

Design Project

Alex Young

Shengmei Hu

Bryson Goto

Spring 2020

1

Table of Contents

1 Introduction

1.1 Project Goals

2 High Level Description

2.1 Top Level Hardware Diagram

2.2 Top Level HDL Schematic

3 Controller Descriptions

3.1 NES Controller Description

4 HDL Components

4.1 Top Module Components

4.2 NES Reader

4.3 Seven Segment Decoder

4.3.1 Adder

4.3.2 Parser

4.3.3 Seven Segment Display

4.4 DC Motor

4.5 Addressable RGB LEDs

4.5.1 Positive and Negative RGB Finite State Machines

4.5.2 RGB Decoder

4.5.3 OR_4 Module

5 Appendix

5.1 Design Synthesis and Analysis

5.2 Source Code

5.2.1 top_module

5.2.2 adder

5.2.3 parser

5.2.4 aRGB

5.2.5 bRGB

5.2.6 RGBdecoder

5.2.7 OR_4

5.2.8 sevSeg

5.2.9 NES_reader

5.2.10 NES_controller

5.2.11 DC motor

5.3 Simulation Results

5.3.1 top_module

5.3.2 adder

5.3.3 parser

5.3.4 aRGB

5.3.5 bRGB

2

5.3.6 RGBdecoder

5.3.7 OR_4

5.3.8 sevSeg

5.3.9 NESreader

5.3.10 NEScontroller

5.3.11 DC motor

6 References

3

1 Introduction

The purpose of this project is to implement a logic design that uses an NES controller

input to control three different outputs: a seven segment display, RGB lights, and DC Motor.

The inputs used in this project are not normally used in conjunction with the outputs chosen,

but through application of digital logic design concepts, we are able to convert inputs made on

the NES controller function with the seven segment display, RGB LEDs, and DC motor.

Figure 1: NES Controller [​1​]

 1.1 Project Goals

● Support communication between NES controller and RGB LEDs, 7 segment

display, and DC motor

● Use an adder controlled with the arrow keys and display the values onto the 7

segment display

● Run the motor back and forth through the select and start button

● Change the color of the RGB light through the A and B button

4

https://uk.pi-supply.com/products/raspberry-usb-nintendo-nes-gamepad-controller-for-raspberry-pi

2 High Level Description

 2.1 Top Level Hardware Diagram

Figure 2: Top Level Hardware Diagram

Inputs: Signals from the NES controller which has 8 different button inputs, as well as a clock

and reset signal from the FPGA.

Outputs: Converted signals from NES controller inputs that lead to the RGB LED, DC motor,

and 7 segment display (7 bits). The 7 segment display is already integrated on the FPGA.

Description: The NES controller would be controlling 3 different outputs: the DC motor, RGB

LEDs, and 7 segment display. Using combinational logic on the FPGA, the input buttons would

be translated into signals that the various outputs can use. The inputs and outputs would be

connected through pins on the FPGA had we implemented everything with actual hardware.

5

 2.2 Top Level HDL Schematic

Figure 3: Top Level HDL Schematic

Inputs: Signals from the NES controller, clock and reset signals from the FPGA.

Outputs: Converted signals from NES controller inputs that lead to the RGB LED, DC motor,

and 7 segment display (7 bits)

Description: Shown in the diagram above, the NES controller goes into the NES reader that

processes inputs from the controller. These are then output as directional, a, b, start, and select

buttons. Each button group controls a different output type. The directional buttons on the NES

controller are connected to an adder / subtractor module. Each button will add and subtract a

set value and the result will be displayed on the 7 segment display, up to four digits. The values

set to each direction are:

Up → +1

Down → -1

Left → +10

Right → -10

6

The A and B buttons on the NES controller control the RGB light. These functions act

similar to a finite state machine where the flow of the inputs would cycle around, changing the

output accordingly. In our case, pressing the A button cycles the light through: red, green, blue,

and then off. Pressing the b button cycles it in reverse, the result being: blue, green, red, off.

The final output is the DC motor which is driven by the start button on the NES

controller. Pressing the start button will drive the motor and it will continue to drive until the

button is no longer pressed.

3 Controller Descriptions

 3.1 NES Controller Description

The NES controller is an active low controller which has 8 different buttons that lead

into the main shift register. Each button is connected to a pull up resistor leading to a 5V source.

