
SpyderCam Team 23 Developer Guide

Sawyer Brundage, Camden Robustelli, Mikhail Burlachenko, Ali Alfadala

March 2021

1 System Overview

This SpyderCam can maneuver around a standard 8.5” by 11” sheet of paper.
It consists of a three stepper motor system that suspends a payload over the
specified area. The stepper motors are positioned in a triangle shape and are
controlled by a lookup table. There are two ways to control the SpyderCam
Joystick or typing in a G-Code command to change position. The joystick
reads analog x and y inputs that allow you to move around the piece of paper.
The straight line speed of the SpyderCam is 4 inches per second.

2 Electrical Specifications

This system runs on battery pack power supplies that are 12V each. For the
motors we have two of them combined making a 24V power supply feeding the
three motors. The arduino is hooked up to the computer to run our matlab
code so it is powered by USB. For the NEMA-17 stepper motors the operating
temperature is -10 to 40 degrees C. The nominal current is 1.2A at 4V and
the maximum voltage you can put into the stepper motors is 35V. The L298N
motor drivers have a storage temperature of between -20 to +135 degrees C,
and outputs a maximum power of 25W. In this case, where the driving voltage
is 24 V, the 5V jumper cap must be disabled and an outside 5V source must be
used (the Arduino, in this case).

3 User Guide

3.1 Setting Up System

Have the MATLAB GUI and code up and running as well as the Arduino code
imported and running in the Arduino Uno. Flip the enable switch to the ”on”
position to power the motors and motor drivers. With the payload hovering
over the center of the 8.5” by 11” piece of paper, click the ”calibrate” button
on the GUI and begin operation.

1



3.2 Operating System

Once the system is setup you use the GUI in MATLAB to pick whether you want
to control with a joystick or G-Code mode. This is in a drop down box menu
labeled input mode. On the GUI there is a spot to put in G-Code commands
and the location that the payload is at. Pressing the calibrate button will set
the SpyderCam’s current location to (0, 0). The command line supports G0,
G1, G20, G21, G90, G91, M2, and M6 commands. The desired units can also
be switched between inches and millimeters using the appropriate dropdown
menu.

4 Design Artifacts

4.1 Top Level Block Diagram

Figure 1: Block Diagram

4.2 Interface Definitions

INPUT USERIN1:
Joystick movements from the user that are read by the Arduino
Supports four directions: up, down, left, right

INPUT USERIN2:
Keyboard and Mouse Inputs from the user.
Interacts with the GUI interface through button presses and text input.

2



ENABLE SWITCH:
Simple on/off switch for the battery case
Switched on: battery outputs 24 V
Switched off: block is deactivated (0 V of output voltage)

SERIAL COMM IN:
Data rate: 9600 baud
Logic Level: +5V to 0V
UART TTL Serial Communication with Arduino Nano’s ATmega168 micro-

controller
Arduino prints strings to serial, which are read by MATLAB

LOCATION DATA CODE:
XY coordinates of the payload’s current location and destination
Coordinates are converted to indices for the table

SERIAL COMM OUT:
Data rate: 9600 baud
Logic Level: +5V to 0V
UART TTL Serial Communication with Arduino Nano’s ATmega168 micro-

controller
MATLAB prints string, doubles, and integers to serial, which are read by

Arduino
Outputs number of steps, feed rates, etc.

DSIG STEPS:
Logic Level: +5 V to 0 V
4 pin connections between each motor driver and Arduino
Generated using functions from AccelStepper.h library

MOTOR MECH:
Stepper motors rotate through the designated number of steps
200 steps per revolution
Supports up to 600 rpm
Wind or unwinds a thread of fishing line attached to payload

SPYDERCAM USROUT:
Payload moves according to user’s input from G-Code or Joystick
Three motors move the payload around the designated area
Can have a drawing utensil, scanner, or camera attached to the payload

VCC DCPWR:
Maximum Voltage: 24 V
Minimum Voltage: 0 V

3



Powers each stepper motor with 1.2 A of current

4.3 MATLAB GUI

Figure 2: MATLAB GUI

The MATLAB GUI allows the user to input G-Code commands for the Spy-
derCam. It specifically allows for G0, G1, G90, G91, M2, and M6. G20 and G21
are implemented using the ”Units” dropdown menu to change between millime-
ters and inches. The interface allows the user to change between millimeters
and inches, G-Code control and joystick functionality, a subroutine that draws
a square, and a text field that shows the SpyderCam’s current xy coordinates.
The calibrate button also sets the current location to (0, 0). When a command
forcing the SpyderCam to move is executed (or the joystick is moved), the pro-
gram sends data regarding the SpyderCam’s current location and destination
to the Lookup Table in order to obtain the number of steps needed for each
motor. The code for the GUI is located at the end of this document under
”Code Used”.

