

- D a m i a n A m e r m a n - S m i t h -

Senior Electrical & Computer Engineering (ECE) Student

Portfolio: <https://projects.engineering.oregonstate.edu/profile/?id=LOFA6ivY1uRlehNI>

(541) 378-7898 • damermansmith04@gmail.com • www.linkedin.com/in/damian-ameran-smith-23270a265/

SKILLS

- ▶ FPGA Logic Gate Prototyping using the SystemVerilog HDL
- ▶ VLSI Design & Simulation using Cadence Virtuoso
- ▶ Semiconductor Processing & Device Verification
- ▶ Microcontroller programming with C/C++ and Assembly Languages
- ▶ Soldering & Circuit Assembly
- ▶ PCB Design using I²C, SPI, & UART Communication Protocols

EDUCATION

BS in Electrical & Computer Engineering • GPA 3.75, 2022-2026, Oregon State University, Corvallis, OR

- ▶ Relevant Courses: Digital VLSI Design, Power Electronics, Semiconductor Devices & Processing.

ENGINEERING PROJECTS

The Macrocontroller: Educational Computer Design • Oregon State University	Fall 2025 to Present
▶ Centered around an FPGA-based CPU implemented with SystemVerilog.	
▶ Designed the memory & data storage block, including program memory, RAM, and long-term file storage.	
▶ Current work is on firmware development to interface between CPU, memory, and peripheral inputs.	
MOS Capacitor and N-Channel MOSFET • Oregon State University	Winter 2026
▶ Using Aluminum-on-Silicon processing techniques to make a Metal-Oxide-Semiconductor capacitor and nMOS transistor.	
▶ Testing devices to experimentally verify device performance based on design parameters.	
4-bit ALU Design • Oregon State University	Fall 2025
▶ Designed and verified using hierarchical transistor-level CMOS design in Cadence Virtuoso.	
▶ Validated functionality through subcircuit & system level simulations.	
▶ Created a DRC/LVS-clean Full Adder layout for planar 0.18 μm CMOS.	
WaveLite: Portable Oscilloscope • Oregon State University	Winter 2025
▶ Designed firmware & graphical interface to plot real-time oscilloscope signals.	
▶ Implemented waveform measurements (i.e. amplitude, mean), periodically adjusting measurements as data was received.	
▶ Created a triggering mechanism to capture transient signals (i.e. RC charging/discharging).	

PROFESSIONAL EXPERIENCE

Oregon State University , Port Orford, OR • Research Assistant	Summer 2021
▶ Assisted in the collection of zooplankton to analyze the feeding habits of grey whales.	
▶ Used kayaks to collect zooplankton samples and surveying tools to track whale activity.	