The other inputs for this controller are the clock and latch pins which all lead into a single data

pin (labelled NES Data below in Figure X). The 8 bit input is ordered from top to bottom in

Figure X below with the right button as the most significant bit and the a button as the least

significant bit.

Figure 4: NES Controller Diagram [​2​]

7

https://www.allaboutcircuits.com/projects/nes-controller-interface-with-an-arduino-uno/

4 HDL Components

4.1 Top Module Components

Figure 5: Top Module for HDL schematic

Inputs: The inputs of this top design are the button signals from the NES controller as well as a

clock and reset signal from the FPGA.

Outputs: The output signals vary depending on the module it’s sent to. The 7 segment display is

sent a 7-bit signal, the DC motor a 1 bit signal, and the RGB 3 1-bit signals.

Description: The top level schematic shows all of the modules and how each component is

connected. The NES controller reads in input from the user and by sending those signals to the

NES reader, the rest of the modules are able to take those changed signals and translate them to

outputs.

8

4.2 NES Reader

Figure 6: NES Reader Module

Inputs: The NES reader takes in the input from the NES controller as well as the clock and reset

signals from the FPGA. The data yellow is an 8 bit signal sent from the NES controller.

Outputs: The output is the individual buttons that are on the NES controller as well as the clock

and latch signals. The latch orange output signals to the modules that a new button was

pressed.

Description: The NES reader is from the given files from previous years. The module takes in the

8 bit input from the NES controller and separates each bit into eight 1 bit outputs that

correspond to the buttons on the controller. When the orange latch goes high, it’s a signal for the

other modules that a new input may be entered. The orange latch will go high every 16 counts (a

full hexadecimal cycle).

4.3 Seven Segment Decoder

Figure 7: Seven Segment Decoder

9

Inputs: The inputs of the seven segment decoder correspond to the directional buttons of the

NES controller.

Outputs: The output of the parser is four 7 bit binary signals that are output to addressable

LEDs on the 7 segment display on the FPGA.

Description: The adder will add or subtract a value depending on the directional button from the

NES controller. The parser will then separate the value into the thousands, hundreds, tens, and

ones digits. These four values will then be sent to the 7 segment display driver to be converted to

a code that corresponds to the value to be displayed on the 7 segment display.

4.3.1 Adder

Figure 8: Adder

Inputs: The adder takes in the arrow button signals from the NES controller as well as the reset

signal from the FPGA. Each signal is 1 bit and the rising edge of each signal is used to change the

output.

Output: The output is a 14-bit signal that leads to the parser module. This output is the value of

the number that will be displayed on the 7 segment display.

Description: The adder will add or subtract a value depending on the button that is pushed on

the NES controller. The module is looking for a rising edge signal, meaning that users are not

able to hold down the button to increase the values displayed. The reason the output is 14 bits is

because on a 4 digit segment display, 9,999 is the largest value that can be displayed. 14 bits is

the lowest amount of bits that can be used to display every value possible for four 7 segments

displays.

10

4.3.2 Parser

Figure 9: Parser Module

Inputs: The input of the parser is the 14 bit signal from the adder module. The signal indicates

what the value that should be displayed is in binary.

Outputs: The output of the parser is four 4 bit binary signals that are sent to the 7 segment

display.

Description: The input signal is a 14 bit signal that will be broken down into a 4 bit signal for

each segment display, separating into the thousands, hundreds, tens, and ones place. The 4 bits

are for the signals to determine which numeric value each digit is in the number.

4.3.3 Seven Segment Display

Figure 10: 7 Segment Display

Inputs: The input for the 7 segment display is a 4 bit input coming from the parser. The 4 bits

indicates the numeric value the corresponding digit is in the displayed number.

Outputs: The output for the 7 segment display is the 7 bit output that leads into the LEDs for the

display.

Description: As stated before, the 4 bit input signals to the segment display what digit should be

displayed to the lights. The 7 outputs of the module describe to the lights which lights should be

11

on or off based on the digit that should be displayed. There are a total of four 7 segment display

modules in the design.

4.4 DC Motor

Figure 11: DC Motor

Inputs: The DC motor module takes in 4 inputs: the start button from the NES controller,

voltage from a power source, a clock signal, and ground. The clock signal is given from the FPGA

and the voltage is given from the module that powers the DC motor.

