ECE 271 Final Project

Team Members: David Mora, Nathan Stageberg, Luke Goldsworthy, and Kathleen Xiong

December 2019

Table of Contents

1. Introduction 3
2. High Level Description 4
3. Controller Descriptions 5
3.1 Inputs 5
3.1.1 NES Controller Description 5

3.1.2 PS/2 Keyboard Description 6

3.1.3 Analog Potentiometer Description 7

3.2 Outputs 8
3.2.1 DE10-Lite 7-Segment Display Description 8

3.2.2 VGA Output Description 9

3.2.3 DC Motor (Basic Motion) Description 11

4. HDL Components 13
4.1 Top-Level Components 13
4.1.1 Multiplexer 14

4.2 NES Components 14
4.3 Keyboard Components 18
4.3.1 Keyboard 18

4.3.2 Keyboard Decoder 19

4.4 Potentiometer Components 20
4.4.1 Potentiometer 20

4.4.2 Analog/Digital Converter 20

4.5 7-Segment Components 21
451 7-Segment High Level 21

4.5.2 7-Segment Decoder (Lab3) 22

4.5.3 Individual Segment Decoders 23

4.6 VGA Components 23
4.6.1 VGA Driver 23

4.7 DC Motor Components 24

5. Appendix 26
5.1 Verilog and SystemVerilog Source Code 26
5.1.1 Top Level 26

5.1.2 NES Controller 32

5.1.2.1 NES Reader 32

5.1.2.2 NES decoder for DC Motor 1 35

5.1.2.3 NES decoder for DC Motor 2
5.1.2.4 NES decoder for DC Motor 3
5.1.3 PS/2 Keyboard
5.1.3.1 keyboard (Keyboard Analyzer)
5.1.3.2 PS/2 Decoder
5.1.3.3 PS2 Keyboard
5.1.4 Analog Potentiometer

5.1.5 DE10-Lite 7 Segment Display
There is no verilog code for the seven-segment display

5.1.6 VGA Output
5.1.7 DC motor (Basic Motion)
5.2 Simulation Results
5.2.1 Top Level
5.2.2 NES Controller
5.2.3 PS/2 Keyboard
5.2.4 Analog Potentiometer
5.2.5 DE10-Lite 7-Segment Display
5.2.6 VGA Output
5.2.7 DC Motor

6. Physical Implementation

7. References

35
36
37
37
38
40
41

42
42
46
48
48
51
55
56
57
58
59

61

61

1. Introduction

The purpose of this project is to mimic a robotic arm. This robotic arm is represented with three
DC motors. The reason why these motors could represent a robotic arm is because the motors
show the direction and speed that the robotic arm would have. Each motor will have a direction
that it spins and speed of the spin; therefore, the design project can be split up into two parts, the
implementation of the direction and speed. The DC motors will either spin clockwise or counter
clockwise and will only do so when the enable is at a logic high. The enable allows the motor to
start spinning in whatever direction is indicated. Then the motor speed is chosen for all of the
motors.

The first part of this project describes how direction will be implemented. Whether they turn
clockwise or counter clockwise is controlled with either the PS/2 Keyboard or the Nes
Controller. The PS/2 keyboard and Nes Controller will control the three motors to turn
whichever way that's indicated when specified buttons are pressed. However, it’s designed to
only register that either the PS/2 keyboard or the Nes controller is powering it, and never at the
same time. It’s designed this way so that the two inputs won’t have any collisions when data is
read from two different sources. The Nes Controller will turn motor 1 when buttons up and down
are pressed. Then motor 2 will spin when left and right are pressed; and lastly, motor 3 will spin
when a and b are pressed. Similarly, the PS/2 keyboard will spin a certain motor when certain
buttons are pressed. The PS/2 keyboard will use 6 keys. Two keys will control the direction of
motor rotation for each of the three axes of motion.

Then the second part of this project is determining the speed. The speed of the motors are
controlled by an Analog Potentiometer. When the Analog potentiometer is dialed higher, it
increases the speed of the motors which will speed up the spinning. In order to actually know
how fast or slow the motors are running, the speed is displayed onto a seven segment display and
a VGA output. As the speed increases by the Analog Potentiometer, the Seven segment display
will output the value in hexadecimal digits, and the VGA output will display the speed going
from red to blue (red being the lowest and blue being the highest).

2. High Level Description

To motors

- Powar(g..0] DE
Clock Clock ;
En2) g
Mede[1. .0 +
NES Latch Latch NES adaf D|']
Reader . Decoder Pawerfa.JMotor —
Datal7..0]] Datalr g CONMELS-0] ey Controllers 7= >
; Mods[1..0] +
p Multiplexer Powe®.0] o
e AGE.0 En2.0] 3/ Enfol Froqg f——o
& " Mods[1..0] +
Controf5..0) |t BCE.0 g
PS/2 PS/2 S—
ut to isplay
Reader Decoder i
Data[7..0] ,§ Data[7..0] m’— Digit0[6..q] ﬁ/—
s 7
Power ! Seg Digit1[6..0] +
Driver
7:
Digit2[6..0] +
Qut to monitor
SV . HSync
% Arduino 10 Veyne
4
Potentiometer s PIN A/D powsrs 0lf et power VGA Redis 0 ol
Converter Drivergresnis. o f——pbo
= P ook Blus(3.0] +4

Figure 1: Top Level Design diagram

The figure above shows the high-level, functional view of the design. The motor control from
two of our inputs are passed through a multiplexer, so that the user can either command the
motors with the NES controller, or the keyboard, but not both simultaneously. Both input blocks
decode the data received from the peripheral and produce signals that the motor control logic an
understand. Our other input is a potentiometer, which controls the speed at which the motors
rotate. To connect the potentiometer, we relied on an analog/digital converter. We tried using the
internal one provided by the MAX10 FPGA, but it was problematic, so we used an Arduino
Mega board instead. To keep the design simple, a single speed value is used by all three motors.

The value of the potentiometer is also displayed in hexadecimal base in the 7-segment displays
of the DE-10 Lite board in addition to being represented as a solid color in a VGA display,
shifting from red to blue as the potentiometer value increases. The NES and PS/2 controllers
determine which motors are active and when.

3. Controller Descriptions
3.1 Inputs

The following three descriptions are descriptions of all inputs for this project. The project uses
the NES controller, PS/2 Keyboard, and the Analog Potentiometer as inputs for the project as a
whole.

3.1.1 NES Controller Description

The hardware of the NES controller can be broken down into two parts. The NES controller is a
game controller with buttons such as a, b, start, and so on. These buttons are then programmed to
give an input signal into our design using both a NES reader and a NES decoder.

+o

P

R1 R2 R3 R4 RS RE R7 RE
+5Y
1Kﬂ§1kﬂ§1 kﬂ§1 kﬂ§1kfx§1kl}§1kﬁ§1 kﬂg ,
: LO Power
Ground
s1 I J:
—%)
] Right
53
ket "_l_ c MES Data
S4
Down
Up S5 |
56
I Start oy NES Clock
s7
Select l oy NES Latch
g ¢
A

Figure 2: NES Controller schematic'

First the NES reader takes in the inputs from the actual hardware and then passes it onto
whatever the inputs would control. The NES reader block’s job is to allow other outputs to be
able to read the input signals from the NES controller. In the figure above it demonstrates the
function of the NES reader. The main idea is that when the NES controller’s button is pressed,
the signal is sent into the NES reader as the NES data. Then this Data follows the clock cycle and
is pass through when the latch is pulled. This latch also is in sync with the clock signal and will
generate a latch to whatever input is pressed and create a signal. In the figure, the latches are
represented in far left. When these latches are connected it takes time for the them disconnect

! https://www.allaboutcircuits.com/projects/nes-controller-interface-with-an-arduino-uno/

https://www.allaboutcircuits.com/projects/nes-controller-interface-with-an-arduino-uno/

and connect again; therefore, in the NES reader will stores the data until the latch is in sync with
the clock and it can register a new input for the data. This explains how the NES controller can
press a single button and it will keep the motor running even when the button is not pressed
anymore.This is the first part in demonstrating the inter-workings for the NES controller.

