ational

Low High Code is not
longer
available

Revert
changes in
Github
repository

8 Insufficient funds
to order PCBs and
additional
materials for
project

Cost Low Med Run out of
allotted
$300 from
course

Use personal
money

2.3 - References and File Links

2.3.1 - References

[1] Ovadya and J. Whittlestone, “Machine learning classification of malicious
resident space objects,” Computers and Society Cornell, 2022.

[2] Palmai, Kitti. “Voice Cloning of Growing Interest to Actors and Cybercriminals.”
BBC News, 11 July 2021, www.bbc.com/news/business-57761873.

[3] “VCTK Dataset.” Machine Learning Datasets,
datasets.activeloop.ai/docs/ml/datasets/vctk-dataset/. Accessed 1 Dec. 2022.

http://www.bbc.com/news/business-57761873

17

[4] “LibriTTS.” Google Research, research.google/tools/datasets/libri-tts/. Accessed 1 Dec.
2022.

[5] Narayanan, Aswin. “AI Bias: How Technology Negatively Impacts on Minorities.”
ScreenRant, 14 June 2020,
screenrant.com/ai-bias-technology-negative-impact-minorities/. Accessed 4 Nov.
2022.

[6] Strubell, E., Ganesh, A., and McCallum, A., “Energy and Policy Considerations
for Deep Learning in NLP”, arXiv e-prints, 2019.

[7] Desislavov, R., Martínez-Plumed, F., and Hernández-Orallo, J., “Compute and
Energy Consumption Trends in Deep Learning Inference”, arXiv e-prints, 2021.

[8] Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., and Keutzer, K., “A
Survey of Quantization Methods for Efficient Neural Network Inference”, arXiv
e-prints, 2021.

[9] “Interpreters and Translators : Occupational Outlook Handbook.” U.S. Bureau of
Labor Statistics, U.S. Bureau of Labor Statistics,
https://www.bls.gov/ooh/media-and-communication/interpreters-and-translators.h
tm. (accessed Sept. 8 2022)

[10] Limited, Crystal Hues. “Will Artificial Intelligence Replace Human Translation?”
LinkedIn,
https://www.linkedin.com/pulse/artificial-intelligence-replace-human-translation-cr
ystal-hues-ltd. (accessed Apr. 23 2022)

2.3.2 - File Links
None.

2.4 - Revision Table
Table 2.4: Revision Table

Author: Date: Change: Reasoning:

Matthew 11-2-22 Created Section 2 Draft Project Section 2 assignment due

Matthew 11-16-22 Added risk 8 to risk
table

Project Document Submission

Matthew 4-25-23 Created Design
Impact Statement

Design Impact Statement Submission

18

3 - Top-Level Architecture

3.1 - Block Diagram

Figure 3.1.1: Top Level Black Box Diagram

Figure 3.1.2: System Block Diagram

19

3.2 - Block Descriptions
Table 3.2: Block Descriptions

Name Description

Speaker
Champion:
Connor
Saltmarsh

The Speaker block will consist of an audio amplification circuit used to produce
the cloned voice for the user to hear. Contained within this block will be an audio
amplifier paired with a potentiometer for user volume control. The audio will then
be output from a speaker built into the system. There will only consist of one
input being the cloned voice audio, and the output will be the same audio just
amplified and volume adjusted. Thus input will be an analog signal generated by
the microcontroller and passed to the amplifier circuit to be output as an analog
signal through the speaker to the environment. This block does not specifically
interact with the final audio wave, but merely amplifies and outputs it for a user to
easily understand and loud enough to be heard in a room with moderate ambient
noise. The blocks circuit will also be integrated with other Printed Circuit Boards
(PCBs) containing the input and output peripherals for each hardware block in
the entire system.

Display
Champion:
Connor
Saltmarsh

The Display block will be an additional peripheral for the user to receive system
messages as well as view the text input they type into the system. The screen
will be primarily used to display messages and text, so the screen shall be small
enough to be handheld to fit our enclosure, but also large enough to be easily
read from 3 feet away. The screen will communicate with the internal
microcontroller to display a GUI for the user to interact with.

Text
Interface
Champion:
Micah
Janzen

The text interface block is a sub-system that will allow the user to input text using
a 10 button letter interface to type text along with 1 button to delete a letter and
another button to confirm the text string. The string of letters will send the
information to the microcontroller where it will be used to tell the cloned voice
what to say. The block will be built using a custom PCB using hardware to
debounce buttons, communicating with the microcontroller via the Serial
Peripheral interface, and having extra buttons for submitting and deleting text.
The text will be displayed on the screen so the user can view what they are
inputting using the text input interface. The 10-button letter interface allows the
user to input any letter in the English alphabet by having each button represent 3
letters, where the letters are differentiated by the timing of the button pressed. A
single press enters the first letter correlated to that button, two quick button
presses enter the second letter and the same follows for the third letter. The
debouncing of the buttons is completed using a resistor and capacitor circuit for
each button. The circuit then utilizes an inverter and shift register to store and
synchronize the data to send to the microcontroller via SPI.

Microphone
Champion:
Micah

This block would be researching and purchasing a microphone that will work with
our microcontroller. This includes researching a microphone that is relatively
inexpensive but also a quality microphone to ensure that the analog signal going

20

Janzen into the microcontroller doesn't include large amounts of noise. Also, make sure
the connection to the microcontroller is possible with the purchased microphone.

Microcontroll
er
Champion:
Grant
Everson

This block consists of the research and decision of acquiring and setting up a
micro controller capable of running our model within our system restraints, as
well as interface with needed hardware and software modules within the system.
The goal of this is to be our main computation unit for the project. The
microcontroller will be responsible for not only interfacing, but also powering all
hardware peripherals including a microphone, text interface, screen, and
speaker amplifier. The microcontroller itself will be supplied power through the
suggested power supply, supplied by the manufacturer for the specific
microcontroller. This will act as the heart of the system, and consist of multiple
coding blocks interacting with different parts of the system to deliver a proper
user experience. This block includes the microcontroller processing code as well
as the power distribution for the system.

Optimizer
Champion:
Matthew
Raffel

The Optimizer block will adapt the Deep Learning Model block to be more
computationally efficient. Such a block will first convert the deep learning model
to an Open Neural Network Exchange (onnx) format and will then quantize it. By
converting the model to an onnx format, it will be able to run on a wider variety of
devices and optimize the model's architecture by combining neural network
layers together. The voice cloning model implemented in the deep learning
model is composed of millions of parameters that allow the model to make
predictions. Each of these parameters is a number with a 32-bit representation.
By applying quantization to the model, the precision of the parameter
representation will reduce. In turn, both of these optimizations will allow the
model to become faster and more computationally efficient, with a minimal
impact on the model's voice cloning capabilities.

Deep
Learning
Champion:
Matthew
Raffel

The Deep Learning block will contain our machine learning model that clones the
user's voice and a speaker encoder. The voice cloning model we will use is
called YourTTS. The voice cloning model will be uploaded to the microcontroller,
where it will receive a python dictionary. The python dictionary will contain two
strings: a user text input and a file path to a .wav file containing a user's speech
input. The .wav file provided at the file path will have at least 5 seconds of audio
and possess minimal noise, according to 9/10 people. The sampling rate of the
.wav file will be at least 22,050 Hz. From the .wav file, a speaker embedding will
be generated using ECAPA-TDNN, which is a speaker encoder that takes a
speech waveform and generates a 128-dimensional vector representation. By
using the text input and the speaker embedding, the voice cloning model will
produce an output speech waveform as a .wav file reading the text input in the
user's voice. The produced .wav file will also have a sampling rate of 22,050 Hz,
and 9/10 people will agree that the produced voice in the .wav file is reading the
text input. For reproducibility purposes, the voice-cloning model will have an
implementation in the ESPnet toolkit.

21

I/O Control
Code
Champion:
Grant
Everson

The I/O Control Code block will consist of the code necessary for the host
computer to be able to interact with our other blocks. This host computer is
planned to be a Jetson Nano, which on top of possessing USB inputs, has a
bank of 40 GPIO pins that will allow us to interact with our other components.
The blocks to send and receive data from will include our text input interface, a
microphone, a user interface, the voice cloning model, and a speaker. This will
allow data to be able to flow freely within the overall system pipeline. With that in
mind the first few things the user is going to interact with is either the text
interface or the microphone to input a sample voice to clone. This block will
convert the 16 bit inputs of our text interface, which will consist of a 12 button
layout, to controls such as record and playback along with english text input. The
text will be shared with the user interface in order to display what the user is
typing. It will also be converting a microphone input to a usable file format for the
voice cloning model. Once this voice sample is recorded it will provide it to the
voice cloning model to start its processing. Once the user has specified their
input text and hit process this code block will pass off a file path to a text file to
the voice cloning model and allow it to compute and return a .wav file of the user
input. This code will then be able to playback the file out through to a speaker.
Overall this block consists of a few smaller functionalities that link together our
entire process.

Enclosure
Champion:
Connor
Saltmarsh

This block contains the work done for assembling the final system into one
cohesive unit. The enclosure shall reasonably protect and hide all wiring and
microcontroller. The enclosure is also intended to be compact enough to remain
a handheld system. In terms of functionality, the enclosure's main purpose is to
condense and contain all electrical systems within the final system. The
enclosure is not required to have a high level of ergonomics, other than meeting
the criteria of being handheld.

User
Interface
Control
Code
Champion:
Grant
Everson

This block will handle displaying information to the user of the system. This will
host buttons or other user interact-able objects to allow the user to record their
voice to be cloned, enter text for the cloning model to read from, and playback
the output audio from the model. By interacting with the I/O code and deep
learning model it will be able to retrieve data to display.

3.3 - Interface Definitions
Table 3.3: Interface Definitions

Name Properties

otsd_txt_ntrfc_usrin
Timing: button press signal reaches uC within 30ms
Type: Debouncing RC filter delays button push by no more than 20ms

22

between pushing the button and hex inverter output signal
Type: Mechanical Cherry MX Switches used for 12 buttons

otsd_mcrphn_usrin

Other: Microphone produces waveform that is no greater than 20 dB as
displayed from ffplay on terminal with microphone somewhat close to
mouth
Timing: Microphone can record audio consistently for at least 5
seconds
Type: Microphone can produce audio that is above -45 dB using ffplay
on .mp3 file of recording when 1 foot from microphone.

otsd_optmzr_code

Other: A .scp containing speaker ids and the path to an x-vector
associated with each speaker.
Other: A .zip file containing: a .pth file of the deep learning model
checkpoint, a .yaml file of the zip file structure, and a .yaml file of the
deep learning model configuration.
Other: A text file containing speaker ids and their associated spoken
text.

spkr_otsd_envout

Other: Distance: audible range measured at 2 feet away
Other: dB max: < 35 dBA increase from ambient dBA (40dBA)
Other: dB min: > 5 dBA increase from ambient dBA (40 dBA)

dsply_otsd_envout

Light: Produces less than 400 lux from 6 inches away with all white
screen
Other: Resolution: 800 by 480 pixels
Other: Visibility: visible by 9/10 users during indoor midday lighting

txt_ntrfc_mcrcntrllr_dsi
g

Fall Time: RC debouncing fall time no greater than 10ms
Logic-Level: Active High: 3.3V, represented as logic 1 in code
Logic-Level: Low: 0V, represented as logic 0 in code

mcrphn_mcrcntrllr_asi
g

Other: Resistance between ground and channels of microphone should
be a value around 1.2 with 20K mode on DMM
Other: Microphone connects to device via 3.5mm audio jack
Other: microphone is able to create a .wav file when using audacity
and exporting audio.

mcrcntrllr_spkr_asig

Other: Incoming uC internal volume level: 20% of maximum volume
output
Vmax: supply: GPIO Power Pin 5V
Vmax: audio signal: 0.9Vpp (peak to peak)

mcrcntrllr_dsply_dsig

Other: Touch screen feature disabled
Other: Display through HDMI connector
Other: Powered through USB connector

mcrcntrllr_i_cntrl_cd_d
ata

Messages: Audio recording read for playback: Must be able to save
audio in a .wav file format.

23

Messages: Audio recorded utilizing a microphone: Must be able to
record audio from a microphone input.
Messages: Text input from a 12-keypad: encoded with 2 shift registers
for a total of 16 bits, must be able to decode these values

mcrcntrllr_usr_ntrfc_c
ntrl_cd_data

Data Rate: Must update text display within 0.1 seconds of file changing
Messages: Must be able to read text from a .txt file
Other: Must be able to check for an input and output .wav file

optmzr_otsd_code

Other: The quantized .onnx file is at least 5% faster than the original
.onnx file.
Other: A .onnx file of the quantized deep learning model.
Other: The quantized .onnx file is at most half the size of the original
.onnx file and is under 100 MB.

dp_lrnng_mcrcntrllr_d
ata

Messages: A .wav file containing the user's cloned speech.
Other: According to 9/10 people the cloned voice in the .wav file reads
the text input.
Other: The .wav file sampling rate is at least 22,050 Hz

i_cntrl_cd_mcrcntrllr_d
ata

Messages: Text output for user display: Must output text in a format
readable by a graphical user interface.
Messages: Audio playback to speaker: Must be able to playback audio
from a .wav file.
Protocol: Data output will be saved to a corresponding file type: .wav
for audio and .txt for text

i_cntrl_cd_dp_lrnng_d
ata

Messages: A python dictionary containing two python strings: a user
text input and a file path to a .wav file of the users speech.
Other: The .wav file at the provided file path has a sampling rate of at
least 22,050 Hz.
Other: The .wav file is at least 5 seconds in duration.

usr_ntrfc_cntrl_cd_mc
rcntrllr_data

Other: User interface must display the existence of the input and output
.wav files
Other: User interface must fit within 800 x 480 pixels (size of our
display)
Other: Text interface must be legible from a minimum of 3 feet away.

3.4 - References and File Links

2.3.1 - References
None.

24

2.3.2 - File Links
None.