Outputs: The output is a 1 bit output that signals the motor to turn on or off. A high signal will

indicate the motor is on and a low signal will show the motor is turned off.

Description: The DC motor requires power to move which is why the Vcc and ground signals are

required for this module. Without power, the component can’t operate. The start button is the

input that signals the DC motor to turn on or off while the rising clock edge keeps the module

updated on what the signal is. The output is the high or low signal that when sent to the motor,

will turn on or off accordingly.

4.5 Addressable RGB LEDs

Figure 12: RGB Top Module

Inputs: The inputs of the RGB Top Module are the a and b buttons, and reset.

12

Outputs: The outputs of the RGB Top Module are the red, green, and blue LEDs, as well as the

off state.

Description: The positive and negative RGB finite state machines will take inputs from a and b,

which will cycle (in different directions) through the different LED colors by outputting a 4 bit

signal that indicates what color will be turned on in the RGB decoder. The OR_4 Module will

combine both the a and b inputs to determine whether each color will be on or not, and this will

be shown in the final output, the LEDs.

4.5.1 Positive and Negative RGB Finite State Machines

Figure 13: RGB Finite State Machines

Inputs: The inputs of the positive and negative RGB state machines are the a button and reset,

and the b button and reset signals respectively. Each input is a 1 bit signal that is used to

determine the light shown on the RGB.

Outputs: The output of the RGB finite state machine is a 4 bit signal that shows what state the

RGB is in. The states are as followed: off, red, green, and blue.

Description: The finite state machines are used to determine the color that is shown on the RGB.

The a button will spin the cycle clockwise with the states being off, red, green, and blue. The b

button will spin the cycle counterclockwise with the states being blue, green, red, and off.

13

4.5.2 RGB Decoder

Figure 14: RGB Decoder

Inputs: The RGB decoder takes in a 4 bit signal from the finite state machines which signal what

the state is.

Outputs: The output of the decoder is the different states that lead to an OR module.

Description: Both the positive and negative RGB finite state machine modules have a respective

decoder. The decoder is used to determine what the state is for the a button and b button cycle

individually. Later, the two signals are OR’d together in order to determine what the final color

should look like.

4.5.3 OR_4 Module

Figure 15: OR_4 Module

Inputs: The inputs to the OR_4 Module are the off, red, green, and blue states from both the

positive and negative RGB decoders.

14

Outputs: Off, red, green, or blue signals as a 1 bit output to indicate whether the state is on or

not, thus determining the final color.

Description: Each state type from both the positive and negative decoders will be fed through an

OR gate to determine whether the state is true or not.

5 Appendix

5.1 Design Synthesis and Analysis

Figure 16: Quartus RTL Viewer of Top Module

Figure 17: Quartus RTL Viewer of NES Controller

15

Figure 18: Quartus RTL Viewer of NES Reader

Figure 19: Quartus RTL Viewer of Parser

16

Figure 20: Quartus RTL Viewer of Adder

17

Figure 21: Quartus RTL Viewer of Positive RGB Finite State Machine

Figure 22: Quartus RTL Viewer of Negative RGB Finite State Machine

Figure 23: Quartus RTL Viewer of RGB Decoder

18

Figure 24: Quartus RTL Viewer of OR_4 Module

Figure 25: Quartus RTL Viewer of DC Motor Module

19

Figure 26: Partial Quartus RTL Viewer of Seven Seg Display Driver

Figure 27: Top Level Design Analysis

20

5.2 Source Code

5.2.1 top_module

module Top(

clk,

up_button,

down_button,

left_button,

right_button,

reset_button,

a_button,

b_button,

select_button,

start_button,

red_rgb,

green_rgb,

blue_rgb,

motor_out,

off,

latch_test,

clock_test,

select_test,

seg0,

seg1,

seg2,

seg3

);

input wire clk;

input wire up_button;

input wire down_button;

input wire left_button;

input wire right_button;

input wire reset_button;

input wire a_button;

input wire b_button;

input wire select_button;

input wire start_button;

output wire red_rgb;

output wire green_rgb;