The second part of the NES controller, specific to this design is the NES decoder. This Decoder
is split up into three decoders, one for every motor that needs to be controlled. For motor one, we
can assign the down and up to control the direction of the motor. This is done by making sure
that when the up or down button is pressed on the NES controller, it will output a logic 1 into the
first motor. This logic block is done using if statements to make sure that when up is pressed
then there is a logic one output, and when down is pressed then there is also a logic one
outputted. Then the last statement is an else statement that will generate a logic 0, or low output
for any other case. So, if another other is button is pressed, if no button was pressed, or if both
buttons are pressed at the same time, it will give motor 1 a logic zero output. The same logic is
used for the rest of the NES decoders for the other motors. The only difference is that each motor
is assigned different buttons to control the direction and enable.

3.1.2 PS/2 Keyboard Description

The top level design of the PS/2 keyboard module involves two blocks, the ‘keyboard” module
(which will be referred to as the keyboard analyzer) which takes in the actual physical
keyboard’s clock and data signals via the PS/2 port, which then sends the 8-bit value that
represents a key’s make code (represented in hexadecimal) to the decoder. For our purposes, we
are using only 6 keys of the full keyboard, aimed to control three different stepper motors by
enabling them and determining direction. The decoder will enable the X-axis motor if either the
A or D keys are pressed, the Y-axis if either the W or S keys are pressed, or the Z-axis if the left
and right arrow keys are pressed. A, W, and Left-Arrow keys make their specific motor rotate
counter clockwise, while the D, S, and Right-Arrow keys make the motors turn clockwise. If
none of those buttons are pushed, there will be no rotation for any motor.

Pins of the PS/2 Where they
Plug connect to
1-Data Keyboard Analyzer Male ot f‘_"g‘a?aﬁ“i'nm (S
. 5 B 2 2 - Not Implemented
2-N/A Nothing ¢ ,,3) 3-Ground
o o0 4 -Vee (+5\'r)

- 5 - Clock

3-GND Ground (Plug) (Socket) 6 - Not Implemented

4-Vce 5v source of the
FPGA
5-Clock Keyboard Analyzer
6-N/A Nothing

Figure 3: A list of what logic values connect to
different pins of the PS/2 port.

Figure 4: Visual of the PS/2 Male and Female
ports, and their connections®

Within the keyboard analyzer is an 11-bit register (that functions similarly to a shift register) that

takes in the 11 bits of data over the clock input’s rising edge, and then outputting the 8 data bits

on the falling edge, which is taken to the decoder. The decoder takes this input in as a bus and,

using SystemVerilog, directly compares their value to the hex values of the 6 keys we are using,

and will change output values as mentioned above.

CLOCK | | | | | |
DATA

START
DATAD
DATA1
DATAZ
DATA3

DATA4

DATAL
DATAG
DATAY
PARITY
STOP

Figure 5: Waveforms of a PS/2 Keyboard transferring Data to a device
(such as a PC, or the FPGA in our case)’

Eight of the eleven bits from the data line represent the make code of the key being pushed,

being the 2nd through 9th data value taken. The first data bit is always the least significant bit, so
in the diagram above, DATAO is the LSB. The 10th bit is the Parity bit, which is used in
detecting errors, but overall not critical to our implementation. The last bit is the stop bit, which

is always 1, telling the device taking the keyboard input to stop.

2 http://www.burtonsys.com/ps2_chapweske.htm

3 http://www.burtonsys.com/ps2_chapweske.htm

http://www.burtonsys.com/ps2_chapweske.htm
http://www.burtonsys.com/ps2_chapweske.htm

3.1.3 Analog Potentiometer Description

The analog potentiometer is obviously analog, which generates special considerations for
implementation. The output is generated by the middle pin, with the left pin serving as a ground
and the right pin serving as VCC. As the potentiometer’s knob is twisted, the middle pin’s
current source shifts from closer to one pin than the other, generating a value in between the two.

otating Dial
esistive Element

A
A\ B
Connection Leads

Figure 6: Analog Potentiometer pins and demonstration of voltage

For this project, all input was digital, so we converted the analog input to a digital signal with bit
width 10. This process will be covered in the HDL Components section. The signal updates on
time increments relative to the size of the value being transmitted. For example, when values
close to 0 are being updated they update at a rate around 20 Hz, but values close to 1023 only
update at around 0.55 Hz.

3.2 Outputs

The next three descriptions are brief explanations of all of the outputs used for the project. The
project uses the 7-Segment display, VGA output, and the DC motors as the outputs.

3.2.1 DE10-Lite 7-Segment Display Description

Incoming data is accepted at a bit width of 4, and is output to a seven-segment display,
representing a hexadecimal value. This input comes from within the DE-10 Lite board, and the
seven-segment display is active low.

Figure 7: Details of DE-10 Lite output to display

3.2.2 VGA Output Description

The incoming data from the potentiometer is fed into the VGA logic block along with a 50 MHz
clock to generate the 14 VGA output bits. Two of the outputs, VSync and HSync define the
output style (640x480 at 60 Hz), while the other 12 provide the RGB values. The VSync and
HSync outputs ensure that the RGB display values are only being output during the display
interval in the diagram and tables below.

Back porch (b)
1

Front porch (d)

<4—p Display interval (c) |d4=p

DATA

RGB

HSYNC

il
w

#| Sync (a)

Figure 3-22 VGA horizontal timing specification

Table 3-9 VGA Horizontal Timing Specification

VGA mode Horizontal Timing Spec
Configuration Resolution(HxV) a(pixel | b(pixel | c(pixel | d(pixel | Pixel clock{MHz)
clock clock clock clock
cycle) cycle) cycle) cycle)
VGA(60Hz) 640x480 96 48 640 16 25
Table 3-10 VGA Vertical Timing Specification
VGA mode Vertical Timing Spec
Configuration Resolution(HxV) a(lines) | b(lines) | c(lines) | d(lines) | Pixel clock(MHz)
VGA(60Hz) 640x480 2 33 480 10 25

Figure 8: VGA timing specification data*

The RGB values are twelve bits total, meaning each color can be assigned one hex value. In this

project, only red and blue will be active. The RGB values are exported from the DE-10 Lite

board to the three corresponding pins on the VGA port, as shown in the figure below.

4 ECE 272 Section 6

10

VGA_G

VGA G3

VGEA_BO | i:i:i
VGA_B1 ‘.N"V

VGA_B2

| vea_vs

VGA_HS M

Figure 9: VGA output pins visual’

3.2.3 DC Motor (Basic Motion) Description

The incoming data from the keyboard or the NES controller along with the speed value are fed to
the motor control components. The logic is made of three instances of a block called Motor
Controller. The Motor Controller uses direction and speed information to produce signals that
are, in turn, sent to a stepper motor driver based on the Allegro 3967 driver which greatly
simplifies the operation of this kind of motors to two lines (direction and step) at a minimum. It
can be configured to run the motor in full-step, half-step, quarter-step, and eighth-step. Through
experimentation we found that quarted-step motion provides a good balance between speed and
smoothness. For the step signal, a transition from low to high makes the driver run one step (or
fraction of a step) so the speed of the rotation is determined by the frequency of the pulses
applied to the step input of the driver.

3 DE10-Lite User Manual

11

Timing Requirements
(T = +25°C, Vo = 5 V, Logic Levels are V- and Ground)

l 50%

STEP 7

MS1ms2/
DIR/RESET
E —m»
ryi
L
SLEEP

Dwg. WP-042

A. Minimum Command Active Time
Before Step Pulse (Data Set-Up Time) 200 ns

B. Minimum Command Active Time

After Step Pulse (Data Hold Time) 200 ns
C. Minimum STEP Pulse Width 1.0 ps
D. Minimum STEP Low Timeccee.... 1.0 ps
E. Maximum Wake-Up Time1.0ms

Figure 10: Signals and timing requirements for DC Motor®

The Motor Controller module takes care of generating a square wave with a frequency that is
proportional to the speed value (a 10-bit number provided by the potentiometer/ADC
component). This wave is applied to the step input of the driver as long as the enable input of the
Motor Controller is high. The direction input is applied directly to the direction pin of the driver
taking into account the timing requirements of the driver as illustrated above.

¢ https://www.allegromicro.com/en/Products/Motor-Drivers/Brush-DC-Motor-Drivers/A3967

12

https://www.allegromicro.com/en/Products/Motor-Drivers/Brush-DC-Motor-Drivers/A3967

4. HDL Components
4.1 Top-Level Components

To make the system composition easier to understand, we decided to use schematic entry for the
top-level. Although SystemVerilog is relatively easy to understand when uses in structural mode,

the diagram below is much more descriptive than a series of module declarations in text would
be.