3.5 - Revision Table
Table 3.5: Revision Table

Author: Date: Change: Reasoning:

Connor 3-9-2023 Added block descriptions
and interface table from
portal

System Verification due

Connor 3-13-23 Updated tweaks to
microcontroller and
enclosure descriptions

Portal updated because of
section 4 details

4 - Block Validations

4.1 - Deep Learning Block

4.1.1 - Description
The Deep Learning block will contain our machine learning model that clones the user's voice
and a speaker encoder. The voice cloning model we will use is called YourTTS [1]. The voice
cloning model will be uploaded to the microcontroller, where it will receive a python dictionary.
The python dictionary will contain two strings: a user text input and a file path to a .wav file
containing a user's speech input. The .wav file provided at the file path will have at least 5
seconds of audio and possess minimal noise, according to 9/10 people. The sampling rate of
the .wav file will be at least 22,050 Hz. From the .wav file, a speaker embedding will be
generated using ECAPA-TDNN, which is a speaker encoder that takes a speech waveform and
generates a 192-dimensional vector representation [2]. By using the text input and the speaker
embedding, the voice cloning model will produce an output speech waveform stored as a .wav
file reading the text input in the user's voice. The produced .wav file will also have a sampling
rate of 22,050 Hz, and 9/10 people will agree that the produced voice in the .wav file is reading
the text input. For reproducibility purposes, the voice-cloning model will have an implementation
in the ESPnet toolkit [3].

4.1.2 - Design

The Deep Learning block is required to clone a voice. The black box diagram of the model is
shown in figure 3.

25

Figure 4.1.2.1: Black Box for Deep Learning Model.

It takes one input from the i/o control code (i_cntrl_cd_dp_lrnng_mdl_data). As previously
stated, the input will be a python dictionary containing the user text input and a file path to a
.wav file of the user's speech sample. The .wav file at the location of the file path must be at
least 5 seconds long and free of distortion to allow for the generation of an accurate cloned
voice. The output from the model is a new .wav file reading the provided text input using the
voice of the provided speech sample and is saved to the microcontroller
(dp_lrnng_mcrcntrllr_data). The process of voice cloning is centered around the deep learning
model, YourTTS [1], based on VITS [4], shown in Figure 4.1.2.4. However, a secondary deep
learning model called ECAPA-TDNN is used to generate a speaker embedding for YourTTS that
captures the voice's characteristics in the provided .wav file input [2].

The inference for the block begins by retrieving the information in the provided .wav file
containing the user's speech sample. This .wav file will undergo preprocessing to convert the
speech waveform to a tensor format. Once in a tensor format, it will be processed by the
ECAPA-TDNN to produce a 192-dimensional x-vector. Each x-vector is a speaker embedding,
which is a tensor representation that captures the features in the speaker's voice.
ECAPA-TDNN, shown in Figure 4.1.2.2, is composed of multiple neural network layers. The
path of the input speech representation consists of a Conv1d+ReLU+BN block, a SE-Res2Block
block, a Conv1D+ReLU block, an Attentive Stat Pooling+BN block, a FC+BN block, and finally,
an AAM-Softmax block. Residual connections are added between layers in the neural network
to help train the neural network. The term residual connection refers to the connections
bypassing neural network blocks.

26

Figure 4.1.2.2: ECAPA-TDNN speaker encoder architecture [2].

The composition of each SE-Res2Block block is shown in Figure 4.1.2.3. Its architecture
comprises a Conv1D+ReLU+BN block, a Res2 Dilated Conv1d+ReLU+BN block, and a
SE-Block block. A residual connection bypasses all of these blocks.

Figure 4.1.2.3: SE-Res2Block used in the ECAPA_TDNN speaker encoder architecture [2].

27

Once both the text input and the x-vector of the speaker's voice are available, they are fed into
YourTTS, shown in Figure 4.1.2.4, to generate the cloned voice reading the text input. The
input text is provided to the char embedding block, which converts the text representation into a
tensor representation. Following this conversion, the two inputs follow separate yet converging
paths in the model. The main components of the model are the transformer-based encoder, a
linear projection, the alignment generation, a flow-based decoder, a stochastic duration
predictor, a speaker embedding layer, and the HiFi-GAN generator [5]. The input to the
HiFi-GAN generator is a MEL spectrogram, which in this case, is an intermediate representation
of the cloned speech output. HiFi-GAN uses this MEL spectrogram to create the final waveform
output.

Figure 4.1.2.4: YourTTS deep learning model architecture [1].

28

4.1.3 - General Validation
As a recap, the deep learning model block needs to be capable of cloning a provided voice. It
receives a text and speech input and generates a new speech output reading the provided text
in the voice of the speech input. As such, the model must be capable of receiving these inputs
from the user and using them to generate a realistic cloned voice. In the context of our project,
we will be using the model YourTTS [1] to clone the provided voice. However, YourTTS must
use ECAPA-TDNN to convert the provided speech sample into an x-vector before it begins the
voice cloning process [2]. Since ECAPA-TDNN is state-of-the-art in generating speaker
embeddings, we are confident it will be able to provide YourTTS with the necessary information
to clone the speaker's voice. In a normal setting, we would need to train our own version of
ECAPA-TDNN; however, to save time, we will use a pre-trained model published by
huggingface. We are confident this pre-trained model will work as intended due to the published
scores attached to the model. Similarly, YourTTS is also a state-of-the-art model regarding
voice cloning in our extensive literature review; therefore, we are confident that it will generate
an accurate cloned voice that will read any provided text input.

From our project partner, we have been instructed to have an implementation of our voice
cloning model in the espnet repository [3]. Fortunately, an implementation for YourTTS is
provided in espnet already. We were able to verify the implementation was correct by testing a
pre-trained model on the LibriTTS dataset [6]. We found the voice cloning capabilities of this
model to be at a good standard.

Examining the training script for the pre-trained YourTTS model indicates that the training time
for the model is two weeks using four V100 GPUs. Fortunately, we have access to V100 GPUs
on the OSU high-performance computing cluster, and given our testing with the pre-trained
model, we are confident the time expenditure will not be wasteful. However, if we do not have
time or find the trained model unsuitable, other voice cloning models requiring less training time
are available on espnet. We are not using these at the moment as, according to their papers,
they provide worse quality voice generation than YourTTS. Furthermore, one of the benefits of
YourTTS is it is an end-to-end model which differs from the cascade architectures of the other
models. These cascade models may have slightly faster training times, but they also introduce
other issues, such as error propagation, and fine-tuning difficulty. This is due to a cascade
architecture requiring the sub-models making up the architecture to be trained in a series. As
such, if the first model is not properly trained to a sufficient level, the second model will be
trained on useless data.

In order to perform inference, we must be capable of saving the weights and architecture of our
trained model. Fortunately, espnet possesses training scripts that perform such a task. Once
saved, we must be capable of reading the model and processing new data provided to it. This
new data will be the user-provided text input and the speech waveforms. We know such
processes will work from our inference tests using a pre-trained model. A more general
inference objective of the whole system is for the generated audio to be produced in real-time.
In other words, it should take no more than one second to generate one second of audio by the
model. Such a requirement depends on the hardware and further optimizations to the model
architecture that will be carried out by the optimizer block. Some of the optimizations the
optimizer will carry out are converting the model to an onnx format and quantizing it. By
quantizing the model, it will change the weights to a lower bit representation making operations
quicker and less memory intensive. The onnx format fuses modules together to optimize them
for hardware. If the optimizer block is insufficient, we can make a further edit to YourTTS by

29

using a cut-down version of HiFi-GAN, which will cut inference times in half with a minimal
impact on its voice cloning capabilities [5].

4.1.4 - Interface Validation
Table 4.1.4.1: i_cntrl_cd_dp_lrnng_data Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Messages: A python
dictionary containing two
python strings: a user text
input and a file path to a .wav
file of the user's speech.

The DL model is programmed
in python, and to clone a
voice, it needs a source
speech sample and a text
input.

The DL model architecture is
designed to receive a text
and a speech input.

Other: The .wav file at the
provided file path has a
sampling rate of at least
22,050 Hz.

The sampling rate is at least
22,050 Hz to provide the
model with enough fine-grain
information.

The model was trained on
speech samples with a
sampling rate of 22,050 Hz.

Other: The .wav file is at least
5 seconds in duration.

Without an adequate length
audio sample, the DL model
cannot extrapolate the
features present in the voice.

The DL model was trained
using audio segments
ranging between 3 and 10
seconds.

Table 4.1.4.1: dp_lrnng_mcrcntrllr_data Interface
Interface Property Why is this interface

property this value?
Why do you know that your
design details for this block
above meet or exceed each

property?

Messages: A .wav file
containing the user's cloned
speech.

A .wav file allows for the
storage of a generated
cloned voice.

The final stage of the DL
model, HiFi-GAN [5], is
designed to generate an
audio waveform.

Other: According to 9/10
people the cloned voice in the
.wav file reads the text input.

Reading a text input in the
voice of a cloned speaker is
the objective of our project.

The DL model is designed
using YourTTS [1], which is a
state-of-the-art model for
voice cloning.

Other: The .wav file sampling
rate is at least 22,050 Hz

The sampling rate is 22,050
Hz to provide smooth audio.

The DL model was trained to
generate a speech waveform
with a sampling rate of
22,050Hz.

30

4.1.5 - Verification Process
1. Acquire an audio sample from the MUST-C dataset [7], which is a professionally created

dataset containing high-quality speech free of noise from Ted Talks.
2. Create a test script that clones a voice using the deep learning model.

a. The script will prompt the user for the file path to a .wav file containing a spoken
voice and a text input on the command line. Both of the inputs from the user will
be saved into a dictionary (mcrcntrllr_dp_lrnng_data).

b. The script will ensure the duration of the .wav file is at least 5 seconds and has a
sampling rate of at least 22,050 Hz.

c. The script will use the inputs and the deep learning model to generate an output
speech waveform in a .wav file (dp_lrnng_mdl_mcrcntrllr_data).

d. The script will check that the output .wav file has a sampling rate of at least
22,050 Hz.

3. Run the Test Script
a. The script will generate a .wav file containing the cloned voice reading the

provided text (dp_lrnng_mdl_mcrcntrllr_data).
b. The script will provide information on whether the deep learning block passed all

interface properties except for determining if the output speech reads the text
input.

4. Provide the cloned voice in the .wav file to 10 different people who will determine
whether the output speech waveform reads the text input.

4.1.6 - References and File Links

[1] Casanova, E., Weber, J., Shulby, C., Junior, A. C., Gölge, E., and Antonelli Ponti, M.,
“YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for
everyone”, arXiv e-prints, 2021.

[2] Desplanques, B., Thienpondt, J., and Demuynck, K., “ECAPA-TDNN: Emphasized
Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification”,
arXiv e-prints, 2020.

[3] Watanabe, S., “ESPnet: End-to-End Speech Processing Toolkit”, arXiv e-prints, 2018.

[4] Kim, J., Kong, J., and Son, J., “Conditional Variational Autoencoder with Adversarial
Learning for End-to-End Text-to-Speech”, arXiv e-prints, 2021.

[5] Kong, J., Kim, J., and Bae, J., “HiFi-GAN: Generative Adversarial Networks for Efficient
and High Fidelity Speech Synthesis”, arXiv e-prints, 2020.

[6] Zen, H., “LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech”, arXiv
e-prints, 2019.

[7] Cattoni, Di Gangi, M. A., Bentivogli, L., Negri, M., & Turchi, M., “MuST-C: A multilingual
corpus for end-to-end speech translation”, Computer Speech & Language, 2021.

31

4.1.7 - Revision Table
Table 4.1.7: Revision Table

Author: Date: Change: Reasoning:

Matthew 1/15/23 Created and Drafted the Block
Validation Assignment

Block Validation
Assignment due

Matthew 2/9/23 Edited introduction to include specific
requirements

Comment from Rachel

Matthew 2/10/23 Expanded the design section while
also reformatting and repositioning
figures

Comment from Rachel

Matthew 2/10/23 Added/Altered interfaces in interface
validation section.

Came up with new interface
properties.

Matthew 2/10/23 Added more steps to the verification
plan and added additional sources to
the references section

Comment from Rachel

Matthew 2/11/23 Made the general validation section
more concise and added more
explicit mentions of the specific
interface requirements.

Comment from Rachel

4.2 - Optimizer Block

4.2.1 - Description
The Optimizer block will adapt the Deep Learning Model block to be more computationally
efficient. Such a block will first convert the deep learning model to an Open Neural Network
Exchange (onnx) format and will then quantize it. By converting the model to an onnx format, it
will be able to run on a wider variety of devices and optimize the model's architecture by
combining neural network layers together. The voice cloning model implemented in the deep
learning model is composed of millions of parameters that allow the model to make predictions.
Each of these parameters is a number with a 32-bit representation. By applying quantization to
the model, the precision of the parameter representation will reduce. In turn, both of these
optimizations will allow the model to become faster and more computationally efficient, with a
minimal impact on the model's voice cloning capabilities.

4.2.2 - Design
The optimizer block will convert the deep learning model to a quantized onnx model
representation. Such a change will allow the model to become both faster and more memory
efficient. The black box for the optimizer block is shown in figure 7. The optimizer has a single

32

input interface (otsd_optmzr_code). This interface consists of a .zip file with a DL model to
convert and calibrate data for the quantization phase of the optimizer.

Figure 4.2.2.1: Black Box for Optimizer.

The diagram shown in figure 8 demonstrates the phases for converting the DL model to a
quantized onnx format. First the DL learning model contained in the .zip file is converted to an
onnx format. Following this step there is a pre-processing stage which optimizes the onnx
graph and prepares the model to be quantized. Finally in the quantization stage the optimized
onnx model is quantized using calibration data to produce the final output, a quantized onnx
model of the original DL model.

Figure 4.2.2.2: Internal subcomponents of Optimizer

4.2.3 - General Validation
Our system requires a deep learning voice cloning model to run on an embedded system with at
most 4GB of memory. The model running on this embedded system will need a real-time factor
of 1. A real-time factor refers to the amount of time required to generate one second of audio.
The optimizer block contributes towards this goal by cutting the model size in half while also
providing a 5 percent speed up without noticeably impacting the model's generated audio
quality. This is done by converting the DL model to a quantized onnx model. As an onnx model
our DL model will be more versatile and faster in a wider range of hardware architectures.

33

4.2.4 - Interface Validation
Table 4.2.4.1: otsd_optmzr_code Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Other: A .scp containing
speaker ids and the path to
an x-vector associated with
each speaker.

The DL model is calibrated
during quantization with
calibration x-vector data

The DL model was trained
with data in the format of a
.scp containing speaker ids
and the path to an x-vector
associated with each speaker

Other: A .zip file containing: a
.pth file of the deep learning
model checkpoint, a .yaml file
of the zip file structure, and a
.yaml file of the deep learning
model configuration.