4.4 Lookup Table

The Lookup Table is the ”black box” that takes in location coordinates from
the MATLAB GUI and converts it into the number of steps each motor must
rotate. In order to achieve this, a function is called as the GUI launches and
populates the table beforehand to minimize delay. The table calculates the
length between each motor and a finite number of points on the 8.5” by 11”
piece of paper, which are spaced apart by 1/16 of an inch. This length is then

4



converted into the number of steps from the initial point (0, 0). The results
of the table from the SpyderCam’s current coordinates are subtracted from the
results of the destination, and the final result is written to the Arduino. The
Lookup Table code is included at the end of the document under ”Code Used”.

4.5 Motor Spool

Figure 3: Spools for Stepper Motors

This spool when attached to the motor allows us to easily connect are cables
from the motor to the SpyderCam. It is attached to the motor with a M5 hex
nut with a 8mm M3 grub screw onto the shaft of the motor. The radius of
where the cable for the SpyderCam is spooled up is ¼ of an inch. The stepper
motor can run up to 600 rpm. At 500 rpm it can move at about 7.6 inches
per second which is over the required speed. It has a hole in the middle of the
spool to thread the cable into and tie off so the cable starts in the center. It
has some wiggle room between the edges of the spool so the cable doesn’t have
to be exactly straight.

4.6 Payload

The payload designed for the SpyderCam system is in a triangular shape to
easily anchor from the points to the stepper motors using a cable and cut down
on weight. The cables run through the edge of the payload into the center to
try and help reduce wobble. The cylinder in the center is designed to hold a
laser upright so it can shine down onto the surface. This allows you to track the
movement of the payload. Each side of the payload is 60 mm and the thickness
of the payload is 26 mm to contain the laser.

5



Figure 4: SpyderCam Payload

4.7 Arduino Code

The Arduino code is essentially split into two parts: handling joystick inputs to
send to MATLAB and taking in data from MATLAB to then talk to the motors.
When the joystick reads an ”up”, ”down”, ”left”, or ”right” from analog signals,
it will send corresponding ’U’, ’D’, ’L’, or ’R’ characters to MATLAB if it is in
joystick mode. The Arduino also reads from the serial port to see if it should
switch modes or tell the motors to move. If MATLAB sends the number of steps
for each motor to Arduino, as well as the desired rpm, then Arduino will use
AccelStepper.h library functions to move the motors synchronously according
to the information. The Arduino code discussed is located at the end of this
document under ”Code Used.”

4.8 Enclosure

Figure 5: 3D Model of the PCB Enclosure

Enclosure is designed to cover three L298N motor drivers, Arduino Uno,
and PCB. M2 heat-set inserts 6mm M2 screws are used to attach modules
to the enclosure. Modules are attached to the bottom part (on the right).
The cover part is attached to the bottom part with M2.5 25mm+6mm male-
female hex standoffs and M2.5 hex nuts. The front of the enclosure is left

6



open for motor and power wires, and Arduino USB cable. The bottom part is
120mm×192mm×4mm. The cover is 27mm above the Arduino and PCB and
33mm above motor drivers.

5 PCB Information

Figure 6: Diagram of the PCB (Units in mm)

The PCB is designed to power motors and a laser pointer. There are two
3-pin terminal blocks since two 12V battery packs are used to power the Spyder-
cam. 12V pins and GND are connected to motor driver input. In case L298N
motor drivers are powered with more than 12V, they require additional 5V input
for the switching logic circuitry inside L298N. The 5V Arduino pin is connected
to pin 7 on PCB and Arduino GND is connected to PCB GND. Pins 1, 2, and 3
provide additional 5V to motor drivers. If the power supply is more than 12V,
a jumper should be used between pins 4 and 5 for 5V PCB. Pin 6 on the 5V
PCB is connected to a laser pointer as well as one of the GND pins.