3 i e PECRE|
e ——

Y Axis

Z Axis

e 1]

Figure 11: Top level design view.

Inputs: button states from the NES controller, key codes from PS/2 keyboard, input route
selector, and digitized potentiometer voltage. The inputs are described in more detail in the
individual block sections.

Outputs: control signals to NES controller, motor control signals, VGA representation of current
motor speed, seven-segment representation of current motor speed.

Description: the system is very simple and has a clear demarcation between inputs and outputs.
Using a switch as a selector, the operator can choose to use a keyboard or a game controller to
send movement instructions to the circuit. These instructions are then routed to the relevant axis
motor controller who then produces the correct signal to move a stepper motor. The speed is
determined using a potentiometer/ACD component and this value is routed to all the motor
controllers and to VGA and seven-segment display drivers.

13

4.1.1 Multiplexer

Parameter| Value Type
N 6 Signed Integer
“Mux2n
a[N-1..0] Z[N-1..0] +—
b[N-1..0]
select
- inst11

Figure 12: Multiplexer HDL Design

Inputs: two 6-bit busses collating the motion signals from the game controller and the keyboard,
and a select line to configure which input bus is active.

Outputs: a 6-bit bus with the motion signals.

Description: this is a simple multiplexer with the only notable characteristic that the input and
output lines can be configurable in width. This was useful earlier in the design.

4.2 NES Components

There are two main parts of the NES controller. The first major part is the NES reader which will
read the data from the NES hardware when a button is pressed. Then the next part is the NES
decoder that's specific to this project. Because the project is working with three DC Motors, the

project is designed to split specific buttons to each motor; thus, there are three different NES
decoders.

14

4.2.1 NES Reader

MesClockStateDecodermatt_i2

nt"stt[':l' Clock
Controllerstate| 5. nesC1DCK
= | [clockRed
MesLatchStateDecodermatt_i2
nitrollerState[2_ 0] Latch
controlle ate[3 i NES C
) [# s - latchCrange
Counterd:matt_i1 . 7 L i
a
MesDataReceiverDecodermatt_i4
1 kD ck § count{3..0] = b
cloc - - 2
reset ”|: reset_n (B8 T controllerstate[3.0] : down
il d datavellow | readButtons[7_al left
dataYellow [> r::n RS [right
Eset_ -
select
4
start
z
up

Figure 13: NES Reader Design

In the figure above, it demonstrates the basic logic blocks for the NES reader. As shown, there
are three inputs: the clock, reset, and dataYellow. This dataYellow is the data of which button
has been pressed. Then the clock input is just assigned to any clock signal, and the reset will
reset the whole reader when a specific button is pressed. Then the outputs of this NES reader is
the clock Red signal, the latch orange, and the buttons. The clock Red and latch orange are
unassigned for this digital design. The start and select buttons are also unassigned outputs
because they don’t have a motor to control. Then finally the other buttons are assigned to the
three motors; up and down to motor 1, left and right to motor two, and a and b to motor 3. The
rest of the circuit shows how the logic blocks are connected in order to work the way it needs to.
The NES Reader is designed to take in some data of button(s) being pushed then sending that
signal over to something else. The NES clock state decoder takes the clock signal and then
outputs it out, this logic block also keeps track of the state the NES is in like memory. Then the
NES latch state decoder will output a latch, and it will also remember the latch in what state it is
in before a new data input is sent in. Then finally the NES data receiver decoder will take the
information from the data Yellow and output that button being pressed.

15

4.2.2 NES decoder for DC Motor 1

- cw_ccwl
0
down
D 1h1 1 cw_ccwl

enl

0]
1'h1 1

eni

Figure 14: Design of NES decoder for DC Motor 1

This is a simple MUX which will choose to output a logic one when up or down are also one.
This demonstrates the logic for the NES controller to move motor 1. The inputs are up and down.
This means that when up or down is pressed it will send a logic high signal into the MUX. Then
the MUX will take the two bits and output a one bit of logic high into the
clockwise/counterclockwise and the enable. The outputs are the clockwise and counter clockwise
direction and the enable for motor 1. The enable will allow the motor to start spinning only when
there is a logic one fed into it. Therefore, when either up and down are pressed, it will send a
signal to start spinning and enable the spin.

4.2.3 NES decoder for DC Motor 2

left|, >—
cw_ccw?2
0
right
€ D 1h1 1 cw_ccw?2
en2

0

1h11 en2

Figure 15: Design of NES decoder for DC Motor 2

16

The same logic is used here as the NES decoder for DC Motor 1. However, instead of using up
and down it uses the buttons left and right. Please refer to NES decoder for DC Motor 1.

4.2.4 NES decoder for DC Motor 3

A
b[>

Figure 16: Design of NES decoder for DC Motor 3

The same logic is used here as the NES decoder for DC Motor 1. However, instead of using up
and down it uses the buttons a and b. Please refer to NES decoder for DC Motor 1.

17

4.3 PS/2 Components
4.3.1 Keyboard

GND [
Pinz [~
Pans [
Ciack

[oLL o —
L —

Decode Tl [T
Ve[S

=]

Bata_currio]

gl g

5
WideOro F et
- E sz ol
i o
DATAR.0]

33
"

fig
]

) “m
u“_..
B

af

F

Figure 17: PS/2 Keyboard Design, synthesized with Quartus Lite

Inputs: The 6 pins on the PS/2 Port. The Data signal is pin 1, Clock signal is pin 5, GND is pin 3,

Vcc is pin 4, and pins 2 and 6 are not implemented, so they go to nothing. All inputs are 1-bit.
Outputs: This module will output a single 8-bit signal that represents the make code of the key
being pushed.

Description: This module is designed to analyze signals outputted by the PS/2 keyboard and

decode what keys they represent, responding properly to the keyboard’s clock, and output the
value representing the key pressed to whatever device it is connected to, in our case staying on
the FPGA.

18

4.3.2 Keyboard Decoder

—l

Figure 18: PS/2 Keyboard Decoder Design, synthesized with Quartus Lite

Inputs: The decoder takes in two inputs: One being an 8-bit bus, the value that the keyboard
analyzer outputs. The other is a clock, but not the same clock from the keyboard, rather a
separate (preferably faster) clock that is used to send signals to our outputs and make the
SystemVerilog code work properly.

Outputs: There are 6 outputs, 2 for representing needed values in each dimensional axis. There is
a clockwise output (_ CW) and enable output (_EN) for the X, Y, and Z axes. All are 1-bit.
Description: Assuming a single key is pushed at a time, the keyboard analyzer will send the
value pressed to this decoder, where six specific keys are used for our project, two for controlling
each dimension. If the value that is taken in represents the A key, then the X-Axis motor will be
enabled and the clockwise signal will be low, meaning that the motor should rotate
counter-clockwise. If any key other than the 6 keys being used are pressed, all enable and
rotation values will be low, so no rotation in the motors occur.

19

4.4 Potentiometer Components
4.4.1 Potentiometer

GND OouT 5V

Figure 19: Potentiometer physical design

Inputs: The potentiometer takes two inputs, one from the VCC and one from ground. These two
voltages are both put onto a wire inside the potentiometer, which allows us to define the output.
Outputs. The singular output of the potentiometer is a value between 0V and 5V, which is
determined by turning the knob on the potentiometer.

Description: As the knob twists closer to the VCC, the voltage increases, and as the knob twists
closer to the ground, the voltage decreases.

4.4.2 Analog/Digital Converter

5V 10
1/0 Pins I/0 Pins

Analog Arduino FPGA
Pin ADC

GND I

Figure 20: Analog/Digital Converter design

Inputs: The analog/digital converter only has one input pin, which holds an analog voltage
between OV and 5V.

20

Outputs: The output logic takes the input pin and converts the voltage into a ten-bit value based
on its voltage relative to the 5V maximum. For example, a 5V input would output all 1s, and a
0V input would output all Os, and a 2.5V input would generate the value 1000000000 (binary),
halfway between 0000000000 and 1111111111. This ten-bit value is transferred to the FPGA via
the output pins on the arduino to the input pins on the DE-10 Lite.

Description: The analog/digital converter is unique, as it is the only piece of logic not rendered
by the FPGA. The analog/digital converter is on an Arduino Mega, which connects to the FPGA
via the I/O pins on the respective boards.