21

output wire blue_rgb;

output wire motor_out;

output wire off;

output wire latch_test;

output wire clock_test;

output wire select_test;

output wire [6:0] seg0;

output wire [6:0] seg1;

output wire [6:0] seg2;

output wire [6:0] seg3;

wire a;

wire b;

wire blue_wire1;

wire blue_wire2;

wire clk_wire;

wire clock;

wire data_wire;

wire [13:0] display;

wire down;

wire [3:0] fsm1;

wire [3:0] fsm2;

wire GND;

wire green_wire1;

wire green_wire2;

wire [3:0] hundreds;

wire latch;

wire left;

wire off_wire1;

wire off_wire2;

wire [3:0] ones;

wire red_wire1;

wire red_wire2;

wire reset_n_wire;

wire reset_wire;

wire right;

wire select;

wire start;

wire [3:0] tens;

wire [3:0] thousands;

wire up;

wire VCC;

22

posRGB_FSM b2v_inst(

.a(a),

.reset(reset_wire),

.y(fsm1));

adder b2v_inst1(

.up(up),

.down(down),

.left(left),

.right(right),

.reset(reset_wire),

.q(display));

defparam b2v_inst1.N = 14;

decoder b2v_inst11(

.a(fsm1),

.off(off_wire1),

.red(red_wire1),

.green(green_wire1),

.blue(blue_wire1));

decoder b2v_inst12(

.a(fsm2),

.off(off_wire2),

.red(red_wire2),

.green(green_wire2),

.blue(blue_wire2));

dc_motor b2v_inst14(

.in(start),

.vss(VCC),

.clk(clk),

.ground(GND),

.out(motor_out));

or_4 b2v_inst17(

.off_one(off_wire1),

.red_one(red_wire1),

.green_one(green_wire1),

.blue_one(blue_wire1),

.off_two(off_wire2),

.red_two(red_wire2),

.green_two(green_wire2),

23

.blue_two(blue_wire2),

.off(off),

.red(red_rgb),

.green(green_rgb),

.blue(blue_rgb));

SevenSeg b2v_inst2(

.data(ones),

.segments(seg0));

NESControllerb2v_inst22(

.up(up_button),

.down(down_button),

.left(left_button),

.right(right_button),

.start(start_button),

.select(select_button),

.a(a_button),

.b(b_button),

.clock(clk),

.reset(reset_wire),

.data(data_wire),

.clk(clk_wire),

.reset_n(reset_n_wire));

parser b2v_inst3(

.ta(display),

.a(ones),

.b(tens),

.c(hundreds),

.d(thousands));

SevenSeg b2v_inst4(

.data(tens),

.segments(seg1));

SevenSeg b2v_inst5(

.data(hundreds),

.segments(seg2));

SevenSeg b2v_inst6(

.data(thousands),

24

.segments(seg3));

NesReader b2v_inst7(

.dataYellow(data_wire),

.clock(clk_wire),

.reset_n(reset_n_wire),

.latchOrange(latch),

.clockRed(clock),

.up(up),

.down(down),

.left(left),

.right(right),

.start(start),

.select(select),

.a(a),

.b(b));

negRGB_FSM b2v_inst8(

.b(b),

.reset(reset_wire),

.y(fsm2));

assign reset_wire = reset_button;

assign latch_test = latch;

assign clock_test = clock;

assign select_test = select;

assign GND = 0;

assign VCC = 1;

endmodule

5.2.2 adder

module adder #(parameter N = 14)

 (input logic up, down, left, right,

 input logic reset,

 output logic [N-1:0] q);

 always_ff @(posedge up, posedge down, posedge left, posedge right, posedge reset)

 begin

 if (reset) q <= 14'b0;

 else if (up) q <= q + 14'b0001;

 else if (down) q <= q - 14'b0001;

25

 else if (left) q <= q + 14'b1010;

 else if (right) q <= q - 14'b1010;

 end

endmodule

5.2.3 parser

module parser (input logic [13:0] ta,

 output logic [3:0] a, b, c ,d);

 always_comb

 begin

 a = ta % 4'b1010;

 b = ((ta - (a)) / 4'b1010) % 4'b1010;

 c = ((((ta - (a)) / 4'b1010) - b) / 4'b1010) % 4'b1010;

 d = ((((((ta - (a)) / 4'b1010) - b) / 4'b1010) - c) / 4'b1010) % 4'b1010;

 end

endmodule

5.2.4 aRGB

module posRGB_FSM(input logic a,

 input logic reset,

 output logic [3:0]y);

 typedef enum logic [1:0] {off, red, green, blue} statetype;

 statetype state, nextstate;