After training the DL model
on espnet the training script
produces a packed .zip file
with a .pth file of the deep
learning model checkpoint, a
.yaml file of the zip file
structure, and a .yaml file of
the deep learning model
configuration [1].

The espnet training script
produces a .zip file with the
deep learning model
checkpoint, a .yaml file of the
zip file structure, and a .yaml
file of the deep learning
model configuration [1].

Other: A text file containing
speaker ids and their
associated spoken text.

The DL model is calibrated
during quantization with
calibration x-vector data

The DL model was trained
with data in the format of a
text file containing speaker
ids and their associated
spoken text.

Table 4.2.4.2: optmzr_otsd_code Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Other: The quantized .onnx
file is at least 5% faster than
the original .onnx file.

The optimization should
speed up the inference speed
of the model

An onnx model is more
optimized for hardware than a
pytorch model and 8-bit int
quantized operations are
cheaper computationally than
32-bit fp operations.

Other: A .onnx file of the
quantized deep learning
model.

The inference script requires
a .onnx model file

The optimizer creates a .onnx
file

Other: The quantized .onnx The embedded system has a A completely 8-bit quantized

34

file is at most half the size of
the original .onnx file and is
under 100 MB.

maximum of 4GB of memory
and therefore requires a
model with a low memory
footprint.

model is theoretically a
quarter of the size of a 32-bit
fp model.

4.2.5 - Verification Process
1. From the LibriTTS dataset [2],aquire a .scp containing speaker ids, the path to an

x-vector associated with each speaker and a text file containing speaker ids and
their associated spoken text (otsd_optmzr_code).

2. From the espnet training [1] process acquire a .zip file containing: a .pth file of
the deep learning model checkpoint, a .yaml file of the zip file structure, and a
.yaml file of the deep learning model configuration(otsd_optmzr_code).

3. Run the code for the optimizer block after specifying the file paths to the required
components in steps (1) and (2). The code will produce a quantized onnx model
(optmzr_otsd_code).

4. Compare the sizes of the quantized .onnx DL model and the original DL model to
determine if the quantization reduced the model size by half.

5. Create a test script that uses the quantized onnx model and original model to
clone a provided voice.

a. The script will prompt the user for the file path to a .wav file containing a
spoken voice and a text input on the command line.

b. The script will use the inputs and the deep learning model to generate an
output speech waveform in a .wav file.

c. The script will output the real-time factor from both the quantized .onnx
model and the original model.

6. Run the Test Script
a. Determine if the real-time factor is 5 percent lower for the quantized .onnx

model than the original model.

4.2.6 - References and File Links

[1] Watanabe, S., “ESPnet: End-to-End Speech Processing Toolkit”, arXiv e-prints,
2018.

[2] Zen, H., “LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech”, arXiv
e-prints, 2019.

4.2.7 - Revision Table
Table 4.2.7: Revision Table

Author: Date: Change: Reasoning:

35

Matthew 3/12/23 Created and Drafted the Block
Validation for the Optimizer block

Project Document
Assignment due

4.3 - Speaker Block

4.3.1 - Description
The Speaker block will consist of an audio amplification circuit used to produce the cloned voice
for the user to hear. Contained within this block will be an audio amplifier paired with a
potentiometer for user volume control. The audio will then be output from a speaker built into the
system. There will only consist of one input being the cloned voice audio, and the output will be
the same audio just amplified and volume adjusted. Thus input will be an analog signal
generated by the microcontroller and passed to the amplifier circuit to be output as an analog
signal through the speaker to the environment. This block does not specifically interact with the
final audio wave, but merely amplifies and outputs it for a user to easily understand and loud
enough to be heard in a room with moderate ambient noise. The blocks circuit will also be
integrated with other Printed Circuit Boards (PCBs) containing the input and output peripherals
for each hardware block in the entire system.

4.3.2 - Design
For the design of this speaker block, the main focus is to be able to properly amplify the audio
signal being produced by the microcontroller. The heart of this system is built around the LM386
audio op amp chip. This chip can be customized to different gain levels of our audio signal,
which is what will be done in order to produce an audible signal the user can hear. The block will
also feature a potentiometer for user controlled volume. Since we are amplifying an audio signal
of only a voice, we do not need large amplification or focus on high quality acoustics and bass.
Therefore, the circuit will be designed using the standard internal gain of the LM386 chip,
coupled with a simple DC blocking capacitor to minimize noise through the speaker. The circuit
will also be designed with a potentiometer to provide further volume control over the standard
internal amplification for the user depending on their hearing needs and surrounding audio
levels.

Figure 9 below is the block box, containing only two interfaces. The LM386 chip will receive an
audio signal from the microcontroller as input, and output an amplified version of the same
signal to the environment through a speaker.

36

Figure 4.3.2.1: Black Box Diagram for Speaker Block

Because the input of this block is a digitized audio signal coming from a microcontroller, a DAC
converter (coupled to a USB adapter) will be used to convert the microcontroller digital signal
into an analog signal to play through the speaker. Along with a DAC converter, an audio jack will
be used to complete this interface to effectively pass the input into the speaker’s amplifier. The
reason for this design was to ensure that the audio signal would be clear, as a noisy signal
being amplified would also amplify noise and have an undesirable output. This design choice
also allows our input interface to be USB, which is much more compatible with many types of
microcontroller blocks.

Figure 10 represents the hardware schematic of the entire circuit for the Speaker Block. At the
input of the LM386 op amp, there is a 10k resistance potentiometer. This potentiometer adjusts
the resistance of the input, in turn reducing the voltage drop coming from the audio input, which
translates to how much the signal is amplified (volume). The output of the LM386 chip has a
simple filter to block unwanted noise and DC signal to the speaker. Since the LM386 op amp
only needs minimal amplification, the circuit is currently designed for an internal gain of 20.
Using pins 1 and 8 can allow for an increasing gain factor if needed, however this application
can be satisfied with the LM386 internal gain alone. This gain translates to approximately 26dB,
which paired with the input potentiometer shall amplify the signal to a desired maximum noise
level (and minimum noise level).

37

Figure 4.3.2.2: Hardware Schematic

Figure 4.3.2.3 depicts the PCB footprint for the given hardware schematic. The footprints
selected were all standard sizing for the capacitors, resistor, and connectors, erroring on the
side of larger footprints to ensure there is room to place each component on the PCB. Another
design selection was creating a two sided PCB. As seen below, the potentiometer is mirrored
and highlighted a different color. This is representing that it is being reflected on the other side of
the board. The purpose for this design is that the user peripherals can be facing upward, and
the rest of the circuit and components can be hidden from the user. This avoids obstructing the
users ability to access the potentiometer, as well as protect the components. Using male pin
connectors for the interfaces was another design choice as this system is interfacing with a
microcontroller, it is the easiest method of connection for the given design. The Vcc and GND
pins will be used to power the LM386 chip at a nominal voltage of 5 volts.

Figure 4.3.2.3: PCB Footprint

4.3.3 - General Validation
The objective of this individual block is simple, thus the design implemented to achieve such a
task achieves this objective effectively. The input of this block receives a fully constructed audio
signal already, and only needs amplification through a device capable of producing the cloned

38

voice audibly. For a simple task the design remained simple, only adding complexity where
desired to improve the user experience.

One major driving factor for this block was availability of parts and engineering time. All
components for this block were already in possession or easily accessible. Having access to
every component early on takes away the extra steps of seeking out parts online, ordering
parts, and waiting for parts. It also reduces the cost of the block to $0. Furthermore, the
engineering time is also significantly reduced. This quick access allows for immediate assembly,
testing and verification of the system. Since this system can be tested independently and the
parts are accessible, there can be confidence when ordering a PCB with a longer lead time
without fear of losing that time because of a missing verification process.

Another important driving factor of the schematic design itself is the reputation of the circuit and
components themselves. The LM386 audio op amplifier chip is a very reputable op amp, with an
extensive datasheet providing useful resources and specifications to create a simple, robust,
and efficient circuit for the needs of this speaker block. The circuit was designed with guidance
from the LM386 datasheet, including consideration of the specifications and ratings of various
components. This provides further support for the design choices made for this block.

Even though this block is focused on the design and validation of predominantly amplifying the
desired audio signal, the audio input interface into this block is a critical interface to design
effectively. Various microcontrollers have Analog Digital Converter (ADC) and Digital Analog
Converter (DAC) support, however not all do. In order for this interface to be properly validated,
one of the design choices was to turn this audio input interface into a USB interface, so it can be
compatible with almost any input device. This design choice helps ensure the system will
effectively produce a clean audio output, mimicking the deep learning code’s reproduced cloned
voice.

Another piece of validation in our design is having a quick alternate solution towards fixing
volume and amplification issues. If the designed circuit gain is too low or too high, there are
solutions that extend off the existing design to boost/reduce our gain if need be. This alternate
solution gives the design room for improvement and fine tuning to truly meet our expected
decibel range requirement. Along with this, this alternate solution takes advantage of the pre
existing circuit, saving valuable time and resources by avoiding a complete redesign of the
system.

When looking at the validation for the PCB, one important driving factor was again the LM386
datasheet for common footprint layouts. For best performance, keeping the analog traces away
from any digital traces mitigates any possible distortion or noise altering our analog signal.
Another important consideration was to keep the output trace to our speaker small (again to
reduce as much noise as possible from our analog signal). Since the goal of this block is to
amplify the audio signal being received, it is important to mitigate any interference and noise as
it could be amplified and distort the final cloned voice output signal.

39

4.3.4 - Interface Validation
Table 4.3.4.1: mcrcntrllr_spkr_asig Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Vmax (Supply):
- GPIO power pin 5V

This is the designed supply
voltage for the system

For the LM386N-1
recommended operating
cond:

- MAX V is 12V.
- MIN V is 4 V.

Vmax (audio signal):
- 0.9V peak to peak

This is the expected
maximum voltage for an
audio signal line level [2].

LM386 is designed for low
voltage amplification, and the
maximum voltage remains as
a low voltage.

Other: uC internal volume
level:

- 10% of maximum
volume output

Properly control volume
amplification and
potentiometer control

Speaker block will only read
the audio jack as input.

Table 4.3.4.2: spkr_otsd_envout Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

dB_min: <30 dBA @ 3 feet
away

At lowest volume there
should be quite noise
produced, no quieter than
20dB

For the LM386N-1:
- Internal Gain = 20

(approx. 26 dB)

dB_max: >70 dB @ 3 feet
away

At max volume its output
should be capped at a certain
level (60dB is regular
conversation at 3 feet away)

For the LM386N-1:
- Max Gain = 200

(approx. 46 dB)

Audible: 9/10 users can make
out the audio output at min
and max volume in a room
with moderate ambient noise

Provide a sufficient audio
signal for users to easily get
from the environment.

For the LM386N-1:
- Using an internal gain of 20
will be a minimum of 26dB
(typical for quiet

40

conversation).

4.3.5 - Verification Process
1. Assemble the given circuit in Figure 2 on a breadboard/protoboard
2. Connect the audio_in input (mcrcntrllr_spkr_asig: audio signal) audio jack to an audio

player of your choice
a. This can include a computer, a script that outputs an audio signal, etc.
b. Set the audio players internal volume to 10% its max volume

(mcrcntrllr_spkr_asig)
3. Connect the power supply (mcrcntrllr_spkr_asig: supply) to the circuit starting with 5V

a. Connect a 5V power pin and GND from a uC to supply power to the circuit
4. Play the audio signal from the audio player chosen in step 2
5. Using an oscilloscope, measure the voltage across the audio input

a. Observe the waves peak to peak voltage as audio plays and record its maximum
peak to peak (mcrcntrllr_spkr_asig: audio signal)

6. From 3 feet away measure the decibel level the speaker outputs while audio is playing
(spkr_otsd_envout)

a. (Spectrum Analyzer app on a phone works well for measuring decibels)
b. Measure the decibel level with the potentiometer at minimum volume

i. Minimum here is the lowest potentiometer value that produces the audio
wave, setting it to lowest setting blocks the audio signal

c. Measure the decibel level with the potentiometer at maximum volume
i. Maximum here is the highest the potentiometer can be turned

7. Observe the decibel level from each recording to ensure the minimum and maximum
levels are as desired

8. Repeat step 6 for 10 users and observe how many users can hear the audio at each
volume level

9. Disconnect the power supply, audio input signal, and any other peripherals used.

4.3.6 - References and File Links

[1] Texas Instruments, “LM386 low voltage audio power amplifier datasheet (rev. C).”
[Online]. Available: https://www.ti.com/lit/ds/symlink/lm386.pdf?ts=1612350151545.

[2] “Line level,”Wikipedia, 25-Dec-2022. [Online]. Available:
https://en.wikipedia.org/wiki/Line_level.

https://www.ti.com/lit/ds/symlink/lm386.pdf?ts=1612350151545
https://en.wikipedia.org/wiki/Line_level

41

4.3.7 - Revision Table
Table 4.3.7: Revision Table

Author: Date: Change: Reasoning:

Connor 1/16/23 Created Block Validation Draft Block Validation
Assignment due

Connor 1/17/23 Updated Design Section and
Validation Sections

Assignment due

Connor 1/18/23 Finalized document
Word count: 1519

Assignment due

Connor 2/09/23 Updated Verification Plan.
Added further details.
Word count: 1798

Assignment due

Connor 2/10/23 Updated Gen. Val. section to
include input interface info
Word Count: 2141

Assignment due

Connor 2/16/23 Update Interfaces and
Verification process

Final block demo
preparation

4.4 - Display Block

4.4.1 - Description
The Display block will be an additional peripheral for the user to receive system messages as
well as view the text input they type into the system. The screen will be primarily used to display
messages and text, so the screen shall be small enough to be handheld to fit our enclosure, but
also large enough to be easily read from 3 feet away. The screen will communicate with the
internal microcontroller to display a GUI for the user to interact with.

4.4.2 - Design
Due to the complexity of designing a viable screen disable from scratch, this block was
implemented into our system using a pre-purchased module. This design choice allows for a
reliable screen to display the interactive GUI the user will interact with. Even though the module
itself was purchased, there are still design constraints related to integrating the screen into our
given system as the display module. A few of these design constraints consist of the size of
screen, compatibility with the systems given microcontroller, and the user experience visibility.

42

Figure 4.4.2 below shows the black box diagram of the display block. The screen will interface
to the systems microcontroller and will output the desired GUI display to the environment for the
user.