4.5 7-Segment Components
4.5.1 7-Segment High Level

Segments[6.0]

Bits[3.0] Segments[6.0]

-+ ilab3

Bits[3.0] Segments[6.0]

Figure 21: Seven-Segment display highest level design

Inputs: The Seven-Segment display’s top level HDL file takes input from the potentiometer’s
analog/digital converter, and from ground. The ten bit input is broken into three separate wires,
two with four bits and one with two.

Outputs.: There are 21 output pins, creating three digits on the seven-segment display on our
FPGA. The display will show a hexadecimal value between 000 and 3FF, indicating current level
of voltage from the potentiometer, implicitly also indicating motor speed.

Description: The split of the ten-bit wire separates the two highest significance bits from the four
mid-significance and four lowest-significance bits. The two highest significance bits are put into
a bus of width 3 with two ground signals, forcing the bus to always be [00XX]. Next, these three
four-bit width busses are put through three seven segment decoders to create the output.

21

4.5.2 7-Segment Decoder (Lab3)

Figure 22: Seven-Segment decoder design

Inputs: The seven-segment decoder takes a four input bus representing a hex value from 0 to F.
Outputs: The seven-segment decoder generates seven bits of output, one for each segment on the
display. It is important to note that these output signals are active low.

Description: In binary, this value is broken into its individual bits which are sent through
individual segment drivers generated from karnaugh maps, creating our output. The output is
seven bits that visually create a number in hexadecimal based on the four bit binary input value.

22

4.5.3 Individual Segment Decoders

Figure 23: An example individual segment decoder. Logic derived from Karnaugh maps.

Inputs: All seven of the individual segment decoders take a four-bit input value as four discrete
bits.

Outputs: Each individual segment decoder outputs either 1 or 0.

Description: The four bits go through some sum-of-products logic gates to determine a single
boolean output bit. This bit powers a single chunk of a seven-segment display, under the
assumption that the display is active low.

4.6 VGA Components
4.6.1 VGA Driver

Figure 24: VGA driver at highest level (Less abstracted model)

23

CLK

Hsync
lterator Enable Reset Iterator 3¢ 4
Hsync Vsync % Vsync

Reset
Reset X Iterator Iterator Enable

-——
Enable ,{4 Red

RGB Calculator | / 4 | Green

10

Potentiometer| Potentiometer

Figure 25: VGA driver at highest level (More abstracted model)

Inputs: The VGA Driver has 3 types of input, clock, reset, and the ten-bit signal from the
analog/digital converter from the potentiometer. The clock signal accepts a SOMHz clock. The
reset doesn’t actually do anything. The ten bit signal from the arduino generates color values for
the output.

Outputs: The driver outputs a color from red to blue, based on the four most significant bits of
the potentiometer’s value. The driver also outputs Hsync and Vsync signals, generated to create a
VGA on 60Hz with resolution 640x480. When these outputs are all properly sent through a VGA
port, it should generate a single solid color on a VGA monitor.

Description: The S0MHz clock signal is passed through internal logic that slows it down
properly to drive a 60Hz monitor, and the slowed clock is then passed through the hsync and
vsync logic to create a proper enable window for the RGB values. The RGB values are
determined by the four most significant bits of the potentiometer’s data. The four bit value
becomes the blue output, and is inverted to become the red output. There is no green output. This
generates the effect of transitioning from red through purple to blue as the value gets larger. The
reset signal really doesn’t do anything.

4.7 DC Motor Components

Inputs: The module accepts a clock signal, reset signal, direction indicator and motion enable
signals, and a 10-bit speed value.

Outputs: a variable frequency step signal, direction indicator and two mode signals that
configure the stepping rate (full, half, quarter, and eighth of a step). These are the signals require
to operate an Allegro A3967 stepper motor controller.

24

Description:

MotorController:iinst7

dir_in
Counter:clkCount
clk el ClockDivider:clkScaler
1'h1 enable q[31..0]
clk
reset_n reset n
= divisor[9..0] clk_div
speed[9..0]
reset_n
1'h0 ciN ~ LessThanO
10'h0 A[9.0] ouT step
enable B0l

dir~reg0

m2~reg0

m1

m2

J

Figure 26: RTL view of the full MotorController module.

The Motor Controller component consists of a clock scaling stage that divides the FPGA’s 50
MHz clock by 2!! bringing it down to 24.4 KHz. Although the Allegro diver specifies 1 ps as the
minimum pulse width, we found that, in practice, with the particular motors we were using, the

minimum pulse that would work was 40 ps, thus the maximum frequency the controller should
produce is 12.5 KHz.

Counter:clkCount

=

clk

: Addo
e g[0]~reg[31..0]

A[31..0] OUT[31..0]
32'h1 B[31..0]

enable

reset n

i
q[31..0]

Figure 27: RTL view of the 32-bit binary counter.

25

This signal is then used to drive a counter that will count up to the value provided by the speed
input and then reset. Every time the counter reached the speed value, its output changes from
high to low or low to high, thus the frequency of the output is proportional to the speed value,
this signal is called the motor pulse.

ClockDivider:clkScaler

mn

count[9.0] = clk_div-reg0

b

D
LK
LK Q PCLK Q
EN 1ho
ScLr 1ho —sar
CLRN —jsar CLRN

resetn) |

10'h0

Thoan Addo

count~[9..0]
Al9.0] ’ﬁ 0UT[0.0] ur

1007 i9.0] Nl w'holj)— =
] | Thoan Add1 Th1em LessThand
divisor([9.0] A0. OL.,Y;\OUT“’J—U] Al9.0] \/‘?\OUT
& 11h7ff 810, (;M BI9.0] R J

Figure 28: RTL view of the variable counter.

The A3967 specifies 200 ns as the setup and hold times for the configuration signals (direction,
ml, m2), so they are passed through registers that are triggered by the falling edge of the motor
pulse. Since this pulse is never smaller than 20 us, signals are compliant with the timings.
Finally, the motor pulse is only active (present on the step output) when the speed is non zero
and the enable input is high.

The m1 and m2 signals were hardwired to the values m1:0 and m2:1 which sets the controller to
issue quarter-step increments which provided a good compromise between smooth operation and
maximum speed. A more sophisticated algorithm could vary these values depending on the
current speed input.

5. Appendix

5.1 Verilog and SystemVerilog Source Code

5.1.1 Top Level

We created the top level using schematic entry. For simulation purposes, we used Quartus’
Verilog generation function. This is the code generated:

// Copyright (C) 2018 Intel Corporation. All rights reserved.
// Your use of Intel Corporation's design tools, logic functions
// and other software and tools, and its AMPP partner logic

// functions, and any output files from any of the foregoing

// (including device programming or simulation files), and any
// associated documentation or information are expressly subject
// to the terms and conditions of the Intel Program License

26

//
//
/7
/7
//
//

/7
//
//

Subscription Agreement, the Intel Quartus Prime License Agreement,
the Intel FPGA IP License Agreement, or other applicable license
agreement, including, without limitation, that your use is for
the sole purpose of programming logic devices manufactured by
Intel and sold by Intel or its authorized distributors. Please
refer to the applicable agreement for further details.

PROGRAM "Quartus Prime"
VERSION "Version 18.1.0 Build 625 ©09/12/2018 SJ Lite Edition"
CREATED "Fri Dec 06 19:10:26 2019"

module FinalProject(

ps2_clk,
ps2_data,
nes_data,
reset,
clk,
input_select,
speed,
step_z,
step_y,
dir_y,
dir_z,
step_x,
dir_x,
nes_latch,
nes_clk,
ml_x,
m2_x,
mi_y,
m2_y,
mi_z,
m2_z,
VSync,
HSync,
Blue,
Green,
nes_ctrl,
ps2out,

27

input

input

input

input

input

input

input

output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output

Red,
Sego,
Segl,
Seg?

wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire

ps2_clk;
ps2_data;
nes_data;
reset;

clk;
input_select;
[9:0] speed;
step_z;
step_y;
dir_y;
dir_z;
step_x;
dir_x;
nes_latch;
nes_clk;
ml_x;

m2_x;

mi_y;

m2_y;

mi_z;

m2_z;

VSync;
HSync;

[3:0] Blue;
[3:0] Green;
[5:0] nes_ctrl;
[5:0] ps2out;
[3:0] Red;
[6:0] Seg0;
[6:0] Segl;
[6:0] Seg2;