7



Figure 7: Complete PCB

6 Part Information

Figure 7 shows a list of parts used for this project. In this case, the team used
and Arduino UNO as a microcontroller. However, an Arduino Nano would work
as well.

8



Figure 8: List of Parts Used

7 Code Used

7.1 MATLAB GUI

classdef SpyderCamGUI < MATLAB.apps.AppBase

9



% Properties that correspond to app components

properties (Access = public)

UIFigure MATLAB.ui.Figure

InputModeDropDownLabel MATLAB.ui.control.Label

InputModeDropDown MATLAB.ui.control.DropDown

ExecuteButton MATLAB.ui.control.Button

UnitsDropDownLabel MATLAB.ui.control.Label

UnitsDropDown MATLAB.ui.control.DropDown

CalibrateButton MATLAB.ui.control.Button

GCodeEditFieldLabel MATLAB.ui.control.Label

GCodeEditField MATLAB.ui.control.EditField

CurrentLocationEditFieldLabel MATLAB.ui.control.Label

CurrentLocationEditField MATLAB.ui.control.EditField

DrawSquareButton MATLAB.ui.control.Button

end

properties (Access = private)

xpos = 0; % Tracks coordinates of SpyderCam

ypos = 0;

device = serialport("COM3", 9600); % Sets up communication with Arduino

mode = 0; % Value switches between 0 and 1, depending if in G90 or G91 mode

LookupTable = FurnishLookupTable(); % Creates a Lookup Table struct array that

% determines number of steps for each motor

input_method = "G-Code";

end

methods (Access = private)

function results = WriteSteps(app, xnew, ynew, feed)

i = round(((xnew + 5.5)/11)*704) + 1;

j = round(((ynew + 4.25)/8.5)*544) + 1;

k = round(((app.xpos + 5.5)/11)*704) + 1;

l = round(((app.ypos + 4.25)/8.5)*544) + 1; % Converts coordinates to

% index values for Lookup Table

steps1 = compose("%d\n", app.LookupTable(i, j).motor1 -

app.LookupTable(k, l).motor1);

steps2 = compose("%d\n", app.LookupTable(i, j).motor2 -

app.LookupTable(k, l).motor2);

steps3 = compose("%d\n", app.LookupTable(i, j).motor3 -

app.LookupTable(k, l).motor3);

feedstr = compose("%d\n", feed);

10



%Writes step values and feed rate to serial

write(app.device, steps1, "string");

write(app.device, steps2, "string");

write(app.device, steps3, "string");

write(app.device, feedstr, "string");

app.xpos = xnew;

app.ypos = ynew;

end

end

% Callbacks that handle component events

methods (Access = private)

% Button pushed function: ExecuteButton

function ExecuteButtonPushed(app, event)

[token1, remain1] = strtok(app.GCodeEditField.Value);

if (token1 == "G90")

app.mode = 0; % Absolute Mode

elseif (token1 == "G91")

app.mode = 1; % Incremental Mode

elseif (token1 == "G0") % Rapid Movement: no specified feed value

[~, remain2] = strtok(remain1, "X");

[token2, remain3] = strtok(remain2);

[~, remain4] = strtok(remain3, "Y");

token3 = erase(strtok(remain4), "Y");

token2 = erase(token2, "X"); % Grabs X and Y values

switch (app.mode) % Absolute or Incremental

case 0

if (app.UnitsDropDown.Value == "Inches")

xnew = str2double(token2);

ynew = str2double(token3);

else

xnew = str2double(token2) / 25.4; % Converts input to

% inches from mm

ynew = str2double(token3) / 25.4;

end

case 1

11



if (app.UnitsDropDown.Value == "Inches")

xnew = str2double(token2) + app.xpos;

ynew = str2double(token3) + app.ypos;

else

xnew = str2double(token2) / 25.4 + app.xpos; % Converts

% to inches

ynew = str2double(token3) / 25.4 + app.ypos;

end

end

if (xnew <= 5.5 && xnew >= -5.5 && ynew <= 4.25 && ynew >= -4.25) % Checks

if values are valid

app.WriteSteps(xnew, ynew, 500); % Default Feed value is 500

end

elseif (token1 == "G1") % Controlled Movement: Feed value is

% specified by user

[~, remain2] = strtok(remain1, "X");

[token2, remain3] = strtok(remain2);

[~, remain4] = strtok(remain3, "Y");

[token3, remain5] = strtok(remain4);