Figure 4.4.2: Black Box Diagram of Display Module

As mentioned above, the design constraints for this system are related to the integration of the
screen to the rest of the system. For the input to the display, it will require HDMI communication
coming from the microcontroller to interpret and display the desired interface. This input also
contains the responsibility of powering the display module from the microcontroller as well. This
will be done through USB, since it is the most versatile connection regardless of microcontroller
choice.

The output of this module focuses on the user experience and is designed within the constraints
of the entire system to give the user the best possible experience. The most important property
for a screen's output is user visibility. To ensure quality visibility on a smaller system, the
resolution for the screen will be set to an optimal 800 by 480 pixel display. This resolution fits the
physical dimensions of the screen the best. Since the system is meant to be handheld, the
screen will be relatively small, but with this desirable resolution the size of the screen shall not
hinder the ability to view, read, and interact with the screen. Another factor to consider with
visibility on a small screen is brightness. It is important the brightness is properly set for the user
to have an easy experience in lighter or darker rooms without extra assistance or interaction. To
achieve this, the brightness is set to an optimal lux level of no more than 400 lux given the size
and distance a user would be interacting with the module.

4.4.3 - General Validation
Due to the display being a purchased module, the design constraints were fairly restrictive and
thus resulted in the design choices to be made closely in relation to the interfacing block. The

43

design choices made above fit the needs of the system overall and satisfy all the requirements
needed for interacting with a microcontroller.

Because the type of microcontroller may differ, this block was designed to be easily adaptable to
any microcontroller. The screen module purchased communicates over HDMI, and has various
adapters in the event the interfacing microcontroller does not have a direct HDMI connection.
The screen also is powered via USB, which allows for versatile adaptation if needed, and uses
one of the more common interface connectors.

For this display block, the role of the module is straightforward and was thus designed to meet
these needs of the system. The design choices made for this block keep the system within a
handheld size, and provide the user an easy to interact interface. The pre-purchased module
even has designed mounting holes to connect to the Raspberry Pi 4 microcontroller (which is
the top choice for microcontroller in the system). This ensures the interfaces between the
microcontroller and screen are limited in size, and maximize the user experience.

4.4.4 - Interface Validation
Table 4.4.4.1: mcrcntrllr_dsply_dsig Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Other:
- Display through HDMI

connector

Required interface for screen
display

Purchased module contain an
HDMI to mini HDMI adapter
connecting uC to screen

Other:
- Powered through USB

connector

Required interface for screen
display

Purchased module contains a
USB to micro USB adapter
connecting uC to screen
power

Other:
- Touch screen feature

enabled

Include extra user interactive
buttons through GUI

Purchased module enabled
touch screen through power
interface

Table 4.4.4.2: dsply_otsd_envout Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

44

Light:
- Produces less than

400 lux from 6 inches
away with all white
screen

Provide optimal lighting for
visibility and strain

Screen module can preset a
controlled brightness to
illuminate screen

Other:
- Resolution: 480 by

800 pixels

Optimal resolution given
physical size of screen

Per datasheet, hardware
resolution is set to 480 by
800 pixels

Other: Visibility
- Visible by 9/10 users

during indoor midday
lighting

Further verify the size and
visibility of the screen is
optimal for interacting users

Based on judgment and
datasheet recommendations
for optimal display.

4.4.5 - Verification Process
1. Connect Screen module to Raspberry Pi 4 via HDMI to mini HDMI
2. Connect Screen module to Raspberry Pi 4 for power via micro USB to USB

a. Connect power to the ‘Touch’ female port on screen module
3. Power on Raspberry Pi 4
4. Raspian OS desktop should appear on screen
5. Verify resolution by going to settings -> display preferences -> resolution

a. Resolution should be set to 800 by 480 pixels
6. Using a lux meter (various phone apps will work) measure the lux output from the screen

from 6 inches away
a. This will verify the optimal brightness of the screen

7. Finally, provide a small script of text on the screen for users to read back.
a. 9/10 users shall be able to clearly read the text on the screen from an appropriate

distance when holding the module in their hands

4.4.6 - References and File Links

[1] “Waveshare 4.3inch HDMI LCD (b),” 4.3inch HDMI LCD (B) - Waveshare Wiki. [Online].
Available: https://www.waveshare.com/wiki/4.3inch_HDMI_LCD_(B)

[2] L. Han, H. Zhang, Z. Xiang, J. Shang, S. Anjani, Y. Song, and P. Vink, “Desktop lighting
for comfortable use of a computer screen,”Work (Reading, Mass.), 2021. [Online].
Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902945/#:~:text=According%20to%20E
N%2012464%20%5B10,75%20lux%20and%20150%20lux.

https://www.waveshare.com/wiki/4.3inch_HDMI_LCD_(B)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902945/#:~:text=According%20to%20EN%2012464%20%5B10,75%20lux%20and%20150%20lux
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902945/#:~:text=According%20to%20EN%2012464%20%5B10,75%20lux%20and%20150%20lux

45

4.4.7 - Revision Table
Table 4.4.7: Revision Table

Author: Date: Change: Reasoning:

Connor 3/12/23 Created and Drafted the Block
Validation for the Display block

Project Document
Assignment due

4.5 - Text Interface Block

4.5.1 - Description
The text interface block is a sub-system that will allow the user to input text using a 10 button
letter interface to type text along with 1 button to delete a letter and another button to confirm
the text string. The string of letters will send the information to the microcontroller where it will be
used to tell the cloned voice what to say. The block will be built using a custom PCB using
hardware to debounce buttons, communicating with the microcontroller via the Serial Peripheral
interface, and having extra buttons for submitting and deleting text. The text will be displayed on
the screen so the user can view what they are inputting using the text input interface.

The 10-button letter interface allows the user to input any letter in the English alphabet by
having each button represent 3 letters, where the letters are differentiated by the timing of the
button pressed. A single press enters the first letter correlated to that button, two quick button
presses enter the second letter and the same follows for the third letter. The debouncing of the
buttons is completed using a resistor and capacitor circuit for each button. The circuit then
utilizes an inverter and shift register to store and synchronize the data to send to the
microcontroller via SPI.

4.5.2 -Design
The design for the text input interface focuses on the usability of this interface with users. This
means that the interface should be as quick as possible in transferring data from the buttons to
the microcontroller. This is especially important with pressing the button several times in quick
succession, where each press changes the letter. The goal of the design is to have it where as
long as the button is pressed 1-3 times within a short period of time around .4-1 second, the
user can change the letter input. Beyond that range of time, the button press(es) acts as a
character input and moves to the next character. Within the circuit design, hardware debouncing
is implemented to reduce processing time for button mechanical button bouncing. It is using a
simple circuit that uses a voltage divider with a capacitor to smooth out the bouncing voltage
signal from the mechanics of a push button. This means very quick inputs can be registered to
improve the usability of the text input, along with timing for the 10-button keyboard also allowing
for a smaller and more compact interface.

46

Figure 4.5.2.1 shows the block box diagram along with the interfaces for the text interface. The
block diagram encompasses the hardware of all the buttons along with the resistor and
capacitor debouncing filter, inverter, and shift register to communicate the data over SPI. The
left interface of the block simply represents user input, where a user would press the buttons
and specifies the rough timings for button presses to be registered within the microcontroller.
The right “txt_ntfc_mcrcntrllr_dsig” interface describes the digital signal and communication
between the shift register and the microcontroller. For this communication, voltage is defined as
being 3.3 volts as the supply voltage as well as the operating voltage representing a high value
across the circuit.

Figure 4.5.2.1: Block box Image with interfaces

Figure 4.5.2.2, shown below, displays the schematic, with the supply voltage passing through
the resistor-capacitor debouncing network to then be inverted and transferred via SPI using a
shift register. The 4HC04 is used as the inverter to have an active high with five volts when the
button is pressed, and then low, or zero volts, when the button is depressed. This information is
then loaded into the shift register using the 74HC165 and communicated to the microcontroller
with SPI protocol.

47

Figure 4.5.2.2: Schematic design of text interface

The footprint for the buttons will be using already established footprint files for the Cherry MX
low-profile switches. This ensures the connection fits between the pushbuttons and the
switches. The Cherry MX mechanical switches were chosen to provide a satisfying typing
experience while also allowing it to be placed on a custom PCB with either the pins soldered
directly to the board or using wires.

4.5.3 - General Validation
To accomplish a user interface for entering text within a small form factor, and fast and effective
usability, the 10-button letter keyboard is utilized to allow for user text input to the
microcontroller. A layout of three buttons per row and four rows, allowing for 10 buttons to
correspond to 3 letters covering the English alphabet and 2 buttons to confirm text and delete a
letter. The first button can be pressed one time for the letter ‘A’, two times in quick succession
for the letter ‘B’, and three times in quick succession for the letter ‘C’. This is the process for
each of the buttons. The design of the circuit and software controlling the communication should
be fast so that there is a distinction in times for pressing a button twice to move to the next letter
and wanting two of the same letter. The specific timing and ranges for switching letters and
typing the next letter will be determined in the software, with the design of the hardware being
as fast as possible and eliminating unnecessary delays such as debouncing in software. For
debouncing in hardware, the values of the resistor and capacitor can be determined by

48

capacitor discharging and charging equations[1]. With testing, the timing can be determined with
an oscilloscope, and adjust the values if need be. Once the values for the pushbutton hardware
debouncing have been determined, the inverter and shift registers must be tested in series with
the debouncing, along with a microcontroller to ensure the correct data is being communicated
from the shift register. The inverter being used is the SNx4HX04[2] simply due to the availability
of the IC, and it is a hex inverter so two chips cover all inputs. The shift register being used is a
74HC165[3], more specifically it is an 8-bit parallel in, serial out shift register. This register is
something the group has worked with and allows for extremely quick asynchronous input
capture, and output over SPI allows for simple but fast communication. The buttons themselves
have not been determined as well as the PCB hasn’t been completed as of yet, but this section
would describe what they are, the reason, and so on. With designing the PCB, one design
consideration and concern is the size of the packages for the ICs. For ease of assembly and
replacement of parts, the team has decided to use through-hole components. This will take up a
significant amount of space compared to surface mount components, however, the availability of
parts and using what the team already has is the reason for using through-hole components.
One concern is with the availability of the shift register, as this component is something that
each team member has from a previous class, however, if these ICs are broken or lost, the
availability online is sparse. An alternate solution for the 10-button interface if the timing is too
difficult, would be to have the user type one character at a time, then press enter button when
the user has gotten to the desired character. This would be simpler but less enjoyable to use
and frustrating if a longer amount of text is desired from the user.

4.5.4 - Interface Validation
Table 4.5.4.1: otsd_txt_ntrfc_usrin Interface

Interface property:
otsd_txt_ntrfc_usrin

Why is this interface property
this value?

Why do you know that your
design details for this block
above meet or exceed each
property?

A Button press should reach
the microcontroller within
30ms

Mechanical Switches will
often rattle between open and
short circuits over small
periods of time. 30ms allows
for some rattling and the use
of RC debouncing hardware
to be accommodated and
achievable. The propagation
and transition times of both of
the chips are within 1uS so
adding 10ms to the total time
allows ample space for
timing.

Using hardware debouncing
delays from the mechanical
switch can range, but
conservatively is 20ms.
The Hex inverter has a
propagation delay of 95ns at
2V and a transition time of
75ns, both according to
Section 6.7: Switching
Characteristics[3]. The
74HC165 shift register
datasheet provides that the
transition time is 75ns
maximum at 2 volts Vcc, with
propagation delay times
being no more than 200ns for
shifting data from registers to

49

output, found in section 11
table 7: Dynamic
Characteristics.

Debouncing RC filter delays
button push by no more than
20ms between pressing the
button and the hex inverter
receiving the signal

A maximum debouncing time
is needed to complete
calculations for determining
values of the RC filter, so
assuming a conservative
push button debouncing time
enables achievable values
without impeding the signal
propagation time.

From reference [1] the
equations used for
debouncing hardware with
the resistor and capacitor
circuitry begins with the
assumption of debouncing
time for the mechanical
switch used, the rest of the
values follow based on the
timing assumption to resolve
the assumed value.

The Cherry MX Mechanical
Switches are used for 12
buttons

This property value is
necessary as it defines what
needs to be measured for
typical debouncing time, and
the switches especially were
chosen to provide a cleaner
user interface and
satisfactory interaction with
the pushbuttons.

The amount of time for the
signal for the rattling of the
mechanical switch was
measured using an
oscilloscope as well as the
purchase of the switches has
already been made and
received.

Table 4.5.4.2: txt_ntrfc_mcrcntrllr_dsig Interface

Interface property:
txt_ntrfc_mcrcntrllr_dsig

Why is this interface property
this value?

Why do you know that your
design details for this block
above meet or exceed each
property?

RC debouncing fall time is no
greater than 15ms

The RC circuitry fall time is
an assumed value that is
then used to calculate the
rest of the values for both the
resistor and the capacitor.
The time is estimated to be
around the worst-case
scenario for a mechanical
switch rattling from high to
low after being pressed.

Based on the calculations
from the equation found in
the design details, which was
originally sourced from The
Ganssle Group-debouncing
pt2[1]. This calculation and
theory have been confirmed
with an oscilloscope.

Active high: 3.3V,
represented as logic 1 in
code

The microcontroller used for
the project provides 3.3 volts
from its GPIO pins. This is
the voltage then used to
power the circuit, and what is
required to send over SPI

The voltage of 3.3 volts is
supported by each chip used:

● SNx4HC04 inverter
has a maximum rating
for input and output
voltage as Vcc which

50

from the shift register so the
microcontroller can read the
data. The high is assigned to
3.3 volts for ease of
understanding of other
teammates.

is 7 volts, section 6.1:
Absolute Maximum
Ratings[2]

● 74HC165 has a
maximum input and
output voltage of 7
volts as well found in
section 8 table 4:
Limiting Values[3].

3.3 volts has also been
measured with a multimeter
as input and output of each
junction between chips and
mechanical switch

Low: 0V, represented as logic
0 in code

With high being defined as
3.3 volts, low is defined as
the complement of that being
0 volts. Logic 0 is then
defined as 0 volts as the
complement of the already
defined high value of 3.3 volts
being logic 1 in software.