28

wire [5:0] ctrl_out;

wire [5:0] nes_ctrl_ALTERA_SYNTHESIZED;
wire [5:0] ps2_ctrl;

wire [7:0] SYNTHESIZED_WIRE_O;

wire SYNTHESIZED_WIRE_1;

wire SYNTHESIZED_WIRE_2;

wire SYNTHESIZED_WIRE_3;

wire SYNTHESIZED_WIRE_4;

wire SYNTHESIZED_WIRE_5;

wire SYNTHESIZED_WIRE_6;

MotorController b2v_inst(
.clk(clk),
.dir_in(ctrl_out[41),
.enable(ctrl_out[51),
.reset_n(reset),
.speed(speed),
.step(step_z),
.dir(dir_z),
.m1(mi_z),
.m2(m2_z));

PS2Decoder b2v_inst1(
.clk(clk),
.a(SYNTHESIZED_WIRE_Q),
.xcw(ps2_ctrl[0]),
.xen(ps2_ctrl[1]),
.yew(ps2_ctrl[21),
.yen(ps2_ctrl[31),
.zcw(ps2_ctrl[4]),
.zen(ps2_ctrl[51));

PS2Keyboard b2v_inst10(

29

.clk(ps2_clk),
.data(ps2_data),
.keycode (SYNTHESIZED_WIRE_0Q));

Mux2n b2v_inst11(
.select(input_select),
.a(nes_ctrl_ALTERA_SYNTHESIZED),
.b(ps2_ctrl),

.z(ctrl_out));
defparam b2v_inst11.N = 6;

ADCSegBlock b2v_inst12(
.ADCVal(speed),
.BiggerVval(Seg1),
.BiggestVal(Seg2),
.SmallerVal(Seg0));

NesReader b2v_inst3(
.data(nes_data),
.clock_in(clk),
.reset_n(reset),
.latch(nes_latch),
.clock_out(nes_clk),
.Up(SYNTHESIZED_WIRE_5),
.down(SYNTHESIZED_WIRE_6),
.left (SYNTHESIZED_WIRE_1),
.right (SYNTHESIZED_WIRE_2),

.a(SYNTHESIZED_WIRE_3),
.b(SYNTHESIZED_WIRE_4));

NESCmdDecoder b2v_inst4(
.cmd1(SYNTHESIZED_WIRE_1),
.cmd2(SYNTHESIZED_WIRE_2),

.dir_out(nes_ctrl_ALTERA_SYNTHESIZED[0]),
.en(nes_ctrl_ALTERA_SYNTHESIZED[11));

NESCmdDecoder b2v_inst5(
.cmd1(SYNTHESIZED_WIRE_3),
.cmd2(SYNTHESIZED_WIRE_4),
.dir_out(nes_ctrl_ALTERA_SYNTHESIZED[2]),
.en(nes_ctrl_ALTERA_SYNTHESIZED[31));

NESCmdDecoder b2v_inst6(
.cmd1(SYNTHESIZED_WIRE_5),
.cmd2(SYNTHESIZED_WIRE_6),
.dir_out(nes_ctrl_ALTERA_SYNTHESIZED[41]),
.en(nes_ctrl_ALTERA_SYNTHESIZED[5]));

MotorController b2v_inst7(
.clk(clk),
.dir_in(ctrl_out[21),
.enable(ctrl_out[31),
.reset_n(reset),
.speed(speed),
.step(step_y),
.dir(dir_y),
.m1(mi_y),

.m2(m2_y));

MotorController b2v_inst8(
.clk(clk),
.dir_in(ctrl_out[0]),
.enable(ctrl_out[11),
.reset_n(reset),
.speed(speed),
.step(step_x),
.dir(dir_x),
.m1(ml1_x),

31

.m2(m2_x));

VGA b2v_inst9(
.Reset(reset),
.Clock(clk),
.ADCIn(speed),
.VGA_Hsync(HSync),
.VGA_Vsync(VSync),

.Blue(Blue),

.Green(Green),

.Red(Red));
assign nes_ctrl = nes_ctrl_ALTERA_SYNTHESIZED;
assign ps2out = ps2_ctrl;
endmodule

5.1.2 NES Controller
Since the Ness controller’s digital logic blocks can be described into separate logic blocks, the
following are SystemVerilog code for all the different blocks.

5.1.2.1 NES Reader

module NesReader(
input logic dataYellow,
input logic clock,
input logic reset_n,
output logic latchOrange,
output logic clockRed,
output logic up,
output logic down,
output logic left,
output logic right,
output logic start,
output logic select,
output logic a,
output logic b

);
logic [3:0] count;

Counter4 matt_i1(

.clk (clock),
.reset_n (reset_n),
.count (count)

);

NesClockStateDecoder matt_i2(
.controllerState (count),
.nesClock (clockRed)

);

NesLatchStateDecoder matt_i3 (
.controllerState (count),

.nesLatch (latchOrange)
);
NesDataReceiverDecoder matt_i4 (
.dataYellow (dataYellow),
.reset_n (reset_n),
.controllerState (count),
.readButtons ({a, b, select, start, up, down, left, right})
);
endmodule

module Counter4(
input logic clk, reset_n,
output logic [3:0] count);

always_ff @ (posedge clk, negedge reset_n)
if(!reset_n) count <= 4'b0;
else count <= count + 1;
endmodule

module NesLatchStateDecoder(
input logic [3:0] controllerState,
output logic nesLatch);

33

always_comb

case(controllerState)
4'h0: neslLatch = 1;
default: neslLatch = 0;

endcase
endmodule

module NesClockStateDecoder(
input logic [3:0] controllerState,

output logic nesClock);

always_comb

case (controllerState)

4'h2: nesClock = 1;
4'h4: nesClock = 1;
4'h6: nesClock = 1;
4'h8: nesClock = 1;
4'ha: nesClock = 1;
4'hC: nesClock = 1;
4'hE: nesClock = 1;
default: nesClock = 0;
endcase
endmodule

module NesDataReceiverDecoder(

input logic dataYellow,

input logic reset_n,

input logic [3:0] controllerState,
output logic [7:0] readButtons);

always_ff @ (posedge controllerState[0], negedge reset_n)
if(!reset_n) readButtons <= 8'b0;
else case(controllerState[3:0])

4'h1:
4'h3:
4'h5:
4'h7:
4'h9:

readButtons[7] <= dataYellow;
readButtons[6] <= dataYellow;
readButtons[5] <= dataYellow;

dataYellow;
dataYellow;

readButtons[4] <
readButtons[3] <

//a button
//b button
//select button
//start button
//up button

34

4'hB: readButtons[2] <=
4'hD: readButtons[1] <=
4'hF: readButtons[0] <=
default: readButtons <=

endcase
endmodule

5.1.2.2 NES decoder for DC Motor 1
module cw_ccwl (
input logic up,
input logic down,
output logic cw_ccwl,
output logic enl);

always @(up or down or cw_ccw]l

begin
if (up == 1)
begin
cw_ccwl
enl = 1;
end
else if (down ==1)
begin
cw_ccwl
enl = 1;
end
else
begin
cw_ccwl
enl = 0;
end
end
endmodule

5.1.2.3 NES decoder for DC Motor 2
module cw_ccw2 (

input logic left,

input logic right,

dataYellow; //down button
dataYellow; //left button
dataYellow; //right button
readButtons;

or enl)

35

output logic cw_ccw2,
output logic en2);

always @(left or right or cw_ccw2 or en2)

begin
if (left == 1)
begin
cw_ccw2 = 1;
en2 = 1;
end
else if (right ==1)
begin
cw_ccw2 = 1;
en2 = 1;
end
else
begin
CW_ccw2 = 0;
en2 = 0;
end
end
endmodule

5.1.2.4 NES decoder for DC Motor 3
module cw_ccw3 (
input logic a,
input logic b,
output logic cw_ccw3,
output logic en3);

always @(a or b or cw_ccw3 or en3)

begin
if (a == 1)
begin
cw_ccw3 = 1;
en3 = 1;
end
else if (b ==1)
begin

36

cw_ccw3

1
—

en3 = 1;
end
else
begin
cw_ccw3 = 0;
en3 = 0;
end
end
endmodule

5.1.3 PS/2 Keyboard

5.1.3.1 keyboard (Keyboard Analyzer)

//CODE CITATION: “PS2 Keyboard.” Students' Gymkhana, Indian Institute of
Technology Kanpur,
//http://students.iitk.ac.in/eclub/assets/tutorials/keyboard.pdf.

