Developer Guide

System Overview

This project can be described as a combination of three distinct sections. The first, is
purely software and is the interface with which the user can select and play
animations or make their own. The second section is the liaison between software and
hardware where the user's choices are translated into the corresponding behaviour for
the LED array. Finally, there is the purely hardware component which is the LED array
itself and the system enclosure. All together there is a portable executable (.exe) file
which is the GUI and logic connected via USB to an Arduino microcontroller which
handles translating the data to send to the LEDs in the array.

Electrical Specifications

Specification Minimum | Nominal | Maximum | Unit
Supply voltage 2 5 6 \Y
Supply current 10 15 25 A
Operating temperature -40 - 85 °C
User Guide

First, download and compile the GUI from source at the repository linked in Figure 1.
Then, simply plug the provided power cable from a regular wall power port into the
system. Finally, plug the system into the PC using the provided USB-A to USB-B cable.
From there, identify which Comm port the USB is plugged into, launch the GUI, and
select the correct Comm port. From here, the GUI is fairly self explanatory. Select any
of the top buttons to play any of the three pre-programmed animations. To create a
custom animation, simply select one of the three bottom slots for custom animations,
then use the directional buttons to move between LEDs in the matrix. The cursor
cannot be moved unless currently editing an animation. Click a color button to assign
that color to the currently selected LED. To create a new blank frame in the animation,
press the new frame button. A theoretically unlimited number of frames can be added,

constrained only by how much memory the PC has available. To play the animation
created, click on the animation’s button again.

Design Artifacts

Figure 1: GUI Repository

Follow the link HERE to view the full repository for the GUI code. Because there is well
over 1000 lines of logic code and over 5000 lines of style code, the full code will not be
displayed in this document. Instead, logical flowcharts for big processes and snippets
for smaller relevant code processes and declarations will be included below with
explanations. Finally, an image of the GUI will be displayed for reference of visual
style.

https://github.com/regerj/Junior-Design-GUI

Figure 2 : Animation Buttons

Animation

Animation 2

Construct Construct Construct
Animation 1 Animation 2 Animation 3

Above is the flowchart that is executed in the event that the user clicks on one of the
three premade animation buttons. First, the program determines which animation
button was clicked. It then constructs the data structure for the animation and
populates it. It gathers the newly instantiated animation data and begins transmission
before terminating the subprocess. Figure 3 will build on this logical structure to
create a custom animation handler.

Figure 3 : Custom Animation Buttons

Animation 2

Animation 1.

Animation

Y

Conslruct
Cuslom
Animation 1

Conslruct
Cuslom
Animation 2

Y

Create Neyy Frame

Play: Apsign Color.

-~

Above is the full flowchart for handling a user input of one of the three custom
animation buttons. It begins by determining which of the three was pressed, then
instantiating the data structure for that animation. It then creates a frame for it and
waits for the user to take an action. The user may then move the cursor position,

assign a color, add a new frame, or begin transmission. If the user chooses to move
cursor positions, the cursor is moved and the program waits for another user input. If
the user assigns a color to the cursor LED, that is done and the program waits for
another user input. If the user chooses to create a new frame, the program returns to
the data call above. Finally, if the user chooses to play the animation, it begins
transmission and the subprocess is terminated.

Figure 4 : Directional Control Code

In the above code snippet, first the program tests to see if the user is currently
creating a custom animation. If they are, it tests to see if the cursor is at the edge of
the bounds and cannot be moved any further. If it is not, the cursor position is
adjusted according to the direction pressed and debugging information is displayed.
This code is logically identical between every directional press.

Figure 5: Animation Data Structure

The code to the left is the definitions of
the custom linked list data structure
used for the animations. The linked list
struct is standard, and the node struct is
custom for the frame data.

-uct linke

nodex head =

node* iter

Figure 6 : Frame Data Structure

55 Trame

'I.‘r-'ame ();
char array[2][2][2];

void transmit();

The above declaration is of the frame class which contains an 8x8x8 char array. It also
contains a constructor and a transmit function which transmits a single frame of data.

Figure 7 : Transmission Function

ay[kI[F104], 1,

The above code is the logic behind the transmit function. This function transmits char
data over the Comm port and writes it to an output log file. It begins by opening a
handle to the Comm port. It then iterates through the char array for the frame and
writes its data to the log file as well as over the Comm port. It finishes by closing the
handle and returning.

Figure 8 : GUI

Debug information displayed here

Animation 1 Animation 2

Create
New
Frame

The display window
to the left is the GUI
window. It has text
output at the top for
debugging and
status updates,
along with buttons
to control all
functionality of the
system. It has
buttons for the
premade
animations, custom
animations, cursor

Animation 3

Clear Current Color

Custom Animation 1 || Custom Animation 2 || Custom Animation 3 control, color

Figure 9 : Bit-Angle Modulation

if (BAM Counter == B)
BAM Bit++;
else if (BAM Counter == 16)

BAM Bit++;
else if (BAM Counter == 32)
BAM Bit++;

BAM Counter++;

switch (BAM Bit) {

case 0:
for (shift out = level; shift out < lsvel + 8; shift out++)
SPI.transfer (red0[shift_out]);
for (shift out = level; shift out < level + 8; shift out++)
SPI.:ranEfEr{greeno[shift_out]);
for (shift out = level; shift out < level + 8&; shift out++)
SPI.transfer (bluel[shift out]);
break;

case 1:

control, and new
frame creation.