The voltage of 0 volts is
supported by each chip used:

● SNx4HC04 inverter
has a minimum rating
for input and output
voltage of 0 volts,
section 6.3:
Recommended
Operating
Conditions[2]

● 74HC165 has a
minimum input and
output voltage of 0
volts found in section
9 table
5:Recommended
operating
conditions[3].

3.3 volts have also been
measured with a multimeter
as input and output of each
junction between chips and
mechanical switch

4.5.5 - Verification Plan
a. Create a circuit on a breadboard to test the functionality of the RC filter and test

for the timing to determine resistor and capacitor values.
b. Measure voltages at each stage of the circuit to ensure correct voltages.
c. Measure data communication and timings on the Oscilloscope at the output of

shift register
d. Connect schematic to Atmega128 microcontroller to test SPI communication

51

e. Verify correct data is being received from the circuit by printing the binary value
or equivalent form(such as decimal, hex, etc.) of buttons pressed to the LCD
screen on Atmel atmega128.

4.5.6 - References and File Link

[1]“8-bit parallel-in/serial out shift register - nexperia,” 8-bit parallel-in/serial out shift
register, Sep1-2021. [Online]. Available:
https://assets.nexperia.com/documents/data-sheet/74HC_HCT165.pdf. [Accessed:
12-Feb-2023].

[2]The Ganssle Group, “A guide to debouncing - part 2, or, how to debounce a contact in
two easy pages, by Jack Ganssle,” Debouncing, hardware and software, part 2. [Online].
Available: http://www.ganssle.com/debouncing-pt2.htm. [Accessed: 11-Feb-2023].

[3]“SN74HC04-Q1 automotive hex inverters - texas instruments,” SNx4HC04 Hex
Inverters datasheet (Rev. H), Dec-1982. [Online]. Available:
https://www.ti.com/lit/ds/symlink/sn74hc04-q1.pdf. [Accessed: 12-Feb-2023].

4.5.7 - Revision Table
Table 4.5.7: Revision Table

Author: Date: Change: Reasoning:

Micah Janzen 1/19/23 Created document
and outline.
Started block
description

Block validation
assignment
completion

Micah Janzen 1/20/23 Completed each
section of the outline.

Assignment is due

Micah Janzen 1/27/23 Updated schematic
image

Feedback from
student review

Micah Janzen 2/4/23 Updated Design
Description

Slight changes to the
design of block

Micah Janzen 2/11/23 Updated Design
Description, interface
Validation, general
validation and
reference files and
links section

Matched interface
validation to the
website and then
design description to
interface.
Updated information
for the general
validation.
Changed references
to IEEE format

52

4.6 - Microphone Block

4.6.1 - Description
The microphone block is a simple peripheral needed for recording the user’s voice. The block is
a purchased module, with the important factors of the microphone being that it is small and
somewhat good quality. The microphone purchased was the ESTIQ Professional Lavalier Lapel
Microphone, which provided a cheap, small and decent quality option for the microphone. The
microphone connects via a 3.5mm audio jack and allows for a plug and play interface. The
microphone is omnidirectional, allowing for the user to speak from any orientation about the
system, however it only picks up the user’s voice when relatively close, around 1-3 feet from the
microphone. This is a benefit as it can reduce and eliminate noise from the room, such as when
the device is being showcased with a large amount of noise in the room.

4.6.2 - Design
While designing a microphone with an amplifier circuit is very possible, to ensure the smallest
possible form factor for our project, we went with a pre-purchased module since we had enough
blocks that were built. For the design of the microphone, the size had to be small, so that it
could be placed inside an enclosure that was smaller than a typical laptop. The only other
design requirements were that the quality of the microphone or the audio from the microphone
be average quality. The ESTIQ microphone purchased fits those needs as it provides great
quality when in an isolated environment, and decent quality with background noise, and the size
of the lavalier microphone is very small.

Figure 4.6.2: Black Box Diagram of Microphone Module
The input of the microphone comes from the outside sound waves, ideally the microphone will
only pick up on close waveforms and the user’s voice, but realistically there will be noise from
other people in the room or just random background noise. The design for the input doesn’t
require a perfect input signal as the models for voice cloning are able to deal with noise and
isolate the human voice for the most part. This allows for less strict design requirements for the
microphone and not needing an expensive microphone. The output of the microphone could’ve
been either USB or an audio jack. For the output speaker module, the team had purchased an
audio adaptor that had an input and output audio jack port, so the decision was made to stick

53

with a simple 3.5mm audio jack for the output interface of the block. This reduced size and
utilized space are already allocated for the speaker output adaptor port.

4.6.3 - General Validation
The microphone purchased fits all the needs of the system and block while being cheap. The
audio input is able to be captured from a close distance, cutting out most background noise.
Testing the microphone showed that the audio when close to the user’s mouth, or under 1 foot
from the user's, was able to produce around -10 to 5 dB picked up. This when played back on
the computer used for testing was able to be clearly heard and understood. The size of the
microphone is very small providing ample possibilities for placing the microphone within the
enclosure no matter what design we choose for the enclosure. These two restraints were the
largest factors to consider and the microphone is able to pass those requirements while only
being around $15 on Amazon, which provides the ability for more to be purchased with a quick
turnaround time if need be.
The interface between the microphone and the system reading the audio is extremely quick and
easy to set up. The connection from the microphone is a common 3.5mm audio jack, though
there is an extension that changes the audio jack from a 4-band audio jack to a 3-band that is
needed to work with certain systems which may be a problem for plugging in with the enclosure.
A similar but slightly different microphone may be needed to purchase to ensure that the audio
jack doesn’t stick out too much from the embedded system’s audio jack port to make sure the
connection to the system isn’t too large for the ideal enclosure we have planned.

4.6.4 - Interface Validation
Table 4.6.4.1: otsd_mcrphn_usrin Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Other:
- The microphone

produces a waveform
that is no greater than
20 dB as displayed
from ffplay on the
terminal with
microphone,
somewhat close to
mouth

Ensure that the audio from
the microphone is too loud
when close to the
microphone and potentially
peaking when replayed.

Tested using Audacity,
recording audio with the
microphone right next to the
mouth when talking and then
using ffplay within Linux to
read the dB levels from the
audio recording. Over several
trials audio never went over
20dB

Timing:
- Microphone can

record audio

Required to make sure audio
was consistent when
recording to ensure voice

Testing over several trials
provided consistent results
for recording for periods of

54

consistently for at
least 5 seconds

cloning model gets provided
quality recording

time greater than 5 seconds.

Type:
- Microphone can

produce audio that is
above -45 dB using
ffplay on .mp3 file of
recording when 1 foot
from microphone.

-45 dB is too quiet of an
audio level to hear to
measure for being over this
value ensures hearable audio
from the microphone.

Tested using Audacity,
recording audio with the
microphone right next to the
mouth when talking and then
using ffplay within Linux to
read the dB levels from the
audio recording. Over several
trials, audio never went under
-45dB when speaking into a
microphone from 1 foot away.

Table 4.6.4.2: mcrphn_mcrcntrllr_asig Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Other:
- Resistance between

the ground and
channels of the
microphone should be
a value around 1.2
with 20K mode on
DMM

Because it was measured
with a DMM

It does because it was
measured to be that value

Other:
- The microphone

connects to the device
via 3.5mm audio jack

Specified in the description of
the microphone from both the
parent company who
produces the microphone as
well as Amazon

This audio jack is able to be
plugged into any computer or
device that has a standard
audio jack that is 3.5mm

Other:
- the microphone is

able to create a .wav
file when using
audacity and
exporting audio.

The microphone is specified
on Amazon to be
plug-and-play with most
devices, meaning that audio
should be recordable once
plugged in.

Was able to record audio and
play back audio using
Audacity on my home
computer.

55

4.6.5 - Verification Process
1. Connect a microphone to the computer via an audio jack, and record audio from the

microphone using Audacity, make sure to record for longer than 5 seconds
2. Export audio to .mp3 file format and run ‘ffplay -f lavfi "amovie=name.mp3, asplit

[a][out1]; [a] showvolume=f=.95:b=4:w=720:h=68:c=VOLUME [out0]"’ to produce window
displaying volume

a. Add r=.95 for slowing down if needed
3. Ensure values are within range
4. Measure resistance by connecting to the first and 3rd band of the audio jack with DMM

4.6.6 - References and File Links

A. R. T. H. U. R. D. E. K. K. E. R. SAVAGE, “DP,” Amazon, 2016. [Online]. Available:
https://www.amazon.com/dp/B08C7CZQ6J?psc=1&ref=ppx_yo2ov_dt_b_product_details.
[Accessed: 13-Mar-2023].

4.6.7 - Revision Table
Table 4.6.7: Revision Table

Author: Date: Change: Reasoning:

Micah 3/12/23 Created and Drafted the Block
Validation for the Display block

Project Document
Assignment due

4.7 - I/O Control Code Block

4.7.1 - Description
The I/O Control Code block will consist of the code necessary for the host computer to be able
to interact with our other blocks. This host computer is planned to be a Jetson Nano, which on
top of possessing USB inputs, has a bank of 40 GPIO pins that will allow us to interact with our
other components. The blocks to send and receive data from will include our text input interface,
a microphone, a user interface, the voice cloning model, and a speaker. This will allow data to
be able to flow freely within the overall system pipeline. With that in mind the first few things the
user is going to interact with is either the text interface or the microphone to input a sample
voice to clone. This block will convert the 16 bit inputs of our text interface, which will consist of
a 12 button layout, to controls such as record and playback along with english text input. The
text will be shared with the user interface in order to display what the user is typing. It will also
be converting a microphone input to a usable file format for the voice cloning model. Once this
voice sample is recorded it will provide it to the voice cloning model to start its processing. Once
the user has specified their input text and hit process this code block will pass off a file path to a
text file to the voice cloning model and allow it to compute and return a .wav file of the user

56

input. This code will then be able to playback the file out through to a speaker. Overall this block
consists of a few smaller functionalities that link together our entire process.

4.7.2 - Design
As stated at the end of the description section this block will consist of more of a patchwork of
sections that will hold the overall process of our project together. Separating it logically into
smaller components it will include parts to communicate with an audio input, a user interface,
the voice cloning model, and a speaker. As sheer speed of our data handoffs is not a large
concern and more integrity and compatibility this block will be built off of python. This gives it a
strong, and easy, interaction with our voice cloning model, the user interface, and the GPIO pins
as our host computer, the Jetson Nano, was built to be close in operation to a raspberry pi,
which has a large amount of support for python.

There are many inputs and outputs required for this block as it will tie together the internal code
with the hardware inputs and outputs. A black box view showing all interfaces with a naming
convention of source_destination_type is shown below in Figure 16.

Figure 4.7.2.1: Black Box Diagram for I/O Block

An advantage of how our system is set up is many of these interfaces will not be used
concurrently. This means that this block will mainly need to focus on one function at a time,
freeing up computational power to just focus mainly on its current process. A typical user will
either enter their text input or voice sample first. Typing will consist of a constant monitoring of
our text interface as that will be the live input that the user can start at any time, along with
acting as controls for the other capabilities of our system. Once the user hits the input to start
recording the process for capturing voice input will be started and the only button that will be
monitored on the text interface will be to stop recording. After this the program can hand off the
captured voice to our voice cloning model for background processing while the user inputs their
text. Similarly when the user hits the button to produce an output this block will then hand off the
text to the voice cloning model to then process and produce the output .wav file. In order to do
these handoffs this block will utilize multiprocessing in order to keep a consistent reading of the

57

user inputs while handling other processes. Once completed this file will be retrieved by this
block and when the user denotes that they want to playback the recording it will do so. Below in
Figure 16 is a state diagram of this very process.

Figure 4.7.2.2: I/O State Diagram

4.7.3 - General Validation
The overall objective of this block is to tie together our entire system from the software
components to the hardware components. In order for our design to function together it needs to
have a way to reach outside of the Jetson Nano and to external inputs and outputs. With this
block consisting entirely of code it is able to be removed from many concerns typical to designs.
Mainly the cost, availability of parts, and physical size.

The main motive for this block is the engineering time and understanding necessary for its
implementation. As it interacts with many other blocks, but is a core component of them working
together, it needs to be designed almost side by side with them. By producing sections focusing
on each interface this block is able to be a bit more flexible when it comes to requirements.
While hardware components need a specified range to operate properly this block will be
modifiable to mold to the requirements of the hardware components. By doing this it is able to
ensure functionality of individual components with each other, given that there are no major
issues with the individual hardware components themselves.

Since our project partner wants our system to be designed to fit in a small form factor and act
similar to a kiosk that could be set up, a lower end and small computer is necessary. This is the

58

main reason the Jetson Nano was chosen as a fitting host computer. The Jetson Nano is
created by Nvidia to be specifically used for AI projects and to behave similar to a more
powerful Raspberry Pi, especially with its discrete GPU. By being built with AI in mind it needs to
have a large amount of support for python. With many drivers and libraries designed to make
the Jetson Nano as compatible as possible with python it makes it a perfect choice to build our
core program with python. With an included GPIO library for python it will allow us to not need
an external programmable microcontroller to interact with our custom built parts through IO pins.

A previous concern with this block was caused by limitations of the hardware or chosen
software language. This, however, is no longer a concern. Our most recent Jetson Nano we
possess has 4GB of memory, only a quarter of which is taken by the operating system. Our
model is projected to use more than 1GB of memory, putting us with a comfortable amount of
memory left over to handle other processes.

4.7.4 - Interface Validation

Table 4.7.4.1: mcrcntrllr_i_cntrl_cd_data Interface

Interface
Property

Why is this interface this value? Why do you know that your
design details for this block
above meet or exceed each
property?

Messages: Text
input from a
12-keypad:
encoded with 2
shift registers for
a total of 16 bits,
must be able to
decode these
values

Our hardware will consist of two
shift registers to encode 12
buttons. This will be to ensure no
ghosting of buttons will occur (such
as pressing 2 buttons is read as the
same as pressing a third button
alone). In order to read this we
need to be able to decode a 16 bit
value to match our 12 button
interface.

Utilizing the I2C pins among the
GPIO pins on the Jetson Nano we
are able to get an input from our
shift registers. This will be decoded
by this I/O code with one bit for
each button. The first 12 bits of the
16 bits of the shift registers will
each correspond to a key on our
text interface.

Audio recording
read for playback:
Must be able to
save audio from a
microphone in a
.wav file format.

The audio required by our voice
cloning software must be in a .wav
file format. The I/O control code
must be able to record audio from a
microphone and save it in this
format.