module keyboard(input wire clk,
input wire data,
output reg [7:0] disp);
reg [7:0]data_curr;
reg [3:0]b;
reg flag;

initial //sets the initial state of module when powered on
begin

b<=4'h1;

flag<=4'ho;

data_curr<=8'hfo;

disp<=8'hf0;
end

always @(negedge clk)begin //data is taken in at the negative edge
case(b)
1:; //nothing on first bit
2:data_curr[@]<=data;
3:data_curr[1]<=data;
4:data_curr[2]<=data;
5:data_curr[3]<=data;

37

6:data_curr[4]<=data;
7:data_curr[5]<=data;
8:data_curr[6]<=data;
9:data_curr[7]<=data;
10:flag<=1'b1; //Parity bit
11:flag<=1'bo; //end bit

endcase
if(b<=10)
b<=b+1;

else if(b==11)
b<=1;

end

always @(posedge flag)begin //outputs data to driver
//if(data_curr==8'hf0)
//else
disp<=data_curr;
end
endmodule

5.1.3.2 PS/2 Decoder
module ps2decoder(input logic [7:0]a,
input logic clk,
output logic xcw, xen,
ycw, yen,
ZCW, zen);
//AD will control the X-axis
//WS will control the y-axis
//Up and Down arrow will control Z-axis
//output of 1 implies clockwise, @ implies counterclockwise

initial //sets the initial state
begin
xen <= 0;
yen <= 0;
zen <= 0;
XCW <= 0;

38

end

ycw
zZCcw

<=0
<=0

always @ (posedge clk)

if(a

end
else

end
else

end
else

end
else

end
else

end
else

end
endmodule

== 8'h1c)begin

Xen
XCW

if(a
xen
XCW

if(a
yen
yCcw

if(a
yen
yCcw

if(a
zen
zZcw

if(a
zen
zZcw

8'h23)begin
13
1;

8'h1d)begin
15
0;

8'h1b)begin
13
1;

8'h6b)begin
15
0;

8'h74)begin

//a key

//d key

//w key

//s key

//left arrow key

//right arrow key

39

5.1.3.3 PS2 Keyboard

// PROGRAM "Quartus Prime"
// VERSION "Version 18.0.0 Build 614 04/24/2018 SJ Lite Edition"
// CREATED "Mon Dec 02 20:14:18 2019"

module PS2Keyboard(

Data,

GND,

Pin2,

Vcc,

Clock,

Pin6,

DecoderCLK,

XCW,

xen,

ycw,

yen,

ZCw,

zen
);
input wire Data;
input wire GND;
input wire Pin2;
input wire Vcc;
input wire Clock;
input wire Pin6;
input wire DecoderCLK;
output wire XCW;
output wire xen;
output wire yCw;
output wire yen;
output wire ZCW;
output wire zen;

wire [7:0] SYNTHESIZED_WIRE_O;

keyboard b2v_inst2(

.clk(Clock),
.data(Data),
.disp(SYNTHESIZED_WIRE_0));

ps2decoder b2v_inst4(

.clk(DecoderCLK),
.a(SYNTHESIZED_WIRE_Q),
.xew(xew),

.xen(xen),

.ycw(ycw),

.yen(yen),

.zew(zew),

.zen(zen));

endmodule

5.1.4 Analog Potentiometer
NOTE: This code is in C written for the Arduino Mega
const int analogPin = A@;//the analog input pin attach to
const int ledPin =13;//the led attach to
int inputValue = 0;//variable to store the value coming from sensor
/**/
void setup()
{
pinMode(ledPin, OUTPUT);
Serial.begin(9600);

DDRL
DDRG
b

R R e e e e

B11111111;
DDRG | B00000011;

void loop()
{

inputValue = analogRead(analogPin);//read the value from the sensor

int lo
int hi

inputValue & 255;
(PORTG & B11111100) | (inputValue >> 8);

41

//int newVal = inputValue / 1024 * 255;

//PORTL = newVal;
PORTL =lo;
PORTG = hi;

Serial.printlnChi *x 256 + lo);

digitalWrite(ledPin,HIGH);
delay(inputValue);
digitalWrite(ledPin,LOW);
delay(inputValue);

3

[xxrKkrhhkhkhhhhhhhhrhhhhhhrhhhhkhhrhhkhhkhhrhkkhkkx/

5.1.5 DE10-Lite 7 Segment Display
There is no verilog code for the seven-segment display

5.1.6 VGA Output
module clockDivider (input logic clk,
input logic reset,
output logic clk_out);
always_ff @ (posedge clk, negedge reset)

begin
if('reset)
clk_out <= 0;
else
clk_out <= ~clk_out;
end

endmodule

module ColorDecoder(input logic C1,
input logic C2,
output logic [3:0] color);
logic [1:0] data;
assign data = {C1,C2};
always_comb
case(data)

0: color = 4'b0000;

42

1: color = 4'b0101;

2: color = 4'b1010;

3: color = 4'b1111;

default: color = 4'b0000;
endcase

endmodule

module comparator #(parameter N = 10, M = 799)
(input logic [N-1:0] a,
output logic Q);
assign Q = (a == M);
endmodule

module comparator_Hdisplay #(parameter N = 10)
(input logic [N-1:01] a,
output logic Q);
assign Q = (a > 144 8&& a < 784);
endmodule

module comparator_HSync #(parameter N = 10)
(input logic [N-1:0] a,
output logic Q);
assign Q = (a > 96);
endmodule

module comparator_Vdisplay #(parameter N = 10)
(input logic [N-1:01] a,
output logic Q);
assign Q = (a > 35 && a < 515);
endmodule

module comparator_Vsync #(parameter N = 10)
(input logic [N-1:0] a,
output logic Q);
assign Q = (a < 2);
endmodule

module comparator2 #(parameter N = 26)
(input logic [N-1:0] Clk,

43

output logic NewClk);
assign NewClk = (Clk == 25000000);
endmodule

module comparatorV #(parameter N = 10, M = 524)
(input logic [N-1:01] a,
output logic Q);
assign Q = (a == M);
endmodule

module counter #(parameter N = 8)
(input logic clk,
input logic reset,
output logic [N-1:01q);
always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;
else g <=qg + 1;
endmodule

module counter_H #(parameter N = 10)
(input logic clk,
input logic reset,
output logic [N-1:01q);
always_ff @(posedge clk, posedge reset)
begin
if (reset) q <= 0;
else if (g < 800)

begin
q<=q+1;
end
else
begin
q <= 0;
end
end
endmodule

module counter_modified #(parameter N = 8)
(input logic clk,

input logic reset,
output logic [N-1:01q);
always_ff @(posedge clk, posedge reset)
if (reset) q <= 0;
else g <= g + 10;
endmodule

module counter_V #(parameter N = 10)
(input logic clk,
input logic reset,
output logic [N-1:0]1q);
always_ff @(posedge clk, posedge reset)
begin
if (reset) q <= 0;
else if (g < 525)

begin
q <=1
q<=q+1;
end
else
begin
q <= 0;
end
end
endmodule

module mux2 (input logic [3:0] do,
input s,
output logic [3:0] y);
assign y = s ? 0 : do;
endmodule

module sync(input logic clk,
input logic d,
output logic q);
logic ni;
always_ff @(posedge clk)
begin
nl <= d ; //nonblocking

45

g <= nl1; //nonblocking
end
endmodule

5.1.7 DC motor (Basic Motion)

module MotorController (input logic clk,
input logic dir_in,
input logic enable,
input logic reset_n,
input logic [9:0] speed,
output logic step,
output logic dir,
output logic ml,
output logic m2);

logic step_out, motor_pulse;
logic [31:0] count;

Counter #(32) clkCount(clk, reset_n, 1, count);
ClockDivider clkScaler(count[9], reset_n, speed, motor_pulse);

always_ff @(negedge motor_pulse)
begin
dir <= dir_in;
ml <=0;
m2 <=1;
end

always_comb
begin
step_out = enable && speed > 0;
end

assign step = step_out && motor_pulse;

endmodule

module Counter #(parameter N = 8)
(clk, reset_n, enable, q);

input logic clk;

input logic reset_n;
input 1logic enable;
output logic [(N-1):0] q;

always_ff @(posedge clk, negedge reset_n)

begin
if(!reset_n)
q <= 0;
else if (enable)
q<=q+1;

end
endmodule

module ClockDivider(input logic clk,
input 1logic reset_n,
input 1logic [9:0] divisor,
output logic clk_div);

logic [9:0] count, threshold, max_value;
logic overflow;
assign max_value = '1;

always_ff @(posedge clk, negedge reset_n)
begin
if (!reset_n)

count <= 0;

else if (count >= threshold)
begin
count <= 0;

overflow <= 1;
end
else
begin
overflow <= 0;
count = 1 + count;

47

end

end

always_ff @(posedge overflow, negedge reset_n)

begin

end

if (lreset_n)
clk_div <= 0;
else

clk_div <= !clk_div;

always_comb

begin

end

threshold = max_value - divisor;

endmodule

5.2 Simulation Results
5.2.1 Top Level
Because of the number of inputs and outputs and the diverse functions of the system, it is

difficult to simulate the entire system and still get a coherent picture. Another problem is the

difference in time scales between the different functional blocks. Some work at scales of

microseconds, others at hundreds of microseconds, others at milliseconds and so on.