[~, remain6] = strtok(remain5, "F");

token4 = erase(strtok(remain6), "F");

token2 = erase(token2, "X");

token3 = erase(token3, "Y"); % Grabs X, Y, and F values

% from edit field

switch (app.mode)

case 0

if (app.UnitsDropDown.Value == "Inches")

xnew = str2double(token2);

ynew = str2double(token3);

else

xnew = str2double(token2) / 25.4; % Converts to inches

ynew = str2double(token3) / 25.4;

end

case 1

if (app.UnitsDropDown.Value == "Inches")

xnew = str2double(token2) + app.xpos;

ynew = str2double(token3) + app.ypos;

else

xnew = str2double(token2) / 25.4 + app.xpos; % Converts to

12



% inches

ynew = str2double(token3) / 25.4 + app.ypos;

end

end

feed = str2num(token4);

if (xnew <= 5.5 && xnew >= -5.5 && ynew <= 4.25 && ynew >= -4.25 &&

feed <= 600 && feed > 0) % Checks if values are valid

app.WriteSteps(xnew, ynew, feed);

end

elseif (token1 == "M2") % Terminates the program

app.delete();

elseif (token1 == "M7") % Returns SpyderCam to center position

app.WriteSteps(0, 0, 500);

end

if (token1 ~= "M2")

if (app.UnitsDropDown.Value == "Inches")

app.CurrentLocationEditField.Value = sprintf("X:%f Y:%f", app.xpos,

app.ypos); % Shows current coordinates in inches

else

app.CurrentLocationEditField.Value = sprintf("X:%f Y:%f", app.xpos *

25.4, app.ypos * 25.4); % ... or in mm

end

app.GCodeEditField.Value = sprintf(""); % Clears G-Code Input Field

end

end

% Button pushed function: CalibrateButton

function CalibrateButtonPushed(app, event)

app.xpos = 0;

app.ypos = 0;

app.CurrentLocationEditField.Value = sprintf("X:%f Y:%f", app.xpos, app.ypos); % Sets current coordinates to (0, 0)

end

% Value changed function: InputModeDropDown

function InputModeDropDownValueChanged(app, event)

flush(app.device);

if (app.InputModeDropDown.Value == "G-Code")

13



write(app.device, "G-Code", "string");

app.input_method = "G-Code"; % Tells Arduino to expect

% step and feed values

else

write(app.device, "Joystick", "string");

app.input_method = "Joystick"; % Tells Arduino to print values

% corresponding to joystick inputs

end

while (app.input_method == "Joystick")

if (app.device.NumBytesAvailable > 0)

val = read(app.device, 1, "string");

flush(app.device);

if (val == "U" && app.ypos <= 4.1875) % Moves SpyderCam up 1/16 % inches

app.WriteSteps(app.xpos, app.ypos + 0.0625, 500);

elseif (val == "D" && app.ypos >= -4.1875) % Moves SpyderCam down 1/16 % inches

app.WriteSteps(app.xpos, app.ypos - 0.0625, 500);

elseif (val == "R" && app.xpos <= 5.4375) % Moves SpyderCam right % 1/16 inches

app.WriteSteps(app.xpos + 0.0625, app.ypos, 500);

elseif (val == "L" && app.xpos >= -5.4375) % Moves SpyderCam left

% 1/16 inches

app.WriteSteps(app.xpos - 0.0625, app.ypos, 500);

end

if (app.UnitsDropDown.Value == "Inches")

app.CurrentLocationEditField.Value = sprintf("X:%f Y:%f",

app.xpos, app.ypos);

else

app.CurrentLocationEditField.Value = sprintf("X:%f Y:%f",

app.xpos * 25.4, app.ypos * 25.4);

end

end

pause(0.001); % Checks for a potential change in input mode,

% or some other interrupt

end

end

14



% Value changed function: UnitsDropDown

function UnitsDropDownValueChanged(app, event)

% Updates the current coordinate values based on units

if (app.UnitsDropDown.Value == "Inches")

app.CurrentLocationEditField.Value = sprintf("X:%f Y:%f",

app.xpos, app.ypos);

else

app.CurrentLocationEditField.Value = sprintf("X:%f Y:%f",

app.xpos * 25.4, app.ypos * 25.4);

end

end

% Drop down opening function: InputModeDropDown

function InputModeDropDownOpening(app, event)

app.input_method = "";

end

% Button pushed function: DrawSquareButton

function DrawSquareButtonPushed(app, event)

app.WriteSteps(0, 0, 500);

app.WriteSteps(2, 0, 500);

app.WriteSteps(2, 2, 500);

app.WriteSteps(-2, 2, 500);

app.WriteSteps(-2, -2, 500);

app.WriteSteps(2, -2, 500);

app.WriteSteps(2, 0, 500);

end

end

% Component initialization

methods (Access = private)