Utilizing PyAudio and SciPy this
code will be able to record and
save audio to a .wav file format
[1][2].

Messages: Audio
recorded utilizing
a microphone:
must be sampled
at a rate of at

Mostly a design limitation set by
our voice replication software, to
meet the minimum quality of audio
it needs to be sampled at a rate of

The python library we will utilize,
PyAudio which is built off of
PortAudio, has a sampling rate that
is only limited by the sampling rate
of the hardware. The I/O code will

59

least 22,050 Hz 22,050 Hz or more. be built to utilize the highest quality
available [2].

Table 4.7.4.2: i_cntrl_cd_mcrcntrllr_data Interface

Interface
Property

Why is this interface this value? Why do you know that your
design details for this block
above meet or exceed each
property?

Messages: Audio
playback to
speaker: Must be
able to playback
audio from a .wav
file.

The output of our voice replication
software will be in a .wav format for
audio. In order to play this to the
speaker we design the I/O code will
need to be able to read and
playback a .wav file.

Utilizing PyAudio and SciPy this
code will be able to playback an
audio file to the speaker [1][2].

Messages: Text
output for user
display: Must
output text in a
format readable
by a graphical
user interface.

In order for the user interface to
display what the user is currently
inputting it is necessary for these to
be able to host text in a format
readable by another part of the
program.

The user interface will likely be
running within the same memory
space as the I/O code (this will be a
library utilized by our main process)
and therefore will be able to share
a string with the user interface.

Protocol: Data
output will be
saved to a
corresponding file
type: .wav for
audio and .txt for
text

This requirement is somewhat
duplicated as many different parts
of our project need a similar
functionality.

Utilizing PyAudio and SciPy this
code will be able to record and
save audio to a .wav file format
[1][2].

Table 4.7.4.3: i_cntrl_cd_dp_lrnng_data Interface

Interface
Property

Why is this interface this value? Why do you know that your
design details for this block
above meet or exceed each
property?

Messages: A
python dictionary
containing two

In order for our model to train it
needs to be pointed to the proper
files. These two files will consist of

This is functionality built into python
itself as a child process will be
created with arguments that point it

60

python strings: a
user text input
and a file path to
a .wav file of the
users speech.

a text input and audio input, one for
the sample audio and one for the
sentence to be produced.

to the correct files.

Other: According
to 9/10 people
the .wav file
contains minimal
noise.

In order for our model to produce a
good output it needs a good input.
This means our created audio file
needs to be of a high quality.

This will mostly be reliant on the
microphone quality rather than the
software. The software will be
sampling audio at a high rate.

Other: The .wav
file at the
provided file path
has a sampling
rate of at least
22,050 Hz.

The model itself samples the audio
input at a rate of 22,050 Hz. This
means we need a minimum
sampling speed of 22,050 Hz to
ensure data quality.

Utilizing PyAudio and SciPy this
code will be able to record and
save audio to a .wav file format
[1][2]. The only limit to the sampling
speed is the hardware itself.

Other: The .wav
file is at least 5
seconds in
duration.

In order for our model to train well
enough to sound similar to the user
at least 5 seconds of audio is
needed.

As the only limit to how long we can
record is the amount of memory on
our hardware this requirement will
be fulfilled with the basic
functionality of PyAudio and SciPy.

4.7.5 - Verification Process
A brief explanation before the verification plan steps:
This will be split into 4 numbered sections, one for each input and output, and have steps for
each of those. This is an effective layout for these tests because this program consists mainly of
4 separate functions all working together.

Our text input consists of a very basic encoding scheme with each button consisting of a single
bit within a combined 16 bit sequence. This will be tested with the following steps:

1. Text input
a. Create a file that will be read that follows the encoding scheme of our keys (1000

0000 0000 0000 = button 1).
b. Feed these sequences to the I/O code via reading directly from the file or utilizing

the GPIO pins to read from another device.
c. When the encoded data is read it will be converted to the corresponding button

and displayed via the terminal.

61

The audio input will consist of a microphone connected via a USB driven ADC. This will need to
be read and save the audio to a .wav file.

2. Audio input
a. Run the record audio function.
b. This will start a 5 second timer during which it will record all inputs from the

microphone.
c. The recorded audio will be saved to a .wav file in the same location as the

program.

In order for the user to hear what our program produces there needs to be a way to playback
the audio. This test will prove the I/O code can do such.

3. Audio output
a. By running the playback function and pointing it to the audio recorded from the

previous test audio playback should begin.

Partially accomplished with the text input and audio input tests there still is a need to test if this
program can create a process and point it to proper input files.

4. Data handoff
a. Via a command line argument this program will create a child process.
b. This child process will simply consist of a function to print to the command

prompt that it has been created.
c. Afterwards the I/O code will print to the screen that the child process has

successfully finished.

4.7.6 - References and File Links

[1] Hubert Pham, PyAudio Documentation, Available:
https://docs.scipy.org/doc/scipy/tutorial/io.html

[2] The SciPy community, File IO (scipy.io), Available:
https://people.csail.mit.edu/hubert/pyaudio/docs/

[3] nVidia Jetson Nano DataSheet, Available:
https://developer.download.nvidia.com/assets/embedded/secure/jetson/Nano/docs/JetsonNano
_DataSheet_DS09366001v1.1.pdf

62

4.7.7 - Revision Table
Table 4.7.7: Revision Table

Author: Date: Change: Reasoning:

Grant 1/15/23 Created and laid out block validation
draft

Block Validation
Assignment due

Grant 1/19/23 Finished writing block validation draft Assignment due

Grant 2/8/23 Updated interface to match new ones
online

Mismatch between
online portal and
documentation

Grant 2/11/23 Finalized document Assignment due

4.8 - UI Block

4.8.1 - Description
This block will handle displaying information to the user of the system. This will host buttons or
other user interact-able objects to allow the user to record their voice to be cloned, enter text for
the cloning model to read from, and playback the output audio from the model. By interacting
with the I/O code and deep learning model it will be able to retrieve data to display.

4.8.2 - Design
As stated in the description of this block the goal is to display information to the user. This will
consist of the text that they are inputting, tappable buttons for recording, playback, submit for
processing, and help. By utilizing Tkinter as the framework for the user interface one is able to
produce such results. Below is a black box diagram of what inputs and outputs are coming from
the user interface.

63

Figure 4.8.2.1: Black Box Diagram for User Interface

Mentioned before this block will be created using Tkinter. A user interface needs to be intuitive
and clear, while fitting all required information within the screen space available. This will be
accomplished with the design below in Figure 4.8.2.2.

Figure 4.8.2.2: User Interface Design

This design seen above should meet the requirements of our system. By giving a clear button
layout and a large enough textbox to comfortably fit a large amount of text this interface will

64

provide a good user experience. The record voice and play output buttons can have bordering
colors, or even just be recolored, to signify the existence and readiness of the input and output
files.

4.8.3 - General Validation
The interfaces defined for this block are mainly software inputs. To validate that this user
interface meets requirements is simply designing it to meet said requirements. Needing to be
quick and responsive, as having no more than 0.1 seconds of input lag from when the user
presses a button and the action occurring is entirely based on how the user interface was made.
Tkinter can accomplish this with a lightweight and quick interface. The requirement of reading a
text file and looking for the existence of a .wav is built into the base functionality of Python, the
language this interface will be built with.

For outputs the window must fit within 800 by 480 pixels, a limit set by the resolution of our
screen, displaying the existence of input and output .wav files, and be legible from a minimum of
3 feet away. The easiest of these to accomplish is the 800x480 pixel requirement, as this is
simply the defined size of the created user interface. Displaying the existence of the input and
output .wav files will be done simply with green or red colored light on the record voice and play
output buttons. Last is the requirement of being legible from 3 feet away will be accomplished by
making text large enough to read.

4.8.4 - Interface Validation

Table 4.8.4.1: mcrcntrllr_i_cntrl_cd_data Interface

Interface
Property

Why is this interface this value? Why do you know that your
design details for this block
above meet or exceed each
property?

Data Rate: Must
update text
display within 0.1
seconds of file
changing

In order for the user to feel that the
interface, and system overall, is
responsive a quick UI is necessary.
A delay of 1/10th of a second
should work fine for this situation.

This design will be met simply by
having a less-intensive user
interface. Since the design above is
simple and will not need a lot of
processing power it will accomplish
this requirement.

Messages: Must
be able to read
text from a .txt file

The system needs some way to
display information to the user,
which will be accomplished by the
UI. This requirement will be needed
for the UI to be able to show what
is currently available for the
system.

This functionality is built into python
and will be accomplished simply by
the inclusion of it in the design.

65

Other: Must be
able to check for
an input and
output .wav file

Similar to above, the system needs
to display the availability of inputs
to the user, which the UI needs to
be able to read.

Again, this functionality is built into
python and will be accomplished
simply by using that language.

Table 4.8.4.2: i_cntrl_cd_mcrcntrllr_data Interface

Interface
Property

Why is this interface this value? Why do you know that your
design details for this block
above meet or exceed each
property?

Other: User
interface must
display the
existence of the
input and output
.wav files

What is the point of checking for
the existence of files without
displaying said information to the
user.

This will be accomplished using the
input for the .wav files and
displaying its existence via a red or
green light.

Other: User
interface must fit
within 800 x 480
pixels (size of our
display)

This requirement is set by our
display, being 800x480 pixels.

Tkinter has options to define the
screen size and make the interface
fullscreen. This will be utilized to
make the UI an exact fit.

Other: Text
interface must be
legible from a
minimum of 3 feet
away.

This device is intended to be a
handheld system, or at least small
enough to be one. Typical users of
handheld devices do not hold it at a
distance of 3 feet, so this
requirement is set above that to
ensure visibility.

By making text large enough
(hence the design having a large
area textbox) we are able to ensure
that anyone with reasonable sight
quality can read the text in the
interface.

4.8.5 - Verification Process
Confirming the requirements above are mostly done simply visually. Starting from the top the list
below will explain how each requirement will be confirmed:

1. Must update text display within 0.1 seconds.
a. This will be accomplished by typing something into the user interface and

ensuring that it updates with little to no input lag.
b. As 0.1 seconds is something very difficult to measure by hand it will be done

purely visually.
2. Must be able to read text from a .txt file

66

a. By creating and filling out a text file that is saved where the user interface checks
for it we are able to show that it is able to read from it.

3. Must be able to check for the existence of an input and output .wav file and user
interface must display the existence of the input and output .wav files

a. Like the requirement above this will be done by creating .wav files and visually
showing that the interface displays the existence of these files

4. User interface must fit within 800x480 pixels.
a. This is accomplished by showing either on the display we will use in the system

or showing that it takes up no more than a quarter of a typical 1920x1080 display.
5. Text interface must be legible from a minimum of 3 feet away.

a. Another visual requirement, the person accomplishing the test will visually
inspect to make sure that they can read an input text from 3 feet away.

4.8.6 - References and File Links
N/A

4.8.7 - Revision Table
Table 4.8.7: Revision Table

Author: Date: Change: Reasoning:

Grant 1/15/23 Created and laid out block
validation draft

Block Validation Assignment due

Grant 1/19/23 Finished writing block validation
draft

Assignment due

Grant 2/8/23 Updated interface to match new
ones online

Mismatch between online portal and
documentation

Grant 2/11/23 Finalized document Assignment due

4.9 - Microcontroller Block

4.9.1 - Description
This block consists of the research and decision of acquiring and setting up a micro controller
capable of running our model within our system restraints, as well as interface with needed
hardware and software modules within the system. The goal of this is to be our main

67

computation unit for the project. The microcontroller will be responsible for not only interfacing,
but also powering all hardware peripherals including a microphone, text interface, screen, and
speaker amplifier. The microcontroller itself will be supplied power through the suggested power
supply, supplied by the manufacturer for the specific microcontroller. This will act as the heart of
the system, and consist of multiple coding blocks interacting with different parts of the system to
deliver a proper user experience. This block includes the microcontroller processing code as
well as the power distribution for the system.

4.9.2 - Design

Figure 4.9.2: Black Box Diagram of Microcontroller

The design of the microcontroller underwent several iterations and changes as more information
became available. At first, our design for the microcontroller was an embedded system that
would be able to handle a deep neural network for the voice cloning model to run off of. This
remained our goal, however as the model was optimized and made more compact, the team
was able to try out different embedded systems. Initially, the Jetson Nano was chosen as the
microcontroller as it had a GPU that the team thought would be able to easily handle the model.
At first, we purchased this module and set up the model to run on only the CPU, but once we
tried the GPU we found that it was not actually faster than the CPU on the Jetson Nano or even
the Raspberry Pi. With this, our design for the microcontroller changed and shifted to work with
the Raspberry Pi moving forward. The size of the design was a major component of the design
choice, ensuring that the device was capable of running the model but also significantly smaller
than a typical computer to allow the possibility of a handheld device as the final product. Dealing
with all the inputs and outputs was another design decision that had to be considered, the
raspberry pi was able to meet the requirements by having more than enough USB ports, a mini
HDMI port for a screen, easy to use GPIO pins that could communicate with SPI, and the ability
to use WIFI for setting up everything. The Text input interface communicates over SPI, sending
in a total of 16 bits of information to the raspberry pi using the GPIO pins. The microphone
signal is connected to an adaptor that connects via USB and handles the conversion from AC to

68

DC, which is then able to be recorded as a .wav file for the model to use. The microcontroller
also deals with user input via a screen as a purchased module, which has a touch screen. On
the output side, there is the output of the model which is played as an audio signal to an
amplification board connected via a 3.5mm audio jack. The display signals for the screen
utilizes an HDMI port as well as a power cable that uses usb type C.

4.9.3 - General Validation
The microcontroller chosen for the system to fit all the needs changed from originally being the
Jetson Nano to the Raspberry Pi. This microcontroller fits all the needs of the system as the
main requirement of our microcontroller is the size and ability to run the deep neural network for
voice cloning. The raspberry pi is extremely small when compared to the size of a normal
laptop, and after testing, it was found that the CPU was comparable to the Jetson Nano’s CPU
which was the only competitor in terms of processing within our budget. The Jetson Nano also
has a GPU which was originally thought to have better processing speed than the CPU, but in
terms of the model's ability in the speed of transferring speech input to output, the speed was
actually worse. The speed is measured in terms of the real-time factor, which is for x amount of
seconds of recording, how fast can the model produce y seconds of audio. So if the model gets
1 second of input, how long does that take to process. With the raspberry pi, the model was
able to be optimized on the raspberry pi to be under 1 RTF. This means that the Raspberry Pi
would fit our design requirements perfectly. The Raspberry Pi also has more power delivery
abilities with their GPIO when compared to the Jetson Nano, the GPIO of the raspberry pi is
generally easier to work with as well as raspberry pi is more up-to-date with software and
libraries used for languages such as python. The raspberry pi overall is significantly easier to
work with, equal in computation ability and size, and has no significant downfalls for what is
needed within the system for the block of the microcontroller.