Additionally, the inputs depend on dynamic signals that are not easy to reproduce. To make the

process more manageable, we decided to simulate it using the NESEmulator module, and capture

some of the most interesting and representative sections of the waveforms.

Do file:

vsim -gui work.FinalProject

add
add
add
add
add
add
add
add
add
add

wave
wave
wave
wave
wave
wave
wave
wave
wave
wave

-divider "Global signals"

-position end sim:/FinalProject/clk
-position end sim:/FinalProject/reset
-position end sim:/FinalProject/input_select
-divider "Keyboard"

-position end sim:/FinalProject/ps2_clk
-position end sim:/FinalProject/ps2_data
-divider "Global signals"

-position end sim:/FinalProject/nes_clk
-position end sim:/FinalProject/nes_latch

48

add

wave

-position end sim

:/FinalProject/nes_data

add wave -divider "Game Controller"

add wave -position end sim:/FinalProject/speed
add wave -divider "X Axis"

add wave -position end sim:/FinalProject/dir_x
add wave -position end sim:/FinalProject/step_x
add wave -position end sim:/FinalProject/m1_x
add wave -position end sim:/FinalProject/m2_x
add wave -divider "Y Axis"

add wave -position end sim:/FinalProject/dir_y
add wave -position end sim:/FinalProject/step_y
add wave -position end sim:/FinalProject/ml_y
add wave -position end sim:/FinalProject/m2_y
add wave -divider "Z Axis"

add wave -position end sim:/FinalProject/dir_z
add wave -position end sim:/FinalProject/step_z
add wave -position end sim:/FinalProject/ml1_z
add wave -position end sim:/FinalProject/m2_z
add wave -divider "VGA"

add wave -position end sim:/FinalProject/VSync
add wave -position end sim:/FinalProject/HSync
add wave -position end sim:/FinalProject/Blue
add wave -position end sim:/FinalProject/Green
add wave -position end sim:/FinalProject/Red
add wave -divider "7 Segment Display"

add wave -position end sim:/FinalProject/Seg0
add wave -position end sim:/FinalProject/Segl
add wave -position end sim:/FinalProject/Seg2
force clk @ 0, 1 10 ns -repeat 20 ns

force reset 0 0, 1 20 ns

force input_select 0 0

force speed 10'h3fd

force b2v_inst100/preload 7'b0111111

run 300 us

Then for every iteration:

force b2v_inst100/preload 7'b(new pattern)

run 300 us

49

g8 Wave - Default

Right button Left button
pressed pressed

UL AL (LML UL AL LA PR
1 i [H e [l e

| = 1
E):)EDEDEDEDEDEDEDEDEDIDID:D 7hi

Cursor 1 244622 ns

Figure 29: Right and left actions - X axis motor

£ Wave - Default

- s 000000000000]

T | Downbuton | | : 17 Upbutton
pressed

pressed

U il U U
[) 5 5 A 5
——+——+ 1

Cursor 1 244622 ns

LT Tl P!

Figure 30: Up and down actions - Z axis motor

50

28] Wave - Default
—

Bbuton —+ — -+ Abuton
pressed

pressed

i LI L 0] (0 1 1] 1]]
0 0 0 5 0 7 O A 0 [A0 0 1Y 1 0 9 A 0 81 0 0 (0 0 1 | s{:';', ';:Z‘:; s
inactive

IE! Cursor 1

Figure 31: A and b actions - Y axis motor. Also, no action, not motor activity.

: : T
[T T#ha [Jaha Y Jaha |] Yama

T S S S S S S S S
TP N A A I — S — — 7. S — —— — R — — —
The 7 segment patterns alsc change
T IRt Tl

Figure 32: VGA and 7-segment displays reacting to speed changes.

5.2.2 NES Controller
Since the NES controller is an external device driven by the NESReceived module, we wrote a

test module that emulates its behavior:

51

module NESEmulator (input logic latch,
input 1logic clock,
output logic data);

logic [7:0] register;
logic [7:0] count = 8'h00;

always_ff @(posedge latch)
begin
register <= count;
count <= count + 1;
end

always_ff @(posedge clock)
begin
register <= {register[7:0], 1'b0};
end
assign data = register[7];

endmodule

What the emulator does 1s shift out the value of a counter that is incremented with each latch

signal. In this way, the simulation can test all the possible combinations of buttons that the NES

controller can produce. To do the simulations, we built a testbench circuit that ties up the
emulator to the receiver and used it to test both receiver as a unit, and the whole
receiver/decoded subsystem as a functional unit.

52

inst2
clock
data latch
NESEmulator
NEDReadDecode
data latch
fpga_clk [INPUT .
VEC clock_in clock_out
[INPUT QUTPUT > i
feset n VCC reset_n dir_z Iz
i QIRIL {5 o ,
i % QUIRUT 5 i x
en_x R en_x
&= OQUTPUT -
dir_y L > dir_y
= OQUTPUT
sl L eny
inst
Figure 33: Circuit used to test the game controller reader/decoder.
OUIBUT
Sk L dock_out
NesReader
kg C o Nee— data e NESCmdDecoder
clock in R ciock_in clock_out ——— —
reset n »—L%(Qlfgi reset_n wpr——————————— emd1 dir_out Ui 2 dr z
down emd2 en OUTPUT ¢ S w2
left
inst2
right NESCmdDecoder
start —
select — L cmdt dir_out G > dr_x
a eme2 en ——— QAU
bi— .
inst3
inst NESCmdDecoder
cmdi dir_out QUTRUT T dr y
emd2 ent QUIRUT 5 an y

inst4

Figure 34: Detailed view of the components being tested.

Using this setup, the functional simulations was run with the following do file:

vsim -gui work.nesFunctional

add wave -position end sim:/nesFunctional/b2v_inst/clock_out

add wave -position end sim:/nesFunctional/b2v_inst/latch

add wave -position end sim:/nesFunctional/b2v_inst/data

add wave -position end sim:/nesFunctional/b2v_inst/b2v_inst/left
add wave -position end sim:/nesFunctional/b2v_inst/b2v_inst/right
add wave -position end sim:/nesFunctional/b2v_inst/b2v_inst/up
add wave -position end sim:/nesFunctional/b2v_inst/b2v_inst/down

53

add wave -position end sim:/nesFunctional/b2v_inst/b2v_inst/a
add wave -position end sim:/nesFunctional/b2v_inst/b2v_inst/b
add wave -position end sim:/nesFunctional/dir_z

add wave -position end sim:/nesFunctional/en_z

add wave -position end sim:/nesFunctional/dir_x

add wave -position end sim:/nesFunctional/en_x

add wave -position end sim:/nesFunctional/dir_y

add wave -position end sim:/nesFunctional/en_y

force fpga_clk @ 0, 1 10 ns -repeat 20 ns

force reset_n 0 0, 1 20 ns

run 20 ms

Latch/Shift
cycle

TUyypuug v ud gt

Decoded
buttons

— Control signals
“a nesFunctionalfdir_z
“. [nesFunctionalfen_z
4., JnesFunctional/dir_x
4. JnesFunctionaljen_x
“.. [nesFunctional/dir_y
4. JnesFunctionalfen_y

Figure 35: NES receiver reconstructing the button statuses.