 // state register

 always_ff @(posedge a, posedge reset)

 if (reset) state <= off;

 else state <= nextstate;

 // next state logic

 always_comb

 case (state)

 off: nextstate <= red;

 red: nextstate <= green;

 green: nextstate <= blue;

 blue: nextstate <= off;

 default: nextstate <= off;

 endcase

 // output logic

26

 always_comb

 case (state)

 off: y <= 4'b00;

 red: y <= 4'b01;

 green: y <= 4'b10;

 blue: y <= 4'b11;

 endcase

endmodule

5.2.5 bRGB

module negRGB_FSM(input logic b,

 input logic reset,

 output logic [3:0]y);

 typedef enum logic [1:0] {off, red, green, blue} statetype;

 statetype state, nextstate;

 // state register

 always_ff @(posedge b, posedge reset)

 if (reset) state <= off;

 else state <= nextstate;

 // next state logic

 always_comb

 case (state)

 off: nextstate <= blue;

 blue: nextstate <= green;

 green: nextstate <= red;

 red: nextstate <= off;

 default: nextstate <= off;

 endcase

 // output logic

 always_comb

 case (state)

 off: y <= 4'b00;

 red: y <= 4'b01;

 green: y <= 4'b10;

 blue: y <= 4'b11;

 endcase

endmodule

27

5.2.6 RGBdecoder

module decoder(input logic [3:0] a,

 output logic off, red, green, blue);

 always@(*)

 if (a == 4'b00)

 begin

 off <= 1;

 red <= 0;

 green <= 0;

 blue <= 0;

 end

 else if (a == 4'b01)

 begin

 off <= 0;

 red <= 1;

 green <= 0;

 blue <= 0;

 end

 else if (a == 4'b10)

 begin

 off <= 0;

 red <= 0;

 green <= 1;

 blue <= 0;

 end

 else if (a == 4'b11)

 begin

 off <= 0;

 red <= 0;

 green <= 0;

 blue <= 1;

 end

endmodule

5.2.7 OR_4

28

module OR_4(input logic off_one, red_one, green_one, blue_one, off_two, red_two,

green_two, blue_two,

output logic off, red, green, blue);

 assign off = off_one && off_two;

 assign red = red_one || red_two;

 assign green = green_one || green_two;

 assign blue = blue_one || blue_two;

endmodule

5.2.8 sevSeg

module SevenSeg(input logic [3:0] data,

 output logic [6:0] segments);

 always_comb

 case(data)

 // abc_defg

 0: segments = 7'b000_0001;

 1: segments = 7'b100_1111;

 2: segments = 7'b001_0010;

 3: segments = 7'b000_0110;

 4: segments = 7'b100_1100;

 5: segments = 7'b010_0100;

 6: segments = 7'b010_0000;

 7: segments = 7'b000_1111;

 8: segments = 7'b000_0000;

 9: segments = 7'b000_1100;

 default: segments = 7'b111_1111;

 endcase

endmodule

5.2.9 NES_reader

module NesReader(

 input logic dataYellow,

 input logic clock,

 input logic reset_n,

 output logic latchOrange,

 output logic clockRed,

 output logic up,

29

 output logic down,

 output logic left,

 output logic right,

 output logic start,

 output logic select,

 output logic a,

 output logic b

);

 logic [3:0] count;

 Counter4 matt_i1(

 .clk (clock),

 .reset_n (reset_n),

 .count (count)

);

 NesClockStateDecoder matt_i2(

 .controllerState (count),

 .nesClock (clockRed)

);

 NesLatchStateDecoder matt_i3 (

 .controllerState (count),

 .nesLatch (latchOrange)

);

 NesDataReceiverDecoder matt_i4 (

 .dataYellow (dataYellow),

 .reset_n (reset_n),

 .controllerState (count),

 .readButtons ({a, b, select, start, up, down, left, right})

);

endmodule

module Counter4(

 input logic clk, reset_n,

 output logic [3:0] count);

 always_ff @ (posedge clk, negedge reset_n)

 if(!reset_n) count <= 4'b0;

 else count <= count + 1;

endmodule

30

module NesLatchStateDecoder(

 input logic [3:0] controllerState,

 output logic nesLatch);

 always_comb

 case(controllerState)