4.9.4 - Interface Validation

Table 4.9.4.1: mcrcntrllr_spkr_asig Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Vmax (Supply):
- GPIO power pin 5V

This is the designed supply
voltage for the system

For the LM386N-1
recommended operating
cond:

- MAX V is 12V.
- MIN V is 4 V.

Vmax (audio signal):
- 0.9V peak to peak

This is the expected
maximum voltage for an
audio signal line level [2].

LM386 is designed for low
voltage amplification, and the
maximum voltage remains as

69

a low voltage.

Other: uC internal volume
level:

- 10% of maximum
volume output

Properly control volume
amplification and
potentiometer control

Speaker block will only read
the audio jack as input.

Table 4.9.4.2: mcrcntrllr_dsply_dsig Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Other:
- Display through HDMI

connector

Required interface for screen
display

Purchased module contain an
HDMI to mini HDMI adapter
connecting uC to screen

Other:
- Powered through USB

connector

Required interface for screen
display

Purchased module contains a
USB to micro USB adapter
connecting uC to screen
power

Other:
- Touch screen feature

enabled

Include extra user interactive
buttons through GUI

Purchased module enabled
touch screen through power
interface

Table 4.9.4.3: mcrcntrllr_i_cntrl_cd_data Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Messages: Text input from a
12-keypad: encoded with 2
shift registers for a total of 16
bits, must be able to decode
these values

Our hardware will consist of
two shift registers to encode
12 buttons. This will be to
ensure no ghosting of buttons
will occur (such as pressing 2
buttons is read as the same
as pressing a third button
alone). In order to read this
we need to be able to decode
a 16 bit value to match our 12
button interface.

Utilizing the I2C pins among
the GPIO pins on the Jetson
Nano we are able to get an
input from our shift registers.
This will be decoded by this
I/O code with one bit for each
button. The first 12 bits of the
16 bits of the shift registers
will each correspond to a key
on our text interface.

70

Audio recording read for
playback: Must be able to
save audio from a
microphone in a .wav file
format.

The audio required by our
voice cloning software must
be in a .wav file format. The
I/O control code must be able
to record audio from a
microphone and save it in this
format.

Utilizing PyAudio and SciPy
this code will be able to
record and save audio to a
.wav file format [1][2].

Messages: Audio recorded
utilizing a microphone: must
be sampled at a rate of at
least 22,050 Hz

Mostly a design limitation set
by our voice replication
software, to meet the
minimum quality of audio it
needs to be sampled at a rate
of 22,050 Hz or more.

The python library we will
utilize, PyAudio which is built
off of PortAudio, has a
sampling rate that is only
limited by the sampling rate
of the hardware. The I/O
code will be built to utilize the
highest quality available [2].

Table 4.9.4.4: mcrcntrllr_usr_ntrfc_cntrl_cd_data Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Data Rate: Must update text
display within 0.1 seconds of
file changing

In order for the user to feel
that the interface, and system
overall, is responsive a quick
UI is necessary. A delay of
1/10th of a second should
work fine for this situation.

This design will be met simply
by having a less-intensive
user interface. Since the
design above is simple and
will not need a lot of
processing power it will
accomplish this requirement.

Messages: Must be able to
read text from a .txt file

The system needs some way
to display information to the
user, which will be
accomplished by the UI. This
requirement will be needed
for the UI to be able to show
what is currently available for
the system.

This functionality is built into
python and will be
accomplished simply by the
inclusion of it in the design.

Other: Must be able to check
for an input and output .wav
file

Similar to above, the system
needs to display the
availability of inputs to the
user, which the UI needs to

Again, this functionality is
built into python and will be
accomplished simply by using
that language.

71

be able to read.

Table 4.9.4.5: mcrphn_mcrcntrllr_asig Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Other:
- Resistance between

the ground and
channels of the
microphone should be
a value around 1.2
with 20K mode on
DMM

Because it was measured
with a DMM

It does because it was
measured to be that value

Other:
- The microphone

connects to the device
via 3.5mm audio jack

Specified in the description of
the microphone from both the
parent company who
produces the microphone as
well as Amazon

This audio jack is able to be
plugged into any computer or
device that has a standard
audio jack that is 3.5mm

Other:
- the microphone is

able to create a .wav
file when using
audacity and
exporting audio.

The microphone is specified
on Amazon to be
plug-and-play with most
devices, meaning that audio
should be recordable once
plugged in.

Was able to record audio and
play back audio using
Audacity on my home
computer.

Table 4.9.4.6: txt_ntrfc_mcrcntrllr_dsig Interface

Interface property: Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each
property?

RC debouncing fall time is no
greater than 15ms

The RC circuitry fall time is
an assumed value that is
then used to calculate the
rest of the values for both the
resistor and the capacitor.
The time is estimated to be
around the worst-case
scenario for a mechanical
switch rattling from high to

Based on the calculations
from the equation found in
the design details, which was
originally sourced from The
Ganssle Group-debouncing
pt2[1]. This calculation and
theory have been confirmed
with an oscilloscope.

72

low after being pressed.

Active high: 3.3V,
represented as logic 1 in
code

The microcontroller used for
the project provides 3.3 volts
from its GPIO pins. This is
the voltage then used to
power the circuit, and what is
required to send over SPI
from the shift register so the
microcontroller can read the
data. The high is assigned to
3.3 volts for ease of
understanding of other
teammates.

The voltage of 3.3 volts is
supported by each chip used:

● SNx4HC04 inverter
has a maximum rating
for input and output
voltage as Vcc which
is 7 volts, section 6.1:
Absolute Maximum
Ratings[2]

● 74HC165 has a
maximum input and
output voltage of 7
volts as well found in
section 8 table 4:
Limiting Values[3].

3.3 volts has also been
measured with a multimeter
as input and output of each
junction between chips and
mechanical switch

Low: 0V, represented as logic
0 in code

With high being defined as
3.3 volts, low is defined as
the complement of that being
0 volts. Logic 0 is then
defined as 0 volts as the
complement of the already
defined high value of 3.3 volts
being logic 1 in software.

The voltage of 0 volts is
supported by each chip used:

● SNx4HC04 inverter
has a minimum rating
for input and output
voltage of 0 volts,
section 6.3:
Recommended
Operating
Conditions[2]

● 74HC165 has a
minimum input and
output voltage of 0
volts found in section
9 table
5:Recommended
operating
conditions[3].

3.3 volts have also been
measured with a multimeter
as input and output of each
junction between chips and
mechanical switch

Table 4.9.4.7: dp_lrnng_mcrcntrllr_data Interface

Interface Property Why is this interface Why do you know that your

73

property this value? design details for this block
above meet or exceed each

property?

Messages: A .wav file
containing the user's cloned
speech.

A .wav file allows for the
storage of a generated
cloned voice.

The final stage of the DL
model, HiFi-GAN [5], is
designed to generate an
audio waveform.

Other: According to 9/10
people the cloned voice in the
.wav file reads the text input.

Reading a text input in the
voice of a cloned speaker is
the objective of our project.

The DL model is designed
using YourTTS [1], which is a
state-of-the-art model for
voice cloning.

Other: The .wav file sampling
rate is at least 22,050 Hz

The sampling rate is 22,050
Hz to provide smooth audio.

The DL model was trained to
generate a speech waveform
with a sampling rate of
22,050Hz.

Table 4.9.4.8: i_cntrl_cd_mcrcntrllr_data Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Messages: Audio playback to
speaker: Must be able to
playback audio from a .wav
file.

The output of our voice
replication software will be in
a .wav format for audio. In
order to play this to the
speaker we design the I/O
code will need to be able to
read and playback a .wav file.

Utilizing PyAudio and SciPy
this code will be able to
playback an audio file to the
speaker [1][2].

Messages: Text output for
user display: Must output text
in a format readable by a
graphical user interface.

In order for the user interface
to display what the user is
currently inputting it is
necessary for these to be
able to host text in a format
readable by another part of
the program.

The user interface will likely
be running within the same
memory space as the I/O
code (this will be a library
utilized by our main process)
and therefore will be able to
share a string with the user
interface.

Protocol: Data output will be
saved to a corresponding file
type: .wav for audio and .txt

This requirement is
somewhat duplicated as
many different parts of our

Utilizing PyAudio and SciPy
this code will be able to
record and save audio to a

74

for text project need a similar
functionality.

.wav file format [1][2].

Table 4.9.4.9: usr_ntrfc_cntrl_cd_mcrcntrllr_data Interface

Interface Property Why is this interface
property this value?

Why do you know that your
design details for this block
above meet or exceed each

property?

Other: User interface must
display the existence of the
input and output .wav files

What is the point of checking
for the existence of files
without displaying said
information to the user.

This will be accomplished
using the input for the .wav
files and displaying its
existence via a red or green
light.

Other: User interface must fit
within 800 x 480 pixels (size
of our display)

This requirement is set by our
display, being 800x480
pixels.

Tkinter has options to define
the screen size and make the
interface fullscreen. This will
be utilized to make the UI an
exact fit.

Other: Text interface must be
legible from a minimum of 3
feet away.

This device is intended to be
a handheld system, or at
least small enough to be one.
Typical users of handheld
devices do not hold it at a
distance of 3 feet, so this
requirement is set above that
to ensure visibility.

By making text large enough
(hence the design having a
large area textbox) we are
able to ensure that anyone
with reasonable sight quality
can read the text in the
interface.

4.9.5 - Verification Process
Since the microcontroller is the heart of the system, its verification process will mimic the final
system verification process.

1. Plug the VCC and GND connectors of the Speaker PCB into the 5V VCC and GND pins
on the Raspberry Pi respectively.

2. Plug the AUDIO IN and GND connectors of the 3.5mm audio jack for the speaker PCB
into the DAC/ADC converter, and plug the DAC/ADC converter into the USB port of the
Raspberry Pi.

3. Plug the respective VCC, GND, MISO, SCLK, PLOAD pins of the text interface PCB into
the Raspberry Pi.

75

4. Plug the Screens HDMI to mini HDMI adapter into the HDMI of the screen and mini
HDMI of the Raspberry PI. These components will be aligned on the backsides of each
other.

5. Plug the micro USB to USB adapter into the screen’s touchscreen power port and the
Raspberry Pi USB port.

6. Plug the microphone into the Raspberry Pi.
a. If the microphone is a 3.5mm audio jack, use the DAC/ADC adapter on the input

port shared by the speaker.
b. If the microphone is USB, plug it into the USB port of Raspberry Pi.

7. At this point, all hardware should be properly integrated. Power the Raspberry Pi using
the USB-C wall power adapter.

8. The Raspberry Pi will automatically begin running all software needed. From the GUI,
begin recording input, following directions displayed on the GUI.

a. If startup is disabled, run python3 gui.py from the voiceclone directory to pop up
the GUI to begin interacting with the system.

9. Click the “Record Input” button and Speak into the microphone providing viable speech
audio while the recording is live.

10. Next, Provide any text to the textbox on the GUI, or select a preset text input and hit
Process Text.

11. Finally select Play output.
12. Observe the user recording cloned voice and repeat the text fed in by the user through

the speaker amplifier.

4.9.6 - References and File Links

[1] “DATASHEET - Raspberry Pi 4 Model B,” 01-Jun-2019. [Online]. Available:
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf.

4.9.7 - Revision Table
Table 4.9.7: Revision Table

Author: Date: Change: Reasoning:

Connor 3/12/23 Created Block Validation section
for the microcontroller block.

Project Document
Assignment due

Connor 3/13/23 Populated Description, Interface
validation tables

Project document due

Micah 3/14/2023 Populated Design and General
Validation

Project document due

Connor 3/14/2023 Created Verification Process Project document due

https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf

76

5 - System Verification Evidence

5.1 - Universal Constraints

5.1.1 - The system may not include a breadboard
Our system uses PCB’s rather than breadboards.

Figure 5.1.1: Internal System Hardware

5.1.2 - The final system must contain a student-designed PCB.
Our system has a PCB for the speaker output and for the keyboard input. These PCBs contain
a total of 32 surface mount pads.

Figure 5.1.2: Student Designed PCB Schematic and Final PCB

77

5.1.3 - All connections to PCBs must use connectors.
Our system uses jumper wires and header pins to connect to the PCBs.

Figure 5.1.3: System Hardware Connections

5.1.4 - All power supplies in the system must be at least 65% efficient.
Our system utilizes a power supply that came with our hardware that will be the core of the
system. To measure the power efficiency we used a wall power meter, a multimeter, and a DC
electronic load. The DC electronic load drew 3.48 amps of current. The voltage across the
multimeter was 4.78 V. This means the output power was 16.63 Watts. The wall power meter
read a max 22.5 Watts. As such the power efficiency was 0.74 which is above the required 0.65
to satisfy the universal constraint.

78

Figure 5.1.4: Power Supply Efficiency Measurements

5.1.5 - The system may be no more than 50% built from purchased
'modules.'
Percentage of built modules: 70%

Table 5.1.5: Module Listing

Blocks Module Type

Deep Learning Model Built

Optimizer Built

Microphone Bought

Text Interface Built

I/O Control Code Built

User Interface Control Code Built

Microcontroller Bought

Speaker/Audio Amplifier Built

Display/Screen Bought

Enclosure Built

79

5.2 - Requirements

5.2.1 - Limited Computation Ability

5.2.1.1 - Project Partner Requirement:

The machine learning model must be capable of running on a low-end embedded
system

5.2.1.2 - Engineering Requirement:

The system shall run using at most 4GB of RAM

5.2.1.3 - Verification Process:

This will be verified visually by watching our code running on the microcontroller take an
input and generate an output. View the datasheet provided for our microcontroller - has a
maximum specification of 4GB of RAM or less.

5.2.1.4 - Testing Evidence:

[1] “DATASHEET - Raspberry Pi 4 Model B,” 01-Jun-2019. [Online]. Available:
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf.