% Create UIFigure and components

function createComponents(app)

% Create UIFigure and hide until all components are created

app.UIFigure = uifigure(’Visible’, ’off’);

app.UIFigure.Position = [100 100 629 330];

15



app.UIFigure.Name = ’MATLAB App’;

% Create InputModeDropDownLabel

app.InputModeDropDownLabel = uilabel(app.UIFigure);

app.InputModeDropDownLabel.HorizontalAlignment = ’right’;

app.InputModeDropDownLabel.Position = [331 145 66 22];

app.InputModeDropDownLabel.Text = ’Input Mode’;

% Create InputModeDropDown

app.InputModeDropDown = uidropdown(app.UIFigure);

app.InputModeDropDown.Items = {’G-Code’, ’Joystick’, ’’};

app.InputModeDropDown.DropDownOpeningFcn = createCallbackFcn(app,

@InputModeDropDownOpening, true);

app.InputModeDropDown.ValueChangedFcn = createCallbackFcn(app,

@InputModeDropDownValueChanged, true);

app.InputModeDropDown.Position = [412 145 111 22];

app.InputModeDropDown.Value = ’G-Code’;

% Create ExecuteButton

app.ExecuteButton = uibutton(app.UIFigure, ’push’);

app.ExecuteButton.ButtonPushedFcn = createCallbackFcn(app,

@ExecuteButtonPushed, true);

app.ExecuteButton.Position = [538 232 76 43];

app.ExecuteButton.Text = ’Execute’;

% Create UnitsDropDownLabel

app.UnitsDropDownLabel = uilabel(app.UIFigure);

app.UnitsDropDownLabel.HorizontalAlignment = ’right’;

app.UnitsDropDownLabel.Position = [107 145 33 22];

app.UnitsDropDownLabel.Text = ’Units’;

% Create UnitsDropDown

app.UnitsDropDown = uidropdown(app.UIFigure);

app.UnitsDropDown.Items = {’Inches’, ’Millimeters’};

app.UnitsDropDown.ValueChangedFcn = createCallbackFcn(app,

@UnitsDropDownValueChanged, true);

app.UnitsDropDown.Position = [150 145 100 22];

app.UnitsDropDown.Value = ’Inches’;

% Create CalibrateButton

app.CalibrateButton = uibutton(app.UIFigure, ’push’);

app.CalibrateButton.ButtonPushedFcn = createCallbackFcn(app,

@CalibrateButtonPushed, true);

app.CalibrateButton.Position = [83 65 466 50];

app.CalibrateButton.Text = ’Calibrate’;

16



% Create GCodeEditFieldLabel

app.GCodeEditFieldLabel = uilabel(app.UIFigure);

app.GCodeEditFieldLabel.HorizontalAlignment = ’right’;

app.GCodeEditFieldLabel.Position = [19 242 47 22];

app.GCodeEditFieldLabel.Text = ’G-Code’;

% Create GCodeEditField

app.GCodeEditField = uieditfield(app.UIFigure, ’text’);

app.GCodeEditField.Position = [81 242 442 22];

% Create CurrentLocationEditFieldLabel

app.CurrentLocationEditFieldLabel = uilabel(app.UIFigure);

app.CurrentLocationEditFieldLabel.HorizontalAlignment = ’right’;

app.CurrentLocationEditFieldLabel.Position = [28 197 94 22];

app.CurrentLocationEditFieldLabel.Text = ’Current Location’;

% Create CurrentLocationEditField

app.CurrentLocationEditField = uieditfield(app.UIFigure, ’text’);

app.CurrentLocationEditField.Position = [130 197 171 22];

% Create DrawSquareButton

app.DrawSquareButton = uibutton(app.UIFigure, ’push’);

app.DrawSquareButton.ButtonPushedFcn = createCallbackFcn(app,

@DrawSquareButtonPushed, true);

app.DrawSquareButton.Position = [419 197 100 22];

app.DrawSquareButton.Text = ’Draw Square’;