 4'h0: nesLatch = 1;

 default: nesLatch = 0;

 endcase

endmodule

module NesClockStateDecoder(

 input logic [3:0] controllerState,

 output logic nesClock);

 always_comb

 case (controllerState)

 4'h2: nesClock = 1;

 4'h4: nesClock = 1;

 4'h6: nesClock = 1;

 4'h8: nesClock = 1;

 4'ha: nesClock = 1;

 4'hC: nesClock = 1;

 4'hE: nesClock = 1;

 default: nesClock = 0;

 endcase

endmodule

module NesDataReceiverDecoder(

 input logic dataYellow,

 input logic reset_n,

 input logic [3:0] controllerState,

 output logic [7:0] readButtons);

 always_ff @ (posedge controllerState[0], negedge reset_n)

 if(!reset_n) readButtons <= 8'b0;

 else case(controllerState[3:0])

 4'h1: readButtons[7] <= dataYellow; //a button

 4'h3: readButtons[6] <= dataYellow; //b button

31

 4'h5: readButtons[5] <= dataYellow; //select button

 4'h7: readButtons[4] <= dataYellow; //start button

 4'h9: readButtons[3] <= dataYellow; //up button

 4'hB: readButtons[2] <= dataYellow; //down button

 4'hD: readButtons[1] <= dataYellow; //left button

 4'hF: readButtons[0] <= dataYellow; //right button

 default: readButtons <= readButtons;

 endcase

endmodule

5.2.10 NES_controller

module NESController(input logic up, down, left, right, start, select, a, b, clock, reset,

 output logic data, clk, reset_n);

 logic [3:0] count;

 always_comb

 begin

 clk <= clock;

 reset_n <= !reset;

 end

 always_ff @ (posedge clock, posedge reset)

 begin

 if(reset || count == 16)

 begin

 count <= 4'b0;

 data <= 0;

 end

 else

 begin

 count <= count + 1;

 if (count == 0 && a == 1) data <= 1;

 else if (count == 2 && b == 1) data <= 1;

 else if (count == 4 && select == 1) data <= 1;

 else if (count == 6 && start == 1) data <= 1;

 else if (count == 8 && up == 1) data <= 1;

 else if (count == 10 && down == 1) data <= 1;

 else if (count == 12 && left == 1) data <= 1;

 else if (count == 14 && right == 1) data <= 1;

 else data <= 0;

 end

32

 end

endmodule

5.2.11 DC motor

module dc_motor(input logic in,

 input logic vss,

 input clk,

 input ground,

 output logic out);

 always@(posedge clk)

 if (in == 1) out <= 1;

 else out <= 0;

endmodule

33

5.3 Simulation Results

5.3.1 top_module

Figure 28: Simulation of top design with every output tested

Do file:

vsim work.Top

add wave *

force reset_button 0 @ 0, 1 @ 5, 0 @ 10

force up_button 0 @ 0, 1 @ 320, 0 @ 640

force down_button 0 @ 0, 1 @ 1600, 0 @ 2240

force left_button 0 @ 0, 0 @ 640, 1 @ 960, 0 @ 1600

force right_button 0 @ 0, 1 @ 2240, 0 @ 3200

force a_button 0 0, 1 640, 0 960, 1 960, 0 1280

force b_button 0 0, 1 320, 0 640, 1 1920, 0 2240, 1 2560, 0 2880

force clk 0 10, 1 20 -r 20

force start_button 0 0, 1 320 -r 640

run 4000

34

5.3.2 adder

Figure 29: Test to see value when arrow keys are pushed

Do file:

vsim work.adder

add wave *

force up 0 0, 1 10, 0 20, 1 30, 0 40, 1 50, 0 60, 0 70, 0 80, 0 90, 0 100

force down 0 0, 0 10, 0 20, 0 30, 0 40, 0 50, 0 60, 1 70, 0 80, 0 90, 1 100

force left 0 0, 0 10, 1 20, 0 30, 1 40, 0 50, 0 60, 0 70, 0 80, 1 90, 0 100

force right 0 0, 0 10, 0 20, 0 30, 0 40, 0 50, 1 60, 0 70, 1 80, 0 90, 0 100

force reset 1 0, 0 5

run 300

5.3.3 parser

Figure 30: Simulation of what number is parsed to each segment

Do file:

vsim work.parser

add wave *

force ta 0 0, 00101001 10, 01000011 20, 00011001 30, 10011000 40, 11100010 50, 00010010