Page 6, Section 2.1 contains the hardware specification for RAM on the Raspberry Pi 4
Model B.
Verified: 2/28/23

5.2.2 - Reproducibility

5.2.2.1 - Project Partner Requirement:

The machine learning model code must be implemented into a widely used machine
learning toolkit and be readable

5.2.2.2 - Engineering Requirement:

The system code sub-system shall have its machine learning model implemented into
the ESPnet toolkit with at least one comment for at least every 10 lines of code

5.2.2.3 - Verification Process:

View the given ESPnet repository code for comments describing the behavior and
process of the voice cloning model

https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf

80

5.2.2.4 - Testing Evidence:

https://drive.google.com/file/d/1tGZWbrKvObpTB8psnlXzEK9AGn9KXUgN/view?
usp=share_link

The link provided is a video viewing all the comments in the ESPnet repository.
Comments are colored forest green and orange.
Verified: 3/8/23

5.2.3 - Size

5.2.3.1 - Project Partner Requirement:

The system must be smaller than a standard laptop

5.2.3.2 - Engineering Requirement:

This system shall be contained in an enclosure no more than 11x7x4 inches

5.2.3.3 - Verification Process:

Measure the final dimensions of the enclosure containing all system components

5.2.3.4 - Testing Evidence:

Verified: 5/9/2023

https://drive.google.com/file/d/1tGZWbrKvObpTB8psnlXzEK9AGn9KXUgN/view?usp=share_link
https://drive.google.com/file/d/1tGZWbrKvObpTB8psnlXzEK9AGn9KXUgN/view?usp=share_link

81

Figure 5.2.3: Physical Dimension Measurements of Enclosure

5.2.4 - Speech input

5.2.4.1 - Project Partner Requirement:

The user must be capable of providing the machine learning model with speech audio

5.2.4.2 - Engineering Requirement:

The system shall allow a speech input to be captured for a duration of at least 10
seconds and 9/10 users are satisfied with the playback quality of their recording.

5.2.4.3 - Verification Process:

Begin recording process with a visual indicator displayed on the GUI, indicating the start
and stop. Verify the input was successfully recorded by outputting a recognizable cloned
voice through the speaker

5.2.4.4 - Testing Evidence:

https://drive.google.com/file/d/1_2IaG1PIydOvqSZ2NmKhZAsZ6P4t6MD0/view?usp=sh
aring
The link provided shows a user recording their voice and playing it back.
Verified: 5/9/23

https://drive.google.com/file/d/1_2IaG1PIydOvqSZ2NmKhZAsZ6P4t6MD0/view?usp=sharing
https://drive.google.com/file/d/1_2IaG1PIydOvqSZ2NmKhZAsZ6P4t6MD0/view?usp=sharing

82

5.2.5 - Speech Output

5.2.5.1 - Project Partner Requirement:

The speech output from the system must be loud enough to hear and sound relatively
similar to the end users voice

5.2.5.2 - Engineering Requirement:

The system shall produce a speech waveform that increases ambient dBA by a
minimum of 15dBA at maximum volume, and 9/10 users shall be able to recognize their
cloned voice.

5.2.5.3 - Verification Process:

Have users walk through the voice cloning process from start to finish, and have users
report back whether they can recognize their own voice. Measure the decibel output of
the speaker while the user is listening to verify the output loudness

5.2.5.4 - Testing Evidence:

https://drive.google.com/file/d/1_hSQNZS33o7DWkfHDxWsoMRZx9hQrpfN/view?usp=s
hare_link
The link provided shows a user playing back their voice and the decibel readings of the

playback.
Verified: 5/9/23

5.2.6 - Speed

5.2.6.1 - Project Partner Requirement:

The machine learning model must be capable of processing an end users inputs quickly

5.2.6.2 - Engineering Requirement:

The system code sub-system shall produce a speech output with a real time factor of 1

5.2.6.3 - Verification Process:

While running the system, the GUI will display a continuous value of the RTF of each
generated voice waveform. Observe this RTF value to verify it is less than or equal to 1.

https://drive.google.com/file/d/1_hSQNZS33o7DWkfHDxWsoMRZx9hQrpfN/view?usp=share_link
https://drive.google.com/file/d/1_hSQNZS33o7DWkfHDxWsoMRZx9hQrpfN/view?usp=share_link

83

5.2.6.4 - Testing Evidence:

https://drive.google.com/file/d/1s1gU6bs1CofMx_vSoNUb50AjTgxgBK82/view?usp=shar
ing
The link provided is a video showing the RTF value of some processed.
Verified: 5/9/2023

5.2.7 - Text Input

5.2.7.1 - Project Partner Requirement:

The user must be capable of providing a text input to the machine learning model

5.2.7.2 - Engineering Requirement:

After using the system, 9/10 users shall report the interface button presses are
responsive.

5.2.7.3 - Verification Process

A user shall provide the system any text input they want containing the letters A-Z and
the space character. The GUI shall display this text back to the user for confirmation,
within a certain amount of time satisfiable to the user.

5.2.7.4 - Testing Evidence:

https://drive.google.com/file/d/1_Vh-Bwn7UvLY_zwVV7gcpRHrzoTUn-z0/view?usp=shar
e_link
The link provided shows a user using the text input buttons and saying they feel
responsive.
Verified: 5/9/23

5.2.8 - Usability

5.2.8.1 - Project Partner Requirement:

The system should be easily usable after proper guidance

5.2.8.2 - Engineering Requirement:

The system shall be operable by 9 out of 10 users after a 3 minute training process.

https://drive.google.com/file/d/1s1gU6bs1CofMx_vSoNUb50AjTgxgBK82/view?usp=sharing
https://drive.google.com/file/d/1s1gU6bs1CofMx_vSoNUb50AjTgxgBK82/view?usp=sharing
https://drive.google.com/file/d/1_Vh-Bwn7UvLY_zwVV7gcpRHrzoTUn-z0/view?usp=share_link
https://drive.google.com/file/d/1_Vh-Bwn7UvLY_zwVV7gcpRHrzoTUn-z0/view?usp=share_link

84

5.2.8.3 - Verification Process:

A goal to test this is to see if people are capable of using our product. We will get a
group of 10 people and give them a brief explanation of how to use our product. Then
we will tell them to demonstrate using it and if they are incapable of doing so within 5
minutes then they have failed, otherwise they have succeeded. These results will be
recorded and compared to our goal

5.2.8.4 - Testing Evidence:

https://drive.google.com/file/d/12Ov_qO5t3QonwCIgd1l3LiUyua0GsEfV/view?usp=share
_link
The link provided shows a user being trained on how to use the device. The video length
is less than 3 minutes, showing that this process can be done within our required time.
Verified: 5/9/23

5.3 - References and File Links
For the 9 out of 10 users sign-offs check the link below:
https://docs.google.com/spreadsheets/d/15XvtHX-u2aL4ID0-mnV4ChoKr82Q4szVSfAlMrmTsIw/
edit?usp=sharing

5.4 - Revision Table
Table 5.4: Revision Table

Author: Date: Change: Reasoning:

Connor 3-10-202
3

Created Section 5 outline System Verification due

Connor 3-12-202
3

Updated section 5.2.x.3 Drafted verification
processes for each system
requirement

Connor
and
Matthew

3-15-202
3

Added testing evidence for first 3
system requirements

System verification
checkoff

https://drive.google.com/file/d/12Ov_qO5t3QonwCIgd1l3LiUyua0GsEfV/view?usp=share_link
https://drive.google.com/file/d/12Ov_qO5t3QonwCIgd1l3LiUyua0GsEfV/view?usp=share_link
https://docs.google.com/spreadsheets/d/15XvtHX-u2aL4ID0-mnV4ChoKr82Q4szVSfAlMrmTsIw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/15XvtHX-u2aL4ID0-mnV4ChoKr82Q4szVSfAlMrmTsIw/edit?usp=sharing

85

6 - Project Closing

6.1 - Future Recommendations

6.1.1 - Technical Recommendations
Our current model suffers from an inability to clone a user's voice in real time to a high-quality
standard. The current model that we have implemented to act as the voice cloning system is
YourTTS[1], a minor variation of VITS[2]. Although VITS is state-of-the-art for the task of voice
cloning, it does not perform well when provided with a small voice sample from a user, which our
system requires. The first solution to such a problem is to utilize an updated model with better
real-time voice cloning capabilities once such a paper is published. A secondary solution is to
fine-tune the hyperparameters of VITS to a greater extent. Finally, we suggest exploring
additional datasets to include in the training data in addition to LibriTTS[3]. One notable dataset
that could be included is the VCTK dataset[4]. By providing more data in the training dataset,
the model will be capable of generalizing better to unseen data.

A secondary technical issue with our system is that the enclosure has a height of 38.5mm, a
width of 150mm, and a length of 210mm. As such, our system is not suitable for use as a
handheld device, even though it meets our engineering size requirement. Our plan for the
enclosure came to fruition late in the design process at the end of the second term due to
fluctuations in the choice of hardware and microcontroller. A future group that uses our
hardware as a starting point would be capable of optimizing the enclosure to fit all the
components while also being handheld.

A tertiary technical issue with our system is it does not utilize a built-in power supply. Currently,
the system uses power from a wall outlet. As such, a future improvement would be to include a
battery in the enclosure. Doing so would allow the system to be portable rather than stationary.

Our final technical issue with the design is the slow model speed. Such an issue results from
our voice cloning model VITS being slow to generate speech waveforms [2]. However, it is also
partially due to our raspberry pi model 4B being inadequate for machine learning inference.
Some potential obvious solutions for the slowness issue include using an updated model which
prioritizes speed or using more powerful hardware for the microcontroller. However, some
alternative subtler approaches include applying structured pruning or knowledge distillation.
Structured pruning refers to removing entire nodes rather than individual connections from a
neural network, as is done in unstructured pruning[5]. Structured pruning is a preferable option
over unstructured pruning as the hardware is able to take advantage of the network
optimization, increasing performance. Knowledge distillation refers to using a larger, more
complex model to aid in training a simplified model[6].

86

6.1.2 - Global Impact Recommendations
1. Ensure realism of cloned voice is still distinguishable between the human and machine.

a. With real-time voice cloning, the dangers of easily recreating and mimicking a
voice to social engineer people and manipulate others with a realistic voice pose
a real threat at a global level. Within the SV2TTS paper[7], there is mention that
the synthesis of the voice of a cloned voice is generated to be distinguishable
from the real voice. This should be further researched and made sure to be
implemented in future improvements or changes to the model used for voice
cloning within embedded devices.

2. Ensure accessibility of device and interface to those with disabilities
a. One key goal of the project is to allow those who are losing or have lost their

voice to quickly gain it back and have the ability to talk again using a handheld
device. As such, it is recommended that future improvements keep in mind the
target audience for usability with a focus on easy usability and accessibility.

6.1.3 - Teamwork Recommendations
Our first teamwork recommendation is to create a meeting agenda whenever you meet as a
team. Our group found that when we did not have a meeting agenda prior to the meeting, we
would fail to use our time properly and would get distracted. By creating a meeting agenda, it
will ultimately save everyone in your team time and ensure all important points are discussed.
We found the outline provided by [8] to be effective at creating our own agendas. Each agenda
entry includes an item, a desired outcome, a priority, a time, a person, and a methodology [8].

Our second teamwork recommendation is to create a project timeline early and stick to it. In our
team, we were late to create a project timeline and did not start adhering to the timeline until the
middle of the second term. As such, we were rushed at the end to complete our blocks.
Additionally, since we were not in sync with our project timeline, our whole team was out of sync
causing difficulties in collaborating on blocks that interacted with each other. We suggest once
a project timeline is created, continuously update it as the project progresses. Not every task
will be completed in the time expected, and as such, adjustments are expected[9].

6.2 - Project Artifact Summary with Links
Github Repository Zip file link:
https://drive.google.com/file/d/1C81jRG0r4Kq9vkeb_UQTGStHYampRNcA/view?usp=sharing

https://drive.google.com/file/d/1C81jRG0r4Kq9vkeb_UQTGStHYampRNcA/view?usp=sharing

87

Schematic Diagrams:

Figure 6.2.1: 10 Key Button Text Interface Schematic

Figure 6.2.2: Audio Amplifier Schematic

88

Enclosure diagrams:

Figure 6.2.3: Enclosure dimensions in millimeters

Figure 6.2.4:Transparent image of Enclosure. Screw holes for mounting parts visible above.

89

6.3 - Presentation Materials
Link to showcase website:
https://eecs.engineering.oregonstate.edu/project-showcase/projects/?id=DB9y1TtmH8BPSD3F

Project Poster:

Figure 6.3: Project Poster

6.4 - References and File Links

[1] Casanova, E., Weber, J., Shulby, C., Junior, A. C., Gölge, E., and Antonelli Ponti, M.,
“YourTTS: Towards Zero-Shot Multi-Speaker TTS and Zero-Shot Voice Conversion for
everyone”, arXiv e-prints, 2021.

[2] Kim, J., Kong, J., and Son, J., “Conditional Variational Autoencoder with Adversarial
Learning for End-to-End Text-to-Speech”, arXiv e-prints, 2021.

[3] Zen, H., “LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech”, arXiv
e-prints, 2019.

https://eecs.engineering.oregonstate.edu/project-showcase/projects/?id=DB9y1TtmH8BPSD3F

90

[4] “VCTK Dataset.” Machine Learning Datasets,
datasets.activeloop.ai/docs/ml/datasets/vctk-dataset/. Accessed 1 Dec. 2022.

[5] Anwar, S., Hwang, K., and Sung, W., “Structured Pruning of Deep Convolutional Neural
Networks”, arXiv e-prints, 2015. doi:10.48550/arXiv.1512.08571.

[6] Hinton, G., Vinyals, O., and Dean, J., “Distilling the Knowledge in a Neural Network”,
arXiv e-prints, 2015. doi:10.48550/arXiv.1503.02531.

[7] Jia Y., “Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech
Synthesis”, arXiv e-prints, 2018.

[8] “How and why to use a meeting agenda,” MIT Human Resources,
https://hr.mit.edu/learning-topics/meetings/articles/agendas (accessed May 13, 2023).

[9] L. Hennigan, “How to create a simple, effective project timeline in six steps,” Forbes,
https://www.forbes.com/advisor/business/software/create-a-project-timeline/ (accessed
May 13, 2023).