The code snippet to the left is a
partial implementation of the
brightness controls for each color of
the LEDs. Because of how the display
must be “scanned” through in order
to make an image, each LED has a
strict and uniform voltage with the
rest. In order to simulate variable
brightness, the average voltage is
controlled with how many pulses out
of sixteen are allowed through each
column.

Figure 10 : Address Control

vee uo
74HC595
]
|
DATALN_ o O g4
T B
CLOCK_Llspeik ac
o LSRR ap
BLUF gl ot
o LATEH 1 i
BLANK 13|57 =
aH
jicta}
=T
o
=
ST
GND

15

1
2
&
I
5
]
>

]

Top anodes
LEVEL_7
LEVEL A
LEVEL_S
LEVEL 4
LEVEL 3
LEVEL 2
LEVEL_1
LEVEL_O
Battem Anodes

VCC

YCC

25
100uF

a6 GND

5 IRFIZ34HN

LO
Conn_01x31

GHD

GND

The schematic selection above shows an example of how current is enabled through
LEDs. The left element is a shift register that harbors the information required to
control the element to the right, which functions as a gate that lets a specific current
through to the vertical layer of the display.

Figure 11: Decoder Chain

puus
Conn_01x01 1
Ml
Cann_D1x01 1
w2

PWR_FLAG

Cann_01x@1 1
It

Cann_01x01 & LATCH
2

Conn_GLx01 o
JB_1

Conn_C1ix01 1 BLANK
182

Conn_01x01 1
BT

Conn_(1x01 E 1 DATA_DUT
ip2

Cann_01x01 il DATA_JUMP
s

Conn_01x01 1
JCt:

Cann_01x01 1. CLOCK
=z

Junctions for chaining hoards

DATA_IN

PWR_FLAG

Conn_01x01 1
Je_1
Conn_01x01 1
JEI2

GHND

Voo uo

|

TEHCR9S

Top anodes

DATALIN__ 14 SER

cLock_ttlspeig
O« ABcpcin

01 UF s
Com—— LATCH_ 1300y
OF

BLANK__ 13|17

[15

‘\‘ ‘m ‘m |‘D ‘u |’\J |p

Bottom Anaodes

i]

VCC U1

g

THHCH95

ATAJUMP gd o 3

CLoCcK__ 11 SRCLK
)
. L

oy = LATCH ddlmeic
BLANK__13|5p

=
n

.o |q|:nm‘.:-|u|m ‘»—\‘

LEVEL_7
LEVEL_B
LEVEL_ S
LEVEL &4
LEVEL_3
LEVEL_Z
LEVEL_1
LEVEL_O

m
=
=
m

10
BLUE_I1
BLUE_IZ
BLUE_I3
BLUE_I&
BLUE_IS
BLUE_IG
BLUE_IT

The shift register seen in
Figure 10 is followed by a
chain of 24 more registers,
which operate as memory
for eight cathode controllers
each. These registers are
refreshed every 124
microseconds. When a
matching cathode path is
enabled at the same time as
an anode layer, the
respective LED is given
power. There are 192
cathode controllers in total.

PCB Specifications

Figure 12 : PCB Render

Part Information

Qty

1

1

1

3
25
8
200
401
328
25

512

S/u

$23 N/A

S14 N/A
$2.50 N/A
S122 N/A
S0.42 U1-U2s
$0.55 Q1-Q8
$0.04 Q9-Q208
$0.10 R1-R401
$0.10 R402-729
$0.04 C1-C25
$0.10 C26-C33
$0.50 N/A
$0.50 N/A

Designator

Part
Arduino Uno
Power supply
Power cord
PCBs
Shift registers
PMOSFETSs
NPN transistors
Resistors
Resistors
Capacitors
Capacitors
Ribbon wire
RGB LED

The render of the PCB design used for the
decoder in this project is pictured to the
left. There are three PCBs: one for each
color of LED anode (red, green, and blue).
Each has a size of 8.500 x 8.175 inches.
There are minor differences between the
part installations of each, but the same
board design was reused for economic

purposes.

Specification
ATMEGA328P
5VDC, 75W
AC
[Custom]
74HC595
IRF9Z34N
2N3904
1kQ, 1/4W
1000, 1/4W
0.01uF
100uF
1meter; 10 core

Common Anode

Manufacture #
N/A
LRS-75-5
Q14
N/A
74HC595
IRF9Z34N
2N3904
CFROW4
CFROW4
Co1oUC
C100U16E
MCCABLE10
RGB5LED-CA