60, 1001 70, 01100100 80, 11111111 90

run 100

35

5.3.4 aRGB

Figure 31: Test to see what color is lit up from pressing A button

Do file:

vsim work.posRGB_FSM

add wave *

force reset 1 @ 0, 0 @ 5

force a 0 @ 0, 1 @ 20 -r 40

run 200

5.3.5 bRGB

Figure 32: Test to see what color is lit up from pressing B button

Do file:

vsim work.negRGB_FSM

add wave *

force reset 1 @ 0, 0 @ 5

force b 0 @ 0, 1 @ 20 -r 40

run 200

36

5.3.6 RGBdecoder

Figure 33: Decoder value test for A button value

Do file:

vsim work.decoder

add wave *

force a 00 @ 0, 01 @ 20, 10 @ 40, 11 @ 60

run 100

5.3.7 OR_4

Figure 34: Test to check RGB color after pressing A and B buttons

Do file:

vsim work.or_4

add wave *

force off_one 1 0, 0 10, 0 20, 0 30, 0 40, 1 50, 1 60, 0 70

force red_one 0 0, 1 10, 0 20, 0 30, 0 40, 0 50, 0 60, 1 70

force green_one 0 0, 0 10, 1 20, 0 30, 0 40, 0 50, 0 60, 0 70

37

force blue_one 0 0, 0 10, 0 20, 1 30, 1 40, 0 50, 0 60, 0 70

force off_two 1 0, 1 10, 0 20, 0 30, 0 40, 0 50, 0 60, 0 70

force red_two 0 0, 0 10, 0 20, 0 30, 1 40, 1 50, 1 60, 1 70

force green_two 0 0, 0 10, 0 20, 1 30, 0 40, 0 50, 0 60, 0 70

force blue_two 0 0, 0 10, 1 20, 0 30, 0 40, 0 50, 0 60, 0 70

run 100

5.3.8 sevSeg

Figure 35: Simulation of 7 segment value displayed

Do file:

vsim work.SevenSeg

add wave *

force data 0000 0, 0001 10, 0010 20, 0011 30, 0100 40, 0101 50, 0110 60, 0111 70, 1000 80,

1001 90

run 100

5.3.9 NESreader

Figure 36: Test to see if NES reader correctly reads what buttons are pressed

Do file:

vsim work.NesReader

add wave *

force reset_n 0 @ 0, 1 @ 5

force clock 0 0, 1 10 -r 20

force dataYellow 0 0, 1 90, 0 100, 1 370, 0 380, 1 890, 0 900

38

run 5000

5.3.10 NEScontroller

Figure 37: Test for NES Controller Inputs

Do file:

vsim work.NESController

add wave *

force reset 0 @ 0, 1 @ 5, 0 @ 10

force up 0 @ 0, 1 @ 320, 0 @ 640

force down 0 @ 0, 1 @ 1600, 0 @ 2240

force left 0 @ 0, 0 @ 640, 1 @ 960, 0 @ 1600

force right 0 @ 0, 1 @ 2240, 0 @ 3200

force a 0 0, 1 640, 0 960, 1 960, 0 1280

force b 0 0, 1 320, 0 640, 1 1920, 0 2240, 1 2560, 0 2880

force clock 0 10, 1 20 -r 20

force start 0 0, 1 320 -r 640

force select 0 0, 1 320 -r 640

run 4000

5.3.11 DC motor

Figure 38: Test to show motor is moving when the Start button is pressed

39

Do file:

vsim work.dc_motor

add wave *

force in 0 @ 0, 1 @ 30 -r 60

force clk 0 0, 1 10 -r 20

force vss 1 0

force ground 0 0

run 300

6 References

[1] "Raspberry USB Nintendo NES Gamepad Controller for Raspberry Pi", ​Pi Supply​, 2020.

[Online]. Available:

https://uk.pi-supply.com/products/raspberry-usb-nintendo-nes-gamepad-controller-f

or-raspberry-pi. [Accessed: 05- Jun- 2020].

[2] J. Corleto, "NES Controller Interface with an Arduino UNO - Projects",

Allaboutcircuits.com​, 2016. [Online]. Available:

https://www.allaboutcircuits.com/projects/nes-controller-interface-with-an-arduino-

uno/. [Accessed: 05- Jun- 2020].

40