NES Decoder

Commands:

force cmd1 @ 0, 1 100 ns, 0 200 ns, 1 500 ns
force cmd2 @ 0, 1 300 ns, 0 400 ns, 1 500 ns
run 600

54

Em| Wave - Default

Cursor 1 Ons

| KN I3 3 TR

Figure 36: NES Decoder function

5.2.3 PS/2 Keyboard

To simulate the D key being pressed, the following commands were run:

force Clock 2 @09, 1T @1, 0 @2

force Clock 1 @5, 0 @6, 1@10, 0 @11, 1@15, 0 @16, 1 @20, 0 @ 21, 1 @
25, 0@26, 1@30, 0@31, 1@35 0@36, 1@40, 0 @41, 1 @45, 0 @ 46, 1
@50, @51, 1 @55, 0@ 56

force -freeze sim:/PS2Keyboard/DecoderCLK 1 @, @ {1 ps} -r 2
force Data 1 @5, 0 @10, 1 @ 15, 1 @ 20, 1 @ 25, 0 @ 30, 0 @ 35, 0 @ 40

| Wave - Default H 2l]
||

Figure 37: PS2 Decoder transforming the D key code into motor instructions

To simulate the S key being pressed, the following commands were run:

force Clock 0 @0, 1T @1, 0 @2

force Clock 1@5, 0@6, 1@10, @11, 1@15, 0 @16, 1 @20, 0 @ 21, 1 @
25, 0 @26, 1@30, 0@31, 1@35 0@36, 1@40, 0 @41, 1 @45, 0 @ 46, 1
@50, 0 @51, 1 @55 0 @56

force -freeze sim:/PS2Keyboard/DecoderCLK 1 @, @ {1 ps} -r 2

force Data 1 @5, 1 @10, 0 @15, 1 @20, 1 @25, 0 @ 30, 0 @ 35, 0 @ 40

55

5w Wave - Default A x|

B Unnesded Signals for Sim Purposes
1 [PsXeyboard/Data
£ pseyboardclock
£ [PS2Keyboard/DecoderCLK

Figure 38: PS2 Decoder transforming the S key code into motor instructions

To simulate the left arrow key being pressed, the following commands were run:

force Clock 0 @0, 1 @1, 0 @2

force Clock 1@5, 0@6, 1@10, @11, 1@15, 0 @16, 1 @20, 0 @ 21, 1 @
25, 0 @26, 1@30, 0@31, 1@35 0@36, 1@40, 0 @41, 1 @45, 0 @ 46, 1
@50, 0 @51, 1 @55 0 @56

force -freeze sim:/PS2Keyboard/DecoderCLK 1 @, @ {1 ps} -r 2

force Data 1 @5, 1 @10, 0 @ 15, 1 @20, 0 @ 25, 1 @ 30, 1 @ 35, 0 @ 40

Figure 39: PS2 Decoder transforming the < key code into motor instructions

5.2.4 Analog Potentiometer
The potentiometer/ADC are external to the FPGA, so it cannot be simulated. We tested that the
subsystem was working correctly by leveraging the seven-segment display.

56

5.2.5 DE10-Lite 7-Segment Display

The seven segment display logic was used several times in lab projects during the term so it was
tried and true. The screenshot below shows the expected behavior of the display with the display
patterns changing as the ADC value changes;

Do file:

vsim -gui work.ADCSegBlock

add wave -position end sim:/ADCSegBlock/ADCVal
add wave -position end sim:/ADCSegBlock/BiggerVal
add wave -position end sim:/ADCSegBlock/BiggestVal
add wave -position end sim:/ADCSegBlock/SmallerVal
force ADCVal 10'h000

run

force ADCVal 10'h@OF

run

force ADCVal 10'h0oF@

run

force ADCVal 10'hF0@

run

force ADCVal 10'hFOF

run

force ADCVal 10'hOFF

run

force ADCVal 10'h3FF

run

force ADCVal 10'hAAA

run

7h3n 1 7ha0 I7h30 i
7hoe I 7ha0 | | 7hoe i

Cusor1 | ons |
K| B EiE

Figure 40: 7 segment display splitting 10-bit value into the separate digits.

57

5.2.6 VGA Output
The following screenshots depict different areas of the same simulation results, showing

interesting parts of a full video frame. The simulation do file is:

vsim -gui work.VGA

add
add
add
add
add
add
add
add

wave
wave
wave
wave
wave
wave
wave
wave

-position
-position
-position
-position
-position
-position
-position
-position

force Clock @ 0, 1
force Reset 0 0, 1
force ADCIn 10'h@

run 30 ms

Initialization

g Wave - Default

end
end
end
end
end
end
end
end

sim:/VGA/Clock
sim:/VGA/Reset
sim:/VGA/ADCIn
sim:/VGA/H_Sync
sim:/VGA/V_Sync
sim:/VGA/Blue
sim:/VGA/Green
sim:/VGA/Red

10 ns -repeat 20 ns

20 ns

1|:|'|-||:||:||:| —
4ho

4h0

1000000 ns

cArar 1
Figure 41: VGA startup

58

Start of sync signals
gm| wave - Default

:.@ NGARoset e e e 2 S —— E——
s NVGA(Clock LA L L e g e e Lo
10'hD00
4ho
4ho

Maow 1000000 ns
Cusori | Ons
= BT B [T

B

Figure 42: HSync and VSync startup.

Representative VGA waveforms (clock and reset removed for clarity).

8] Wave - Default i

Vertical
Sync

31000000 ns -
Cursor 1 Ons

B BE FE

Figure 43: Pixel and line signals along with display color data.

5.2.7 DC Motor
For the motor simulation we used the following do file:

vsim -gui work.MotorController

add wave -position end sim:/MotorController/clk

add wave -position end sim:/MotorController/enable
add wave -position end sim:/MotorController/dir_in
add wave -position end sim:/MotorController/reset_n
add wave -position end sim:/MotorController/speed
add wave -position end sim:/MotorController/step
add wave -position end sim:/MotorController/dir

59

add wave -position end sim:/MotorController/m1l

add wave -position end sim:/MotorController/m2

add wave -position end sim:/MotorController/step_out
add wave -position end sim:/MotorController/motor_pulse
force clk @ 0, 1 10 ns -repeat 20 ns

force reset_n 0 0, 1 20 ns

force dir_in 0 0

force enable 0 0, 1 20 us

force speed 10'h3e0

run 20 ms

force speed 10'h2ff

run 20 ms

force dir_in 1 @

force speed 10'h200

run 20 ms

The motor is simple in terms of inputs and outputs. The simulation shows the change frequency
for the step signal as the speed changes, the higher the speed the higher the frequency.

1| Wave - Default H—

Mow | 0000 ns

Figure 44: Frequency response too speed input.

The screenshot below highlights the synchronization mechanism that insures that control signals
comply with the setup and hold times specified by the motor driver IC.

60

ﬂ ﬁave e — =

I —

£ MotorController/dir_in
£ MotorController fenable

B4 MotorContraller fspesd

— Outputs : :
4. MotorControler fstep MU UL RS etion
4, MotorContraller/di |
4, MotorController fm1
“. MotorController/m2

Synced to
Step low
transition

L@ MNow |0000ns |[SEE
are Cusr i | one_

-l

Figure 45: Signal timings.

6. Physical Implementation

We implemented our design on the actual FPGA board. Here is a link to a YouTube video
showing it in action.

7. References

[1] All About Circuits, “NES Controller Interface with an Arduino UNO”
https://www.allaboutcircuits.com/projects/nes-controller-interface-with-an-arduino-uno/

[2] Adam Chapweske, “PS/2 Mouse/Keyboard Protocol”
http://www.burtonsys.com/ps2_chapweske.htm

[3] Terasic Inc. “ DE10-Lite User Manual” http://eecs.oregonstate.edu/tekbots/courses/ece272

[4] ECE 272. “Section 6: Video Graphics Array (VGA)”
http://eecs.oregonstate.edu/tekbots/courses/ece272/section6

[5] Allegro MicroSystems. “A3967: Microstepping Driver with Translator”
https://www.allegromicro.com/en/Products/Motor-Drivers/Brush-DC-Motor-Drivers/A3\
67

61

https://www.youtube.com/watch?v=0QtQp9DzlqU&feature=youtu.be
https://www.youtube.com/watch?v=0QtQp9DzlqU&feature=youtu.be
https://www.allaboutcircuits.com/projects/nes-controller-interface-with-an-arduino-uno/
http://www.burtonsys.com/ps2_chapweske.htm
http://eecs.oregonstate.edu/tekbots/courses/ece272
http://eecs.oregonstate.edu/tekbots/courses/ece272/section6
https://www.allegromicro.com/en/Products/Motor-Drivers/Brush-DC-Motor-Drivers/A3967
https://www.allegromicro.com/en/Products/Motor-Drivers/Brush-DC-Motor-Drivers/A3967