% Show the figure after all components are created

app.UIFigure.Visible = ’on’;

end

end

% App creation and deletion

methods (Access = public)

% Construct app

function app = SpyderCamGUI

% Create UIFigure and components

createComponents(app)

% Register the app with App Designer

registerApp(app, app.UIFigure)

if nargout == 0

clear app

17



end

end

% Code that executes before app deletion

function delete(app)

% Delete UIFigure when app is deleted

delete(app.UIFigure)

end

end

end

7.2 Lookup Table (MATLAB)

function [LookupTable] = FurnishLookupTable ()

LfromP = 5; % Initial length from paper for each pylon

% Calculates initial thread length for each motor

Init1 = LfromP + 5.5;

Init2 = sqrt((LfromP*0.707 + 5.5)^2 + (LfromP*0.707 + 4.25)^2);

Init3 = sqrt((LfromP*0.707 + 5.5)^2 + (LfromP*0.707 + 4.25)^2);

x = -5.5:0.015625:5.5;

y = -4.25:0.015625:4.25;

for j = 1:545

for i = 1:705

% Calculates number of steps needed to reach each coordinate

% from initial coordinates (0, 0) assuming each thread is

% wrapped around a .25 inch diameter with 200 steps per rev

LookupTable(i, j).motor1 = round((sqrt((LfromP - x(i) + 5.5)^2 + y(j)^2) -

Init1) / 0.003927);

LookupTable(i, j).motor2 = round((sqrt((LfromP*0.707 + x(i) + 5.5)^2 +

(LfromP*0.707 - y(j) + 4.25)^2) - Init2) / 0.003927);

LookupTable(i, j).motor3 = round((sqrt((LfromP*0.707 + x(i) + 5.5)^2 +

(LfromP*0.707 + y(j) + 4.25)^2) - Init3) / 0.003927);

end

end

end

7.3 Arduino Code

/* This program communicates with the SpyderCam MATLAB GUI

* and sends information to stepper motors based on either

* G-Code inputs or movement of the joystick.

*/

#include <AccelStepper.h>

18



#define joyX A0

#define joyY A2

int mode = 0; // Denotes Joystick vs G-Code mode

int xValue, yValue, B1Value, B2Value;

AccelStepper motor1 (AccelStepper::FULL4WIRE, 2, 3, 4, 5);

AccelStepper motor2 (AccelStepper::FULL4WIRE, 6, 7, 8, 9);

AccelStepper motor3 (AccelStepper::FULL4WIRE, 10, 11, 12, 13);

void setup() {

motor1.setMaxSpeed(1200);

motor2.setMaxSpeed(1200);

motor3.setMaxSpeed(1200);

Serial.begin(9600);

}

void loop()

{

String token1, token2, token3, token4;

if (Serial.available() > 0)

{

token1 = Serial.readStringUntil(’\n’); // Reads first input

if (token1 == "G-Code")

mode = 0; // Switches to G-Code mode

else if (token1 == "Joystick")

mode = 1; // Switches to Joystick mode

else

{

token2 = Serial.readStringUntil(’\n’);

token3 = Serial.readStringUntil(’\n’);

token4 = Serial.readStringUntil(’\n’); // Reads next four values (steps and rpm) as

// strings

int steps1 = token1.toInt();

int steps2 = token2.toInt();

int steps3 = token3.toInt();

int rpm = token4.toInt();

motor1.move(steps1);

motor2.move(steps2);

motor3.move(steps3);

while(motor1.currentPosition() != motor1.targetPosition() && motor2.currentPosition() !=

motor2.targetPosition() && motor3.currentPosition() != motor3.targetPosition()){

motor1.setSpeed(rpm * 3);

19



motor1.runSpeedToPosition();

motor2.setSpeed(rpm * 3);

motor2.runSpeedToPosition();

motor3.setSpeed(rpm * 3);

motor3.runSpeedToPosition();

}

}

}

if (mode == 1)

{

yValue = analogRead(joyY);

if(yValue > 530) // If joystick is pushed up

Serial.println("U");

else if(yValue < 510) // If joystick is pushed down

Serial.println("D");

xValue = analogRead(joyX);

if(xValue > 510) // Pushed right

Serial.println("R");

if(xValue < 490) // Pushed left

Serial.println("L");

}

}

20


